Chromatic number of super vertex local antimagic total labelings of graphs

Fawwaz F. Hadiputra, Kiki A. Sugeng, Denny R. Silaban, Tita K. Maryati, Dalibor Froncek

Abstract


Let G(V,E) be a simple graph and f be a bijection f : V ∪ E → {1, 2, …, |V|+|E|} where f(V)={1, 2, …, |V|}. For a vertex x ∈ V, define its weight w(x) as the sum of labels of all edges incident with x and the vertex label itself. Then f is called a super vertex local antimagic total (SLAT) labeling if for every two adjacent vertices their weights are different. The super vertex local antimagic total chromatic number χslat(G) is the minimum number of colors taken over all colorings induced by super vertex local antimagic total labelings of G. We classify all trees T that have χslat(T)=2, present a class of trees that have χslat(T)=3, and show that for any positive integer n ≥ 2 there is a tree T with χslat(T)=n.


Keywords


super vertex local antimagic total labeling; super vertex local antimagic total chromatic number; tree; chromatic number

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2021.9.2.19

References

S. Arumugam, K. Premalatha, M. Baca, and A. Semanicova-Fenovcıkova, Local antimagic vertex coloring of a graph, Graphs and Combinatorics 33 (2017), 275–285.

L. Branson, personal communication.

J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics DS#6 (2019).

J. Haslegrave, Proof of a local antimagic conjecture, Discrete Mathematics and Theoretical Computer Science 20 (1) (2018), #18.

G. Lau, Every graph is local antimagic total, arXiv:1906.10332v2 (2019).

T.K. Maryati, E.T. Baskoro, and A.N.M. Salman, Ph-supermagic labelings of some trees, Journal of Combinatorial Mathematics and Combinatorial Computing 65 (2008), 197–204.

D.F. Putri, Dafik, I.H. Agustin, and R. Alfarisi, On the local vertex antimagic total coloring of some families tree, J. Phys.: Conf. Ser. 1008 (2018), 012035.

Slamin, N.A. Adiwijaya, M.A. Hasan, Dafik, and K. Wijaya, Local super antimagic total labeling for vertex coloring of graphs, Symmetry 12 (11) (2020), 1843.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats