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Abstract

The non—commuting graph I'(G) of a non—abelian group G is defined as follows. The vertex set
V(I'(G)) of I'(G) is G \ Z(G) where Z((G') denotes the center of GG and two vertices = and y are
adjacent if and only if zy # yx. We prove that the rainbow k—connectivity of I'(G) is equal to
(%] +2,for3 <k < |Z(G)|.
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1. Introduction

Let GG be a group and Z(G) be the center of G. The non-commuting graph I'(G) associated to
G is the graph with vertex set G \ Z(G) and such that two vertices = and y are adjacent whenever
xy # yx. The non-commuting graph of a group was first considered by Paul Erdos in 1975, [4].
Subsequently, it was strongly developed in [1].

Let I" be a connected graph with the vertex set V' (I') and the edge set £/(I"). Define a coloring
¢: E(l) — {1,2,...,t}, t € N, where adjacent edges may be colored the same. Given an edge
coloring of I', a path P is rainbow if no two edges of P are colored the same. An edge-colored
graph I' is rainbow connected if every pair of vertices of I' are connected by a rainbow. The rain-
bow connection number rci(I") of T' is defined to be the minimum integer ¢ such that there exists
an edge-coloring of I' with ¢ colors that makes I' rainbow connected.
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From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edge-
colored graph I is called rainbow k—connected if any two distinct vertices of I' are connected by
at least & internally disjoint rainbow paths. The rainbow k—connectivity of I', denoted by rcy(I'),
is the minimum number of colors required to color the edges of I' to make it rainbow k—connected,
and ¢ is called a rainbow k—coloring of I". We usually denote rc;(I") by rc(T).

The commutator of an ordered pair gy, g, of elements of G is the element

(91, 92) = 91 '95 ' 192 € G

G is abelian if and only if [g1, go] = 1

Let G(V, E), and let a = (ey, ..., ;) be a path with e; € E. Then [(a) := j is called the length
of a.

We denote by P(z,y) the set of all x, y paths in G. Then d(z,y) := min{l(a)|a € P(x,y)} is
called the distance from x to y.

We call diam(G) := max{d(z,y)|z,y € G} the diameter of G. The length of a shortest cycle
of G is called the girth of G.

When a pair of vertices g;, g; are joined, we denoted by g; ~ g;. In otherwise we denoted by
9i > gj-

A non—commutative graph I'(G) is connected and the diameter of I'(G) is 2, diam/(I'(G)) = 2.

Theorem 1.1. [1] For any non-abelian group G, diam(I'(G)) = 2. In particular, I'(G) is con-
nected.

In [6], it is shown that rc(I'(G)) =rco(I'(G)) = 2.
Theorem 1.2. [6] Let G be a finite non-abelian group. Then rc(I'(G)) = reo(I(G)) = 2.

In the present article, we estimate rc, (I'(G)) for 3 < k < |Z(G)|. Our main result is the following
theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then rc, (I'(G)) < k, for 3 < k < |Z(G)| with
1Z(G)| > 3. Specifically rc,(T'(G)) = [£] + 2.

2. rex(T(G)) with1 < k < |Z(G)]
Let (G be a finite non-abelian group, from now on we write the vertices of ['(G) as the partition
V(IN(G)) = 12U g Z U+ UgnZ,

with 7 = Z(G), g;Z # Z, m = [G : Z(G)] — 1 and where g;Z is an independent subset of I'(G).

2
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Proposition 2.1. Let G be a finite non-abelian group. Then the m—partite graph U'(G) with parti-
tion V(I'(G)) = 1 ZU g Z U - - - U g, Z, provides an adjacency by blocks.

Proof. Observe that every pair of vertices g; ~ g;, if and only if for all z,y € Z gix ~ g;y. In
addition, for each i, the vertex g € V(I'(G)) is adjacent to g; if and only if it is adjacent to every
element of the set g;Z. In other words, it is an adjacency by blocks. [

Definition 2.2. Let GG be a non-commutative finite group, with m—partition
V(I(G)) = 1 ZU g Z U+ UgnZ

adjacency by blocks. We define the skeleton of the m—partition as the subgraph induced by M =
{91, 92, ..., gm}. The skeleton is denoted by 5’14{ -

Remark 2.3. The graph I'(G) is not complete , however S%G) can be complete, we can see this
in the follow example: Let G = Doyy := (a, 7 : a* = 2? = 1, wax = a™!), the dihedral group of
order 8. Then Z := Z(G) = {1, a*}, and we have

V(I'(Q)) = aZUzZUazx Z.
Since each pair of {a, z, ax} do not commute, we have Sf‘/([ Ds,.4) 18 cOmplete.

By Theorem 1.2, there is a coloration
v BE(0(G)) — {1,2}

such that rc(I") = rcy(I") = 2. Thus, the graph I'(G) is not complete, implies that go(E(S%G))) =
{1, 2}. Therefore, the coloration

¢ = plpem E(SIJ“V([G)) — {1,2}

(G)

meets the 2—connectivity, that is to say, rc(Slﬁ/([G)) < 2. Consider Z(G) = {e = z1, 22,23, ..., 25}
and define the following coloring of I'(G):

v E(I(G)) — {1,2} given by

V({9i2p, 9j24}) # 0({9i,9;}) for 1 <, 5,p,q <myi # jsp # q.

In the next section we give a coloring for 3 < k < s with p # ¢. Moreover in section 6 we will
proof that this coloring works.
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3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for I'(G), with & > 3. We may
ask for the maximum number of paths from v; to vy vertices, no two of which have an edge in
common (such paths are called edge-disjoint paths). As a consequence of Menger’s theorem about
max-flow and min-cut, Witney [7] presented that a graph is k-connected if and only if any two
vertices are connected by £ internally disjoint paths. With Whitney’s result we can answer how
many edge-disjoint paths are connecting a given pair of vertices on I'(G).

Definition 3.1. The edge-connectivity is the minimum size of a subset C' C E(G) for which G —C
is not connected for a graph GG. The edge-connectivity of G is denoted by A\(G). If A(G) > k then
G es called k-edge connected.

The next theorem is a result implied by Menger’s theorem. This form can be found in [5,
Chapter 15].

Theorem 3.2. An undirected graph G = (V, E) is k-edge-connected if and only if there exist k
edge-disjoint paths between any two vertices s and .

As we can obtain the rainbow-connectivity number of I'(G) and this graph is connected by
blocks with s = |Z(G)]| as size of each block, we have that the graph I'(G) is s-edge-connected
and there exist s edge-disjoint paths in I'(G). Then, our problem now is coloring the s edge-disjoint
paths of I'(G).

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for g;, g;, gr, g1 €
S%G) and 2,, 2, 2w, 2p € Z(G). The first case is when g;z, ~ g¢;2, which give us a bipartite
complete graph in I'(G). The second case is when we have ¢;2, ~ gj2z ~ gr2y, but g;2, % g2y.

Remark 3.4. We note that A(G) > s. Then, if we want a path between end vertices g;z,. and
g;z, without loss of generality we start with g;z,, necessarily, from 3.2, the edges ¢;z, ~ g;zs,
with ¢, € {1,...,s}, are in the set of edge-disjoint paths. The same happens for the edges
Gizry, ~ g;z With r, € {1,..., s} because we have s disjoint paths, therefore we need all out-
edge from g;z,, and all in-edge to g;2;, thus all our edge-disjoint paths have the following form:

(Gi%ry G2ty s GiZras Gi2t), With tg, 1, € {1, ..., s}.

4. Rainbow k—connectivity

4.1. Case when g; ~ g; € V(S%Gﬂ

Lets = |Z(G)| andlet 7 = rmod s with1 <r <s. Ifg; ~ g; € V(S%G)), then the set of
edges is given by
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E, = {ee E(I'(G))|giz ~ g;2- such that ¥ ({g;2p, 9;2,}) = 1} U
{e € E(I'(G))| for g;z, ~ g;2z;7 such that ¥({g;2,, g;2,}) = 2 with
1<id,j,p<myi#j}

E, = {6 € E( (G>>|gzzr ~ g;Zzr such that 1/1({92217,9]2;;}) = 2} U
{e € E(I'(G))| for g;z ~ g;2z;57 such that ¥ ({g;z, gj2,}) = 1 with
1<i,j,p<myi#j}

Es = {ee E(I(G))|giz ~ gj%+a}

E, = {ee E(I(G))|gizr ~ g%t}
En1 = {e € E(I(G))|giz ~ gjzrmm}
Enyo = ET@G)\ (E1U---UE,4)

with n = |£]. The coloring given by:

v E(G) — {1,..,n+2}
f o= i iffer

For an easier study of this kind of graph we use a table called rainbow table, whose entries
(T4, tp) are the color from edge (g;2,,, gj2,). This table is the following form:

gjz1 gjz2  gjz3 gjzn 9jZn+1  Gjcn+2 9jzs
giz1 i 1 2 3 s n n + 1 ]
9iz3 1 -+ n=2 n—-1 n
GiZn+1 n + 1 1 2 R n
gizs L 2 3 4 - n+1 1]

Case g; ~ g; in va(lg), s =|Z(G)|and n = L§J

The (n + 2)-color in the table is given by white space.

4.2. Case when g; ~ g; ~ g, but g; = g in S%G)

Lets = |Z(G)| andlet 7 = rmod s with 1 <r <s. Ifg; ~ g; € V(SF(G)) then the set of
edges is given by
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{e € E(I(G))|giz ~ g;z such that ¢ ({gi2p, g;zp}) = 1} U
{e € E(I'(G))| for g;z, ~ g;2z;7 such that ¥({g;2,, g;2,}) = 2 with

{e € E(I'(G))| for g;z ~ g;2z;57 such that ¥ ({g;z, gj2,}) = 1 with

n+ 2}
if f € E;
giz1 giz2
2 1
2
n+1
n n+1
1 3

El ==
1<idj,p<m;i#j}
Ey = {6 € E( (G>)|gzzr ~ gjzr such that 1/1({92217,9]2;;}) - 2} U
1<i,j,p<m;i#j}
By = {e€ E(I(G))|gizr ~ gj%53}
E, = {e S E(F(G))|gizr ~ ngT-i-n—l}
En = {e€ BE(L(G))|gizr ~ gjzrmn)
Enyo = ET@G)\ (E1U---UE,4)
with n = [£]. The coloring given by:
v E(I(G) — {1,..,
f = i
This give us a table as:
giz1 giz2 GizZn giZn+1 giZs
gjzl ]. n+]. n AR 2
gjz2 2 1 n+1 3
9jZn—1 n—1 n—-2 . n
9jZn n n—1 --- 1 n+1
gjZn+1 n+1 n 1
gjzs L n n—1 1

giZn—1 gizn giZn+1
n—1 n n+1
n—2 n-—1 n
2 1 3
2 1
2
n n+1

Case when g; ~ g; ~ g; but g; »~ g; in SF(G withn = %1 and (n + 2)-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when s = 6 and g; ~ ¢» in S%G) with the coloring assigned before.
Without loss of generality suppose that ¢)({ g1 2,, g2%,}) = 1, then the rainbow table is given by:

9221
gizi 1
9122

9123

9124

9175 3
qnze | 2

g2z2

2
1

92723

3
2

9274  g225 9226

3
2 3
1 2 3
1 2
1

gizs
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We can see that there is not exist a rainbow k-connectivity with 4 colors. To give s edge-disjoint
paths with ends vertices gz, and g-z4, the first path cross above g»z;, then we start the path with
G129 3 g2z1. Now, we need move from g,2; but our only options are go2; L g121, G221 3 g125 and
o1 2 g12¢ and these edges can not arrive to g2z, because all the in-edge repeat color 4. For this
reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the
set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need
to add one color more, and the table is given by

g221 g222 g223 g224 G225 g2%6

gz |1 2 3 4 i
9122 1 2 3 4

9123 1 2 3 4
9124 4 1 2 3
9125 3 4 1 2
gz |2 3 4 I

Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths
with our table. Let g; ~ g5 in S%G) and |Z(G)| = 4. Then, we will build our rainbow table with 3
colors the following form.

g22z1  g2z2 g223 g2Z4

9171 1 2

9122 1 2

giz3 1 2
9124 2 1

From this table we can found rc3(I'(G)) = 3 for any vertices. For example, for end vertices
9173, 224

g1z, -~ =~_ g§221

/7

/ % 1-path: 2y gz
giZQ : % G222 path:  gi1z3  ~gazy

3 2 1
2-path:  g123 ~g221 ~G124 ~gaza

1 2 3
3-path:  g123 ~goz3 ~g122 ~Gozy

g224
If we note, we can not find 4 edge-disjoint paths with 3 colors, because g1z1 to go21 passes

i 3 2 3 3 1 3
through g, 23, the paths are the followings: g121 ~ g223 ~ g122 ~ 221 OF g121 ~ GoZ3 ~ G123 ~
goz1. Then, we need add another color, then the table is 4 colors the following form:

9221 g2z2 g2z3 g2z4

9121 1 2 3

gi1z2 1 2 3
9123 3 1 2
g124 2 3 1
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Then, with all this 4 colors we found all 4 edge-disjoint paths from ¢; 27 to g»21, and they are the
followings:

I-path: g1z ~go21

2 1 4
2-path: g121 ~@grz2 ~g122 ~g221

3 4 2
3-path: g121 ~gozz ~gi1z4 ~ge21

4 2
d-path:  g1z1 ~gozs ~Gi123 ~g221

and the same is true for any pair of vertices.

6. Proofs

6.1. Case 3-partite with |Z(G)| = 3

The coloring given before can not help us to find all the disjoint-edge paths for the case when
gi ~ gj ~ g1 but g; = g;in S%G), for example, the rainbow table for this case is the next

giz1  Gi?2  Gi®3 g1kl gik2  giz3

giz1 1 2 2 1
gjzo 2 1 2 1
9573 2 1 1 2

But, we can see that for go from g¢;z; to g;22 we have same colors then, we need to do paths
with length at least 4 like the following picture:

° N ° ° (9 ° ° P )
- ~ NS L
- . ~ . . \\ . ¢, .
R S S ’I,
[ 4 . ° L3 . N e, .
. ‘~~ \\. ’ ’,’ .
~ -
) ) ) ° O =——— TR °

The coloring given for this specifical case is the following: The rainbow tables for each case

gj*1

are the following:
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giz1  giz2  GiZ3  Ggik1  gik2  gi1%3 giz1  Giz2  GiZ3  gi*1 gik2  gi%3
g;jz1 13 2 2 3 4 g;21 2 3 4 1 3 2
= | 2 4 1 4 1 3 g | 4 1 3 2 4 1
o | 402 3 1 4 2 g | 1 4 2 4 2 3

With ¢/({g:, g;}) = Lin S¥,. With ¢({g;, i}) = 1in S}

Theorem 6.1. Let G be a non—abelian group with |Z(G)| = 3 and I'(G) be the non-commutative
graph associated to G, then rc3(I'(G)) = 4.

Proof. Let the set of edges be the following form:
E, = {ee E(I'(G))|gizk, ~ g;jz such that¢({g;,g,;}) = 1for g;, g; € Sf\{g) and k, = 1,2,3}
U{e € E(T(G))|gjz2 ~ gi22, gjz3 ~ giz1 such that ¥ ({g;, g:}) = 2 for g;, g, € S%S)}

E, = {ee E(I'(G))|gizk, ~ g;jz2 such that ¢({g;,g;}) = 1 for g;, g; € S%G) and k., = 1,2,3}
U{e € E((G))lg;2j. ~ 9i1%j, such that ({g;, i}) = 2 for g;, g € Sf(s) and j, = 1,3}
E; = {ee€ E(I(G))|gizk, ~ gjzs such that)({g;, g;}) = 1 for g;, g; € Sf\fg) and k., = 1,2,3}
Ufe € E(T(G))lgj21 ~ giz2, gj22 ~ qiz3 such that ¥ ({g;, g:}) = 2 for g;, g € Si{g)}
E, = E\(EyUE,U E3)

And the coloring is given by

¥ E(N(G))

f = i

— {1,2,3,4}
ifi € B;.

