On 14-regular distance magic graphs

Petr Kovář, Matěj Krbeček


Let G be a graph with n vertices. By N(v) we denote the set of all vertices adjacent to v. A bijection f : V(G)→{1, 2, …, n} is a distance magic labeling of G if there exists an integer k such that the sum of labels of all vertices adjacent to v is k for all vertices v in V(G). A graph which admits a distance magic labeling is a distance magic graph. In this paper, we completely characterize all orders for which a 14-regular distance magic graph exists. Hereby we extended similar results on 2-, 4-, 6-, 8-, 10-, and 12-regular distance magic graphs.


Graph labeling; distance magic labeling; 1-VMV labeling

Full Text:


DOI: http://dx.doi.org/10.5614/ejgta.2024.12.1.4


S. Arumugam, D. Fronček, and N. Kamatchi, Distance Magic Graphs – A Survey, J. Indones. Math. Soc., Special Edition (2011), 11–26.

S. Cichacz, B. Freyberg, and D. Fronček, Orientable Zn-distance magic graphs, Discuss. Math. Graph Theory 39 (2019), 533–546.

B. Freyberg and M. Keranen, Orientable Zn-distance magic labeling of the Cartesian product of many cycles, Electron. J. Graph Theory Appl. 5(2) (2017), 304–311.

D. Fronček, P. Kovář, and T. Kovářová, Fair incomplete tournaments, Bull. Inst. Combin. Appl. 48 (2006), 31–33.

D. Fronček, Fair incomplete tournaments with odd number of teams and large number of games, Congr. Numer. 187 (2007), 83–89.

J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. DS 6, (2022).

M.I. Jinnah, On Σ-labelled graphs, In Technical Proceedings of Group Discussion on Graph Labeling Problems (1999), 71–77.

P. Kovář, T. Kovářová, and D. Fronček, A note on 4-regular distance magic graphs, Australas. J. Combin. 54 (2012), 127–132.

P. Kovář, A. Silber, P. Kabelíková, and M. Kravčenko, On regular distance magic graphs of odd order, (submitted).

P. Kovář and A. Silber, Distance magic graphs of high regularity, AKCE Int. J. Graphs Comb. 9 (2012), 213–219.

M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003), 305–315.

A.A.G. Ngurah and R. Simanjuntak, On distance labelings of 2-regular graphs, Electron. J. Graph Theory Appl. 9(1) (2021), 25–37.


  • There are currently no refbacks.

ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats