The matrix Jacobson graph of finite commutative rings

Siti Humaira, Pudji Astuti, Intan Muchtadi-Alamsyah, Ahmad Erfanian


The notion of the matrix Jacobson graph was introduced in 2019. Let R be a commutative ring and J(R) be the Jacobson radical of ring R. The matrix Jacobson graph of ring R size m × n, denoted 𝔍(R)m × n, is defined as a graph where the vertex set is Rm × n ∖ J(R)m × n such that two distinct vertices A, B are adjacent if and only if 1 − det(AtB) is not a unit in ring R. Here we obtain some graph theoretical properties of 𝔍(R)m × n including its connectivity, planarity and perfectness.


finite commutative rings; matrix Jacobson graph; connectivity; planarity; perfectness

Full Text:




A. Azimi, A. Erfanian, and M. Farrokhi D.G., The Jacobson graph of commutative rings, J. Algebra Appl. 12 (3) (2013), 1250179.

A. Azimi, A. Erfanian, and M. Farrokhi D.G., Isomorphisms between Jacobson graphs, Rend. Circ. Mat. Palermo 63 (2) (2014), 277–286.

A. Azimi and M. Farrokhi D.G., Cycles and paths in Jacobson graphs, Ars Combin 134 (2017), 61–74.

B.R. McDonald, Finite rings with Identity, New York: Marcel Dekker Inc (1974)

H. Ghayour, A. Erfanian, A. Azimi, and M. Farrokhi D.G., n-array Jacobson graphs, The Iranian Mathematical Society, Iran 43 (7) (2017), 2137–2152.

H. Ghayour, A. Erfanian, and A. Azimi, Some result on the Jacobson graph of a commutative ring, Rend. Circ. Mat. Palermo 67 (1) (2018), 33–41.

M.Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. Math. (2), 162 (1) (2006), 51–229.

K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math., 15 (1930), 271–283.

S. Akbari, S. Khojasteh, and A. Yousefzadehfard, The proof of a conjecture in Jacobson graph of commutative ring, J.Algebra Appl. 14 (10) (2015), 1550107.

S. Humaira, P. Astuti, I. Muchtadi-Alamsyah, and A. Erfanian, The matrix Jacobson graph of fields, J. Phys.: Conf. Ser. 1538 (1) (2020), 012008.

Z. Fattahi, A. Erfanian, and M. Alinejad, Some new results on Jacobson graphs, Rend. Circ. Mat. Palermo 68 (1) (2019), 129–137.


  • There are currently no refbacks.

ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats