A method to construct graphs with certain partition dimension
Abstract
In this paper, we propose a method for constructing new graphs from a given graph G so that the resulting graphs have the partition dimension at most one larger than the partition dimension of the graph G. In particular, we employ this method to construct a family of graphs with partition dimension 3.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2019.7.2.5
References
S. Akhter and R. Farooq, Metric dimension of fullerence graphs, Electron. J. Graph Theory Appl. 7 (1) (2019), 91-103.
M. Baca, E. T. Baskoro, A. N. M. Salman, S. W. Saputro and D. Suprijanto, The metric dimension of regular bipartite graphs, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 15–28.
J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas and C. Seara, On the metric dimension of some families of graphs, Electron. Notes Discrete Math., 22 (2005), 129–133.
G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113.
G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of a graph, Congr. Numer., 131 (1998), 55–66.
G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math., 59 (2000), 45–54.
M. Fehr, S. Gosselin and O. Oellermann, The partition dimension of Cayley digraphs, Aequationes Math., 71 (2006), 1–18.
H. Fernau, J. A. Rodriguez-Velazquez and I. G. Yero, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 105 (2014), 381–391.
C. Grigorious, S. Stephen, B. Rajan and M. Miller, On partition dimension of a class of circulant graphs, Inform. Process. Lett., 114 (2014), 353–356.
D. O. Haryeni, E. T. Baskoro, S. W. Saputro, M. Baca and A. Semanicova-Fenovcıkova, On the partition dimension of two-component graphs, Proc. Indian Acad. Sci. (Math. Sci.), 127 (5) (2017), 755–767.
D. O. Haryeni, E. T. Baskoro and S. W. Saputro, Family of graphs with partition dimension three, Submitted.
D. O. Haryeni, E. T. Baskoro and S. W. Saputro, On the partition dimension of disconnected graphs, J. Math. Fund. Sci., 49 (2017), 18–32.
D. O. Haryeni and E. T. Baskoro, Partition dimension of some classes of homogeneous disconnected graphs, Procedia Comput. Sci., 74 (2015), 73–78.
H. Iswadi, E.T. Baskoro, R. Simanjuntak, A.N.M. Salman,
the metric dimension of graph with pendant edges, J. Combin. Math. Combin. Comput. 65 (2008), 139--145.
C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Combin. Comput., 40 (2002), 17–32.
J. A. Rodrıguez-Velazquez, I. G. Yero and D. Kuziak, The partition dimension of corona product graphs, Ars Combin., 127 (2016), 387–399.
I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Math., 308 (2008), 5026–5031.
I. G. Yero, M. Jakovac, D. Kuziak and A. Taranenko, The partition dimension of strong product graphs and Cartesian product graphs, Discrete Math., 331 (2014), 43–52.
I. G. Yero, D. Kuziak and J. A. Rodrıguez-Velazquez, A note on the partition dimension of Cartesian product graphs, Appl. Math. Comput., 217 (2010), 3571–3574.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.