Total distance vertex irregularity strength of some corona product graphs

Dian Eka Wijayanti, Noor Hidayat, Diari Indriati, Abdul Rouf Alghofari, Slamin Slamin

Abstract


A distance vertex irregular total k-labeling of a simple undirected graph G = G(V, E), is a function f : V(G)∪E(G)→{1, 2, …, k} such that for every pair vertices u, v ∈ V(G) and u ≠ v, the weights of u and v are distinct. The weight of vertex v ∈ V(G) is defined to be the sum of the label of vertices in neighborhood of v and the label of all incident edges to v. The total distance vertex irregularity strength of G (denoted by tdis(G)) is the minimum of k for which G has a distance vertex irregular total k-labeling. In this paper, we present several results of the total distance vertex irregularity strength of some corona product graphs.


Keywords


distance vertex irregular total k-labeling, total distance vertex irregularity strength

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2023.11.1.17

References

M. Baca, F.A. Semanicova, Slamin, and K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. 6 (1) (2018), 61-83.

M. Baca, S. Jendrol, M. Miller, and J. Ryan, On irregular total labelings, Discrete Math. 307 (2007), 1378-1388.

N.H. Bong, Y. Lin, and Slamin, On distance-irregular labelings of cycles and wheels, Australas. J. Combin., 69 (3) (2017), 315-322.

G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, and F. Saba, Irregular networks, Congressus Numerantium, 64 (1988), 197-210.

J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 20 (2017), #DS6 .

M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin., 28 (2003), 305-315.

Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math., 310 (2010), 3043-3048.

Slamin, On distance irregular labeling of graphs, Far East Journal of Mathematical Sciences, 102 (5) (2017), 919-932.

W.D. Wallis, Magic graphs (2001), Birkhauser, Boston.

D.E. Wijayanti, H. Noor, D. Indriati, A.R. Alghofari, Slamin, On distance vertex irregular total k-labeling, submitted.

D.E. Wijayanti, H. Noor, D. Indriati, A.R. Alghofari, The total distance vertex irregularity strength of fan and wheel graphs, AIP Conference Proceedings, 2326 (2021), 020043-1-020043-14.

D.E. Wijayanti, H. Noor, D. Indriati, A.R. Alghofari, Slamin, On D-distance vertex irregular total k-labeling, submitted.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats