Weak edge triangle free detour number of a graph

Sethu Ramalingam, S. Athisayanathan

Abstract


For any two vertices u and v in a connected graph G = (V, E), a u − v path P is called a u − v triangle free path if no three vertices of P induce a triangle. The triangle free detour distance Df(u, v) is the length of a longest u − v triangle free path in G. A u − v path of length Df(u, v) is called a u − v triangle free detour. A set S ⊆ V is called a weak edge triangle free detour set of G if every edge of G has both ends in S or it lies on a triangle free detour joining a pair of vertices of S. The weak edge triangle free detour number wdnf(G) of G is the minimum order of its weak edge triangle free detour sets and any weak edge triangle free detour set of order wdnf(G) is a weak edge triangle free detour basis of G. Certain properties of these concepts are studied. The weak edge triangle free detour numbers of certain classes of graphs are determined. Its relationship with the triangle free detour diameter is discussed and it is proved that for any three positive integers ab and n of integers with 3 ≤ b ≤ n − a + 1 and a ≥ 4, there exists a connected graph G of order n with triangle free detour diameter Df = a and wdnf(G)=b. It is also proved that for any three positive integers ab and c with 3 ≤ a ≤ b and c ≥ b + 2, there exists a connected graph G such that Rf = aDf = b and wdnf(G)=c.


Keywords


triangle free detour distance, triangle free detour number, weak edge triangle free detour set, weak edge triangle free detour number

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2022.10.2.22

References

F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).

G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 53 (2005), 75–94.

G. Chartrand and H. Escuadro, and P. Zhang, The Detour Number of a Graph, Util. Math. 64 (2003), 97–113.

G. Chartrand, F. Harary, and P. Zhang, On the Geodetic Number of a Graph, Networks 39 (2002), 1–6.

G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria. 72 (2004), 3–15.

G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi (2006).

G. Chartrand and P. Zhang, Distance in Graphs - taking the long view, AKCE J. Graphs. Combin. 1 (1)(2004), 1–13.

F. Harary, Graph Theory, Addition-Wesley, 1969.

F. Harary, E. Loukakis, and C. Tsouros, The Geodetic Number of a Graph, Mathl. Comput. Modeling 17 (1993), 89–95.

I. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Distance in Graphs, J. Combin. Math. Combin. Comput. 105 (2018), 267–288.

A.P. Santhakumaran and S. Athisayanathan, Edge Detour Graphs, J. Combin. Math. Combin. Comput. 69 (2009), 191–204.

A.P. Santhakumaran and S. Athisayanathan, On Edge Detour Graphs, Discussiones Mathematicae Graph Theory 30 (2010), 155–174.

A.P. Santhakumaran and S. Athisayanathan, Weak Edge Detour Number of a Graph, Ars Combin. 98 (2011), 33–61.

S. Sethu Ramalingam and S. Athisayanathan, Triangle Free Detour Number of a Graph, (Communicated).


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats