Harary index of bipartite graphs
Abstract
Let G be a connected graph with vertex set V(G). The Harary index of a graph is defined as H(G) = ∑u ≠ v 1/d(u, v), where d(u, v) denotes the distance between u and v. In this paper, we determine the extremal graphs with the maximum Harary index among all bipartite graphs of order n with a given matching number, with a given vertex-connectivity and with a given edge-connectivity, respectively.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2019.7.2.12
References
M. Azari, A. Iranmanesh, Harary index of some nano-structures, MATCH Commun. Math. Comput. Chem. 71 (2014) 373--382.
H. Hua, M. Wang, On Harary index and traceable graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 297--300.
H. Hua, S. Zhang, On the reciprocal degree distance of graphs, Discrete Appl. Math. 160 (2012) 1152--1163.
O. Ivanciuc, T. S. Balaban, A. T. Balaban, Design of topological indices, part 4, reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309--318.
S. Li, Y. Song, On the sum of distances in bipartite graphs, Discrete Appl. Math. 169 (2014) 176--185.
S. Li, H. Zhang, M. Zhang, Further results on the reciprocal degree distance of graphs, J. Comb. Optim., doi: 10.1007/s10878-014-9780-7.
D. Plavssic, S. Nikolic, N. Trinajistic, Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235--250.
G. Su, L. Xiong, I. Gutman, Harary index of the k-th power of a graph, Appl. Anal. Discrete Math. 7 (2013) 94--105.
G. Su, L. Xiong, X. Su, X. Chen, Some results on the reciprocal sum-degree distance of graphs, J. Comb. Optim., doi: 10.1007/s10878-013-9645-5.
H. Wang, L. Kang, On the Harary index of cacti. Util. Math., to appear.
H. Wang, L. Kang, More on the Harary index of cacti, J. Appl. Math. Comput. 43 (2013) 369--386.
K. Xu, Trees with the seven smallest and eight greatest Harary indices, Discrete Appl. Math. 160 (2012) 321--331.
K. Xu, K. C. Das, On Harary index of graphs, Discrete Appl. Math. 159 (2011) 1631--1640.
K. Xu, K. C. Das, Extremal unicyclic and bicyclic graphs with respect to Harary index, Bull. Malays. Math. Sci. Soc. 36 (2013) 373--383.
K. Xu, K. C. Das, H. Hua, M. V. Diudea, Maximal Harary index of unicyclic graphs with a given matching number, Stud. Univ. Babes-Bolyai. Chemia, 58 (2013) 71--86.
K. Xu, K. C. Das, N. Trinajstic, The Harary Index of a Graph, Springer, 2015.
K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461--508.
K. Xu, J. Wang, H. Liu, The Harary index of ordinary and generalized quasi-tree graphs, J. Appl. Math. Comput. 45 (2014) 365--374.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.