The cycle (circuit) polynomial of a graph with double and triple weights of edges and cycles
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2019.7.1.15
References
E.J. Farrell, On a general class of graph polynomials, J. Comb. Theory B 26 (1) (1979), 111– 122.
E.J. Farrell and V.R. Rosenfeld, Block and articulation node polynomials of the generalized rooted product of graphs, J. Math. Sci. (Calcutta) 11 (1) (2000), 35–47.
V.R. Rosenfeld and M.V. Diudea, The block-polynomials and block-spectra of dendrimers, Internet Electron. J. Mol. Des. 1 (3) (2002), 142–156.
V.R. Rosenfeld, The circuit polynomial of the restricted rooted product G(Γ ) of graphs with a bipartite core G, Discrete Appl. Math. 156 (2008), 500–510.
E.J. Farrell, On a class of polynomials obtained from circuits in a graph and its application to characteristic polynomials of graphs, Discrete Math. 25 (1979), 121–133.
E.J. Farrell and J.C. Grell, The circuit polynomial and its relation to other polynomials, Carib. J. Math. 2 (1/2) (1982), 15–24.
E.J. Farrell and J.C. Grell, On reconstructing the circuit polynomial of a graph, Caribb. J. Math. 1 (3) (1983), 109–119.
A. Kerber, Algebraic Combinatorics via Finite Group Actions, Wissenschaftsverlag, Manheim, Wein, Zu ̈rich, 1991.
A. Kerber, Applied Finite Group Actions, Springer Verlag, Berlin, Heidelberg, New York, London, Raris, Tokyo, Hong Kong, Barcelona, Budapest, 1999.
V.R. Rosenfeld and I. Gutman, A novel approach to graph polynomials, Commun. Math. Comput. Chem (MATCH) 24 (1989), 191–199.
V.R. Rosenfeld and I. Gutman, On the graph polynomials of a weighted graph, Coll. Sci. Papers. Fac. Kragujevac 12 (1991), 49–57.
D.J. Klein, Variation localized-site cluster expansions V. Valence-bond and Heisenberg mod- els, Mol. Phys. 31 (3) (1976), 811–823.
D.M. Cvetkovic ́, and H. Sachs, Spectra of Graphs: Theory and Application, Academic Press, Berlin (1980).
D.M. Cvetkovic ́, M.Doob, I.Gutman and A. Torgasev, Recent Results in the theory of Graph Spectra, North-Holland, Amsterdam (1988).
D. M. Cvetkovic ́, P. Rowlinson, and S. Simic ́, Eigenspaces of Graphs. Series: Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1997).
A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York (1961).
E. Heilbronner, H. Bock, Das HMO-Modell und seine Anwendungen, Weinheim, Verlag Chemie (1968, 1970); English translation: E. Heilbronner, H. Bock, The HMO Model and Its Application, Vols. 1–3, Verlag Chemie, Weinheim (1970).
A. Tang, Y. Kiang, G. Yan, S. Tai, Graph Theoretical Molecular Orbitals, Science Press, Beijing (1986).
J.R. Dias, Molecular Orbital Calculations Using Chemical Graph Theory, Springer-Verlag, Berlin (1993).
D.J. Klein and V.R. Rosenfeld, Forcing, freedom, and uniqueness in graph theory and chemistry, Croat. Chem. Acta 87 (1) (2014), 49–59.
J.M. Salvador, K. Hernandez, A.Beltran, R.Duran, and A. Mactutis, Differential synthesis of the matching polynomial of C72-100, J. Chem. Inf. Comput. Sci. 38 (6) (1998), 1105–1110.
G.G. Cash, A differential-operator approach to the permanental polynomial, J. Chem. Inf. Comput. Sci. 42 (5) (2002), 1132–1135.
V.R. Rosenfeld and D.J. Klein, Enumeration of substitutional isomers with restrictive mutual positions of ligands. I. Overall counts, J. Math. Chem. 51 (1) (2013), 21–37.
V.R. Rosenfeld and D.J. Klein, Enumeration of substitutional isomers with restrictive mutual positions of ligands. II. Counts with restrictions on (sub)symmetry, J. Math. Chem. 51 (1) (2013), 239–264.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.