The locating chromatic number for m-shadow of a connected graph

I Wayan Sudarsana, Faisal Susanto, Selvy Musdalifah

Abstract


Let c : V(G)→{1, 2, …, k} be a proper k-coloring of a simple connected graph G. Let Π = {C1, C2, …, Ck} be a partition of V(G), where Ci is the set of vertices of G receiving color i. The color code, cΠ(v), of a vertex v with respect to Π is an ordered k-tuple (d(v, C2),d(v, C2),…,d(v, Ck)), where d(v, Ci)=min{d(v, x):x ∈ Ci} for i = 1, 2, …, k. If distinct vertices have distinct color codes then c is called a locating coloring of G. The minimum k for which c is a locating coloring is the locating chromatic number of G, denoted by χL(G). Let G be a non trivial connected graph and let m ≥ 2 be an integer. The m-shadow of G, denoted by Dm(G), is a graph obtained by taking m copies of G, say G1, G2, …, Gm, and each vertex v in Gii = 1, 2, …, m − 1, is joined to the neighbors of its corresponding vertex v′ in Gi + 1. In the present paper, we deal with the locating chromatic number for m-shadow of connected graphs. Sharp bounds on the locating chromatic number of Dm(G) for any non trivial connected graph G and any integer m ≥ 2 are obtained. Then the values of locating chromatic number for m-shadow of complete multipartite graphs and paths are determined, some of which are considered to be optimal.


Keywords


locating chromatic number, m-shadow of graphs, locating coloring, complete multipartite graph, path

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2022.10.2.18

References

I.H. Agustin, F. Susanto, Dafik, R.M. Prihandini, R. Alfarisi, and I W. Sudarsana, On H-supermagic labelings of m-shadow of paths and cycles, Int. J. Math. Math. Sci. 2019 (2019), Article ID 8780329.

Arfin and E.T. Baskoro, Unicyclic graph of order n with locating-chromatic number n − 2, Jurnal Matematika dan Sains 24 (2019), 36–45.

Asmiati, H. Assiyatun, and E.T. Baskoro, Locating-chromatic number of amalgamation of stars, ITB J. Sci. 43A (2010), 1–8.

Asmiati, E.T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, and S. Uttunggadewa, The locating-chromatic number of firecracker graphs, Far East Journal of Mathematical Sciences 63 (2012), 11–23.

Asmiati, I.K.S.G. Yana, and L. Yulianti, On the locating chromatic number of certain barbell graphs, Int. J. Math. Math. Sci. 2018 (2018), Article ID 5327504.

H. Assiyatun, D.K. Syofyan, and E.T. Baskoro, Calculating an upper bound of the locating-chromatic number of trees, Theoret. Comput. Sci. 806 (2020), 305–309.

E.T. Baskoro and Arfin, All unicyclic graphs of order n with locating-chromatic number n − 3, Indonesian Journal of Combinatorics 5 (2021), 73–81.

E.T. Baskoro and Asmiati, Characterizing all trees with locating-chromatic number 3, Electron. J. Graph Theory Appl. 1 (2013), 109–117.

E.T. Baskoro and D.I.D. Primaskun, Improved algorithm for the locating chromatic number of trees, Theoret. Comput. Sci. 856 (2021), 165–168.

E.T. Baskoro and I.A. Purwasih, The locating-chromatic number for corona product of graphs, Southeast Asian Journal of Sciences 1 (2012), 126–136.

A. Behtoei and M. Anbarloei, The locating chromatic number of the join of graphs, Bull. Iranian Math. Soc. 40 (2014), 1491–1504.

A. Behtoei and B. Omoomi, On the locating chromatic number of kneser graphs, Discrete Appl. Math. 159 (2011), 2214–2221.

A. Behtoei and B. Omoomi, On the locating chromatic number of the cartesian product of graphs, Ars Combin. 126 (2016), 221–235.

G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, and P. Zhang, Graphs of order n with locating-chromatic number n − 1, Discrete Math. 269 (2003), 65–79.

G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, and P. Zhang, The locating chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89–101.

M. Furuya and N. Matsumoto, Upper bounds on the locating chromatic number of trees, Discrete Appl. Math. 257 (2019), 338–341.

M. Ghanem, H. Al-Ezeh, and A. Dabbour, Locating chromatic number of powers of paths and cycles, Symmetry 11 (2019), 389.

Y. Hafidh and E.T. Baskoro, On the locating chromatic number of trees, Int. J. Math. Comput. Sci. 17 (2022), 377–394.

N. Inayah, W. Aribowo, and M.M.W. Yahya, The locating chromatic number of book graph, J. Math. 2021 (2021), Article ID 3716361.

A. Irawan, Asmiati, L. Zakaria, and K. Muludi, The locating-chromatic number of origami graphs, Algorithms 14 (2021), 167.

R. Sakri and M. Abbas, On locating chromatic number of möobius ladder graphs, Proyecciones 40 (2021), 659–669.

D.K. Syofyan, E.T. Baskoro, and H. Assiyatun, Trees with certain locating-chromatic number, J. Math. Fund. Sci. 48 (2016), 39–47.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats