Traversing every edge in each direction once, but not at once: Cubic (polyhedral) graphs

Vladimir R. Rosenfeld

Abstract


A {\em retracting-free bidirectional circuit} in a graph $G$ is a closed walk which traverses every edge exactly once in each direction and such that no edge is succeeded by the same edge in the opposite direction. Such a circuit revisits each vertex only in a number of steps. Studying the class $\mathit{\Omega}$ of all graphs admitting at least one retracting-free bidirectional circuit was proposed by Ore (1951) and is by now of practical use to nanotechnology. The latter needs in various molecular polyhedra that are constructed from a single chain molecule in the retracting-free way. Some earlier results for simple graphs, obtained by Thomassen and, then, by other authors, are specially refined by us for a cubic graph $Q$. Most of such refinements depend only on the number $n$ of vertices of $Q$.

Keywords


cubic graph, spanning tree, cotree, retracting-free bidirectional circuit

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2017.5.1.13

Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats