On some aspects of the generalized Petersen graph

V. Yegnanarayanan

Abstract


Let $p \ge 3$ be a positive integer and let $k \in {1, 2, ..., p-1} \ \lfloor p/2 \rfloor$. The generalized Petersen graph GP(p,k) has its vertex and edge set as $V(GP(p, k)) = \{u_i : i \in Zp\} \cup \{u_i^\prime : i \in Z_p\}$ and $E(GP(p, k)) = \{u_i u_{i+1} : i \in Z_p\} \cup \{u_i^\prime u_{i+k}^\prime \in Z_p\} \cup \{u_iu_i^\prime : i \in Z_p\}$. In this paper we probe its spectrum and determine the Estrada index, Laplacian Estrada index, signless Laplacian Estrada index, normalized Laplacian Estrada index, and energy of a graph. While obtaining some interesting results, we also provide relevant background and problems.


Keywords


generalized Petersen graph, spectrum, Estrada index, Laplacian Estrada index, normalized Estrada index, signless Laplacian Estrada index, energy of a graph.

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2017.5.2.1

Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats