Abstract
For any $k \in \mathbb{N}$, the $k-$distance graph $D^{k}G$ has the same vertex set of $G$, and two vertices of $D^{k}G$ are adjacent if they are exactly distance $k$ apart in the original graph $G$. In this paper, we consider the connectivity of $D^{k}G$ and state the conditions for graph $G$ and integer $k$ such that the graph $D^{k}G$ is connected.
Keywords
distance, radius, diameter, power graph
Full Text:
PDF
DOI:
http://dx.doi.org/10.5614/ejgta.2017.5.1.9
Refbacks
There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div> View EJGTA Stats