On regular handicap graphs of order $n \equiv 0$ mod 8
Dalibor Froncek, Aaron Shepanik
Abstract
A handicap distance antimagic labeling of a graph G = (V, E) with n vertices is a bijection f̂ : V → {1, 2, …, n} with the property that f̂(xi) = i, the weightw(xi) is the sum of labels of all neighbors of xi, and the sequence of the weights w(x1), w(x2), …, w(xn) forms an increasing arithmetic progression. A graph G is a handicap distance antimagic graph if it allows a handicap distance antimagic labeling. We construct r-regular handicap distance antimagic graphs of order $n \equiv 0 \pmod{8}$ for all feasible values of r.