Group vertex magicness of H-join and generalised friendship graph
Abstract
In this paper, we consider A-vertex magic graphs, where A is a non-trivial Abelian group. We characterize Z-vertex magic graphs. We also explore the relation between the A-vertex magicness of a graph G and its reduced graph. In addition, we introduce a new type of labeling called A′-vertex magic labeling of graphs and characterize A-vertex magicness using A′-vertex magicness. We give a new procedure to embed any graph as an induced subgraph of an A-vertex magic graph and we construct infinite families of A-vertex magic graphs both of these procedure uses less number of vertices compared to the one given in (Sabeel et al. in Australas. J. Combin. 85(1) (2023), 49-60) and we also generalize some results proved in this paper. Finally we completely classify generalised friendship graph using A-vertex magicness and group vertex magicness.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2024.12.2.11
References
S. Balamoorthy, A-vertex magicness of product of graphs, AKCE Int. J. Graphs Comb. (2024). https://doi.org/10.1080/09728600.2024.2350581
S. Balamoorthy, S.V. Bharanedhar and N. Kamatchi, On the products of group vertex magic graphs, AKCE Int. J. Graphs Comb. 19 (3) (2022), 268–275.
S. Balamoorthy, T. Kavaskar and K. Vinothkumar, Wiener index of an ideal-based zero-divisor graph of commutative ring with unity, AKCE Int. J. Graphs Comb. (2023). https://doi.org/10.1080/09728600.2023.2263040
J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York (1976).
I.N. Herstein, Topics in Algebra, John Wiley and Sons, 2nd ed., New York (2006).
H. Fernaua, J.F. Ryanb and K.A. Sugeng, A sum labelling for the generalised friendship graph, Discrete Math. 308 (2008), 734–740.
N. Kamatchi and S. Arumugam, Distance Antimagic Graphs, J. Combinat. Math. Combinat. Comput. 64 (2013), 61–67.
N. Kamatchi, K. Paramasivam, A.V. Prajeesh, K. Muhammed Sabeel and S. Arumugam, On group vertex magic graphs, AKCE Int. J. Graphs Combin. 17(1) (2020), 461–465.
A.A.G. Ngurah and R. Simanjuntak, On distance labelings of 2-regular graphs, Electron. J. Graph Theory Appl. 9 (1) (2021), 25–37.
K.M. Sabeel, K. Paramasivam, A.V. Prajeesh, N. Kamatchi and S. Arumugam, A characterization of group vertex magic trees of diameter up to 5, Australas. J. Combin. 85 (1) (2023), 49-60.
M. Saravanan, S.P. Murugan and G. Arunkumar, A generalization of Fiedler’s Lemma and the spectra of H-join of graphs, Linear Algebra Appl. 625 (2021), 20–43.
V. Vilfred, Sigma labelled graphs and circulant graphs, Ph.D. Thesis, University of Kerala, India (1994).40-942.
R.Y. Wulandari and R. Simanjuntak, Distance antimagic labelings of product graphs, Electron. J. Graph Theory Appl. 11 (1) (2023), 111–123.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.