Inverse graphs associated with finite groups
Monther Rashed Alfuraidan, Yusuf F. Zakariya
Abstract
Let $(\Gamma,*)$ be a finite group and $S$ a possibly empty subset of $\Gamma$ containing its non-self-invertible elements. In this paper, we introduce the inverse graph associated with $\Gamma$ whose set of vertices coincides with $\Gamma$ such that two distinct vertices $u$ and $v$ are adjacent if and only if either $u * v\in S$ or $v * u\in S$. We then investigate its algebraic and combinatorial structures.
Keywords
finite group, inverse graph, non-self-invertible, planar graphs, Hamiltonian graphs
Full Text:
PDF
DOI:
http://dx.doi.org/10.5614/ejgta.2017.5.1.14
Refbacks
There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div> View EJGTA Stats