Distance antimagic labelings of product graphs
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2023.11.1.9
References
S. Arumugam and N. Kamatchi, On (a,d)-distance antimagic graphs, Australas. J. Combin. 54 (2012), 279–288.
N.J. Cutinho, S. Sudha, and S. Arumugam, Distance antimagic labelings of Cartesian product of graphs, AKCE Int. J. Graphs Comb. 17(2020), 940–942.
R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae 4 (1970).
A.K. Handa, A. Godinho and T. Singh, Some distance antimagic labeled graphs, CALDAM (2016).
A.K. Handa, A. Godinho, T. Singh, and S. Arumugam, Distance antimagic labeling of join and corona of two graphs, AKCE Int. J. Graphs Comb. 14 (2017). 172–177.
W. Imrich, R.H. Hammack and S.Klavzar, Handbook of Product Graphs, CRC Press, inc., (2011).
N. Kamatchi and S. Arumugam, Distance Antimagic Graphs, J. Combinat. Math. Combinat. Comput. 64 (2013), 61–67.
R. Simanjuntak and A. Tritama, Distance Antimagic Product Graphs, Symmetry 14 (7) (2022), 1411.
F. Susanto, K. Wijaya, I.W. Sudarsana and Slamin, Non-inclusive and inclusive distance irregularity strength for the join product of graphs, Electron. J. Graph Theory Appl. 10 (1) (2022), 1–13.
V. Vilfred, Sigma labelled graphs and circulant graphs, Ph.D. Thesis, University of Kerala, India (1994).40-942.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.