On the spectrum of linear dependence graph of a finite dimensional vector space
Abstract
In this article, we introduce and characterize linear dependence graph Γ(V) of a finite dimensional vector space V over a finite field of q elements. Two vector spaces U and V are isomorphic if and only if their linear dependence graphs Γ(U) and Γ(V) are isomorphic. The linear dependence graph Γ(V) is Eulerian if and only if q is odd. Highly symmetric nature of Γ(V) is reflected in its automorphism group Sm ⊕ ( ⊕ i = 1mSq − 1), where m = (qn − 1)/(q − 1). Besides these basic characterizations of Γ(V), the main contribution of this article is to find eigen values of adjacency matrix, Laplacian matrix and distance matrix of this graph.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2019.7.1.4
References
R.B. Bapat, Graphs and Matrices, Second edition, Hindustan Book Agency, 2014.
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226.
A.K.Bhuniya and S.Bera, On some characterizations of strong power graphs of finite groups, Spec. Matrices, 4 (2016), 121–129.
J.A. Bondy and U.S.R. Murthy, Graph Theory, Springer-Verlag, London, 2008.
P.J. Cameron and S. Ghosh, The power graph of a finite group, Discrete Math. 311 (13) (2011), 1220–122.
I. Chakrabarty, S. Ghosh and M.K. Sen, Undirected power graph of semigroups, Semigroup Forum, 78 (2009), 410–426.
I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (17) (2009), 5381–5392.
Z. Chen, Yi-Zheng Fan and Wen-Xue Du, Estrada index of random graphs, MATCH Commun. Math. Comput. Chem. 68 (2012,) 825–834.
A. Das, Non-Zero component graph of a finite dimensional vector spaces, Comm. Algebra, 44 (2016), 3918–3926.
A. Das, Non-Zero component union graph of a finite dimensional vector space, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2016.1234577.
A. Das, Subspace inclusion graph of a vector space, Comm. Algebra, 44 (2016), 4724–4731.
A. Das, On non-zero component graph of vector spaces over finite fields, J. Algebra Appl. 16 (1) (2017), DOI: 10.1142/S0219498817500074.
Z. Du and B. Zhou, On the Estrada index of graphs with given number of cut edges, Electron. J. Linear Algebra, 22 (2011), 586–592.
Z. Du and Z. Liu, On the Estrada and Laplacian Estrada indices of graphs, Linear Algebra Appl. 435 (2011), 2065–2076.
E. Estrada, Characterization of 3D molecular structure, Chemical Physics Letters 319 (2000), 713–718.
M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973), 298–305.
G.H. Fath-Tabar, A.R. Ashrafi and I. Gutman, Note on Estrada and L-Estrada indices of graphs, Bull. cl. Sci. Nat. Sci. Math. 139 (2009), 1–16.
A.D. Gu ̈ngo ̈r and S. B. Bozkurt, On the distance Estrada index of graphs, Hacettepe J. Math. Stat. 38 (3) (2009), 277–283.
I. Gutman I. and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006), 29–37.
I. Gutman, H. Deng and S. Radenkovic ́, The estrada index: an updated survey, in:D. Cvetkovic ́ and I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Beograd, 2011, 155–174.
I.N. Herstein, Topics in Algebra, Second Edition, Wiley, 2016.
G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graph, MATCH Commun. Math. Comput. Chem. 60 (2008), 461–472.
J.D. Lagrange and K.A. Roy, Poset graphs and the lattice of graph annihilators, Discrete Math. 313 (10) (2013), 1053–1062.
D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010), 793–804.
J. Plensik, Critical graphs of given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. 30 (1975), 71–93.
Y. Shang, A remark on the chromatic polynomials of incomparability graphs of posets, Inter- national Journal of Pure and Applied Mathematics, 67 (2) (2011), 159–164.
Y. Shang, Lower bounds for the Estrada index of graphs, Electron. J. Linear Algebra, 23 (2012), 664–668.
Y. Shang, Lower bounds for the Estrada index using mixing time and Laplacian spectrum, Rocky Mountain J. Math. 43 (6) (2013), 2009–2016.
Y. Shang, Distance Estrada index of random graphs, Linear and Multilinear Algebra, 63 (3) (2015), 466–471.
Y. Shang, Estrada and L-Estrada indices of Edge-Independent Random graphs, Symmetry, 7 (2015), 1455–1462.
Y. Shang, Estimating the distance Estrada index, Kuwait J. Sci. 43 (3) (2016), 14–19.
Y. Shang, On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs, Open Math. 14 (2016), 641–648.
M. Tavakkoli, A.B. Saeid and N.S. Poursalavati, Classification of posets using zero-divisor graphs, Mathematica Slovaca, 68 (1) (2018), 21–32.
Wen-Huan Wang and Wei-Wei Xu, Graphs with the maximal Estrada indices, Linear Algebra Appl. 446 (1) (2014), 314–328.
D.B. West, Introduction to Graph Theory, Prentice Hall, 2011.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.