Connectivity of Poissonian inhomogeneous random multigraphs
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2023.11.1.8
References
B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Percolation on dense graph sequences, Ann. Probab., 38(1):150–183, (2010), https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1214/09-AOP478.
B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures Algorithms 31(1) (2007), 3–122, https://doi.org/10.1002/rsa.20168.
C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math. 219(6) (2008), 1801–1851. https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2008.07.008.
L. Devroye and N. Fraiman, Connectivity of inhomogeneous random graphs, Random Structures Algorithms, 45(3) (2014), 408–420, https://doi.org/10.1002/rsa.20490.
P. Erds and A.Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.
P. Erds and J. Spencer, Evolution of the n-cube, Comput. Math. Appl. 5(1) (1979), 33–39.
V. Falgas-Ravry, J. Larsson, and K. Markström, Speed and concentration of the covering time for structured coupon collectors, arXiv:1601.04455 (2016).
L. Federico and R. van der Hofstad, Critical window for connectivity in the configuration model, Combin. Probab. Comput., 26(5) (2017), 660–680, https://doi.org/10.1017/S0963548317000177.
J.A. Fill, E.R. Scheinerman, and K.B. Singer-Cohen, Random intersection graphs when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models, Random Structures Algorithms 16(2) (2000), 156–176, https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<156::AID-RSA3>3.3.CO;2-8.
P.W. Holland, K.B. Laskey, and S. Leinhardt, Stochastic blockmodels: first steps, Social Networks 5(2) (1983), 109–137, https://doi.org/10.1016/0378-8733(83)90021-7.
F. Joos, Random subgraphs in sparse graphs, SIAM J. Discrete Math., 29(4) (2015), 2350–2360, https://doi.org/10.1137/140976340.
I. Norros and H. Reittu, On a conditionally Poissonian graph process, Adv. in Appl. Probab., 38(1) (2006), 59–75, https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1239/aap/114393614.
C. Radin and L. Sadun, Phase transitions in a complex network, J. Phys. A 46(30) (2013), 305002, 12, https://doi.org/10.1088/1751-8113/46/30/305002.
K. Rybarczyk, Diameter, connectivity, and phase transition of the uniform random intersection graph, Discrete Math. 311(17) (2011), 1998–2019, https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.disc.2011.05.029.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.