The real equiangular tight frames obtained from rank 3 graphs

Eiichi Bannai, Etsuko Bannai, Chin-Yen Lee, Hajime Tanaka, Wei-Hsuan Yu

Abstract


We present all nontrivial real equiangular tight frames {φm}m=1M in RN obtained as spherical embeddings of primitive rank 3 graphs on M vertices, and those such that one of their associated M strongly regular graphs on M - 1 vertices is a primitive rank 3 graph.

Keywords


equiangular tight frame, rank 3 graph, strongly regular graph

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2024.12.2.12

References

E. Bannai, Character tables of commutative association schemes, in: W. M. Kantor, R. A. Liebler, S. E. Payne, and E. E. Shult (Eds.), Finite Geometries, Buildings, and Related Topics, Oxford University Press, New York, 1990, pp. 105–128.

E. Bannai, S. Hao, and S.-Y. Song, Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points, J. Combin. Theory Ser. A 54 (1990), 164–200.

E. Bannai, W. M. Kwok, and S.-Y. Song, Ennola type dualities in the character tables of some association schemes, Mem. Fac. Sci. Kyushu Univ. Ser. A 44 (1990), 129–143.

E. Bannai, O. Shimabukuro, and H. Tanaka, Finite analogues of non-Euclidean spaces and Ramanujan graphs, European J. Combin. 25 (2004), 243–259.

E. Bannai, O. Shimabukuro, and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009), 6126–6134.

E. Bannai, S.-Y. Song, S. Hao, and H. Z. Wei, Character tables of certain association schemes coming from finite unitary and symplectic groups, J. Algebra 144 (1991), 189–213.

A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.

A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs, Cambridge University Press, Cambridge, 2022.

P. G. Casazza, D. Redmond, and J. C. Tremain, Real equiangular frames, in: The 42nd Annual Conference on Information Sciences and Systems, 2008, pp. 715–720.

J. B. Fawcett, The O’Nan-Scott Theorem for finite primitive permutation groups, and finite representability, Master Thesis, University of Waterloo, 2009; Available at https://jfawcett.com/masters.pdf

M. Fickus, J. W. Iverson, J. Jasper, and E. J. King, Grassmannian codes from paired difference sets, Des. Codes Cryptogr. 89 (2021), 2553–2576; arXiv: 2010.06639.

M. Fickus, J. Jasper, D. G. Mixon, and J. Peterson, Tremain equiangular tight frames, J. Combin. Theory Ser. A 153 (2018), 54–66; arXiv: 1602.03490.

M. Fickus and D. G. Mixon, Tables of the existence of equiangular tight frames, preprint; arXiv: 1504.00253.

M. Fickus, D. G. Mixon, and J. C. Tremain, Steiner equiangular tight frames, Linear Algebra Appl. 436 (2012), 1014–1027; arXiv: 1009.5730.

C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.

J. W. Iverson, J. Jasper, and D. G. Mixon, Optimal line packings from nonabelian groups, Discrete Comput. Geom. 63 (2020), 731–763; arXiv: 1609.09836.

J. W. Iverson and D. G. Mixon, Doubly transitive lines II: almost simple symmetries, Algebr. Comb. 7 (2024), 37–76. arXiv: 1905.06859.

W. M. Kwok, Character table of a controlling association scheme defined by the general orthogonal group O(3,q), Graphs Combin. 7 (1991), 39–52.

W. M. Kwok, Character tables of association schemes of affine type, European J. Combin. 13 (1992), 167–185.

P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Algebra 24 (1973), 494–512.

J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Indag. Math. 28 (1966), 335–348.

P. Singh, Equiangular tight frames and signature sets in groups, Linear Algebra Appl. 433 (2010), 2208–2242; arXiv: 0910.2685.

S. Y. Song and H. Tanaka, Group-case commutative association schemes and their character tables, in: Proceedings of “Algebraic Combinatorics, An International Conference in Honor of Eiichi Bannai’s 60th Birthday,” Sendai International Center, Sendai, Japan, June 2006, pp. 204–213; arXiv: 0809.0748.

H. Tanaka, On some relationships among the association schemes of the orthogonal groups acting on hyperplanes, Master Thesis, Kyushu University, 2001; Available at https://hajimetanaka.org/docs/master.pdf

H. Tanaka, A four-class subscheme of the association scheme coming from the action of PGL(2,4f), European J. Combin. 23 (2002), 121–129.

H. Tanaka, Association schemes of affine type over finite rings, Adv. Geom. 4 (2004), 241–261.

S. Waldron, On the construction of equiangular frames from graphs, Linear Algebra Appl. 431 (2009), 2228–2242.

L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory IT-20 (1974), 397–399.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats