Distance magic labelling of Mycielskian graphs

Ravindra Kuber Pawar, Tarkeshwar Singh

Abstract


A graph G = (V, E), where |V(G)| = n and |E(G)| = m is said to be a distance magic graph if there is a bijection f : V(G)→{1, 2, …, n} such that the vertex weight w(u)=∑v ∈ N(u)f(v)=k is constant and independent of u, where N(u) is an open neighborhood of the vertex u. The constant k is called a distance magic constant, the function f is called a distance magic labeling of the graph G and the graph which admits such a labeling is called a distance magic graph. In this paper, we present some results on distance magic labeling of Mycielskian graphs.

Keywords


distance magic graphs; Mycielskian graph

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2024.12.1.7

References

S. Arumugam, D. Fronček, and N. Kamatchi, Distance magic graphs - a survey, Journal of the Indonesian Mathematical Society, Special Edition (2011), 11–26.

S. Cichacz and D. Fronček, Distance magic circulant graphs, Discrete Mathematics 339(1) (2016), 84–94.

F. Bussemaker, C. Cobeljic, J. Seidel, and D. Cvetkovic, Cubic graphs on ≤14 vertices, Journal of Combinatorial Theory, Series B, 23(2) (1977), 234–235.

B. Freyberg and K. Melissa, Orientable Zn-distance magic labeling of the Cartesian product of many cycles, Electronic Journal of Graph Theory and Applications 5(2) (2017), 304 – 311.

J.A. Gallian, Dynamic survey of graph labeling, Electronic Journal of Combinatorics # DS6, (2020), 1–445.

A. Godinho, Studies in Neighborhood Magic Graphs, Ph.D. Thesis (2020), Birla Institute of Technology and Science, Pilani, India.

A. Handa, Studies in Distance Antimagic Graphs, Ph.D. Thesis (2021), Birla Institute of Technology and Science, Pilani, India.

M.I. Jinnah, On Σ-labelled graphs, Technical Proceedings of Group Discussion on Graph labeling Problems, eds. B.D. Acharya and S.M. Hedge, (1999), 71–77.

P. Kovář, D. Fronček, and T. Kovářová, A note on 4-regular distance magic graphs, Australasian Journal of Combinatorics 54(2) (2012), 127–132.

M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, Australian Journal of Combinatorics, 28 (2003), 305–315.

J. Mycielski, Sur le coloriage des graphes, Coll. Math. 3(1995), 161–162.

A.V. Prajeesh, K. Paramasivam, and K.M. Kathiresan, On distance magic Harary hraphs, Utilitas Mathematica 115 (2020), 251–266.

S.B. Rao and T. Singh, Sigma graphs - a survey, Labelings of Discrete Structures and Applications (eds. B.D. Acharya, S. Arumugam and A. Rosa, Narosa Publishing House, New Delhi), (2008), 135–140.

V. Vilfred, Σ-Labelled Graphs, and Circulant Graphs, Ph.D. Thesis (1994), University of Kerala, Trivandrum, India.

D.B. West, Introduction to Graph Theory, Pearson Education Second Edition (1995).


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats