Embedding partial 3-star designs

Matt Noble, Shayne Nochumson

Abstract


Define a 3-star decomposition of Kn as being a collection of subgraphs, each isomorphic to K1,3, with the property that each edge of Kn appears in exactly one of the subgraphs. A partial 3-star decomposition is similarly defined except each edge appears in at most one of the subgraphs. In this work, it is shown that any partial 3-star decomposition of Kn can be embedded into a decomposition of Kn+s where s ≤ 4. Furthermore, we determine, for any maximal partial 3-star decomposition P of Kn, the minimum s ∈{1,2,3,4} such that P can be embedded into a decomposition of Kn+s.

Keywords


graph decompositions, embedding partial graph decompositions, stars

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/jgta.2024.12.2.9

References

A. De Vas Gunasekara and D. Horsley, Smaller embeddings of partial k-star decompositions, arXiv:2109.13475 (2021).

D. G. Hoffman and Dan Roberts, Embedding partial k-star designs, J. Combin. Designs 22 (4) (2013), 161 – 170.

M. Noble and S. N. Richardson, Balls, bins, and embeddings of partial k-star designs, Discrete Math. 342 (12) (2019), Article 111600.

M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979), 273 – 278.

M. Tarsi, On the decomposition of a graph into stars, Discrete Math. 36 (1981), 299 – 304.

S. Yamamoto, H. Ikeda, S. Shige-Ida, K. Ushio, and N. Hamada, On claw-decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975), 33 – 42.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats