Notes on the combinatorial game: graph Nim
Richard M. Low, W.H. Chan
Abstract
The combinatorial game of Nim can be played on graphs. Over the years, various Nim-like games on graphs have been proposed and studied by N.J. Calkin et al., L.A. Erickson and M. Fukuyama. In this paper, we focus on the version of Nim played on graphs which was introduced by N.J. Calkin et al.: Two players alternate turns, each time choosing a vertex $v$ of a finite graph and removing any number $(\geq 1)$ of edges incident to $v$. The player who cannot make a move loses the game. Here, we analyze Graph Nim for various classes of graphs and also compute some Grundy-values.
Keywords
Nim on graphs, combinatorial game
Full Text:
PDF
DOI:
http://dx.doi.org/10.5614/ejgta.2016.4.2.7
Refbacks
There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div> View EJGTA Stats