The following are all the 3 edge-disjoint paths for each pair of vertices when ¢({g;, g;}) = 2

2
gjz1 ~ gi1z1
4 2 1
gjz1 ~ giz3 ~ gjz3 ~ gix1

3 1 4
gjz1 ~ giza ~ gjz2 ~ giz1

3
gjz1 ~ giza

2 1 4
gjz1 ~ giz1 ~ gjz3 ~ giz2

4 3 1
gjz1 ~ giz3 ~ gjza ~ gi22

4
gjz1 ~ giz3
2 4 3
gjz1 ~ giz1 ~ gjz2 ~ giz3

3 4 2
gjz1 ~ giza ~ gjZ3 ~ gi23

2 3 4
gjz3 ~ giz3 ~ gjz2 ~ giz1

2 3 1
gjz3 ~ giz3 ~ gjza ~ gi22

4 1 3

gjz2 ~ gi1z1 gjza ~ G122 gjz2 ~ gi23
1 3 2 4 2 3 4 1 2

gjz2 ~ gic2 ~ gjz1 ~ gik1 gjc2 ~ gic1 ~ gjk1 ™~ gic2 gjz2 ~ giz1 ~ gjz3 ~ gi<3
3 2 1 3 2 4 1 3 4

gjzo ~ giz3 ~ g;z3 ~ giz1 gjza ~ giz3 ~ gjz3 ~ giz2 gjzo ~ Giza2 ~ gjz1 ~ giz3
1 4 2

gjz3 ~ giz1 gjz3 ~ giz2 gjz3 ~ giz3
4 3 2 1 2 3 4 1 3

gjz3 ~ giza ~ gjz1 ~ giz1 gjz3 ~ giz1 ~ gjz1 ~ giz2 gjz3 ~ giza2 ~ gjza ~ giz3

1 2 4
gjz3 ~ giz1 ~ gjz1 ~ gi23

All the edge-disjoint paths when ¢({g;, 9;}) = 2, 9({9;,91}) =2 and g; ~ g; ~ g but g; = g

gic1 ~ giz1 ‘ giz1 ~ G122 ‘ giz1 ~ giz3

1 1
giz1 ~ gjz1 ~ giz3
2 3
giz1 ~ gjz2 ~ giz3

4 2
giz1 ~ gjz3 ~ G123

4 2 3 1

giz1 ~ gjz3 ~ giz3 ~ giz2 ~ gi22
2 1 3 4

giz1 ~ gjz2 ~ giz3 ~ gjz3 ~ giz2

1 3
giz1 ~ gjc1 ~ giz2

1 2
giz1 ~ gjz1 ~ giz1
2 4
giz1 ~ gjz2 ~ giz1

4 1
giz1 ~ gjz3 ~ G122
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giz2 ~ giz1

\ giz2 ~ giz2

\ giz2 ~ giz3

3 2
giz2 ~ gjz1 ~ gjZz1

2 3 1 4
giz2 ~ gjz3 ~ giZ3 ~ gjz2 ~ giz1

4 3 2 1
giz2 ~ gjz2 ~ gi1z3 ~ ;%3 ~ giz1

2 1
giz2 ~ gjz3 ~ giz2

4 1 2 3
giz2 ~ gjz2 ~ gizZ3 ~ gjz1 ~ giz2

3 2 4 1
giz2 ~ gjz1 ~ giz1 ~ gjz2 ~ giz2

3 1
giz2 ~ gjz2 ~ giz3

4 1 3 2
giz2 ~ gjz2 ~ GiZ3 ~ gjz3 ~ gIZ3

2 4 1 3
giZ2 ~ gjR3 ~ gi1Z2 ~ gjZ2 ~ g1Z3

giz3 ~ giz1 giz3 ~ giZ2 giz3 ~ gi<3
3 1 2 3 2 4

giz3 ~ gjz3 ~ giz1 gic3 ~ gjz1 ~ giz2 giz3 ~ gjz1 ~ giz3
2 3 1 4 1 3 2 4 1 3

giz3 ~ gjz1 ~ Giza ~ gjRo ~ giz1 | §ik3 ™~ G2 ~ giz3 ~ gjz3 ~ giz2 | §iZ3 ~ gj22 ~ g123
1 4 3 2 3 2 4 1 3 2

giz3 ~ gjzo ~ Gizg ~ Gjz1 ~ i1 | §ik3 ™~ 523 ~ GiZo ~ iz ~ giz2 | Gik3 ~ §j23 ™~ Ji%3

All the edge-disjoint paths when ¢ ({g;,g;}) = 1

1 2 1

giz1 ~ g% giz1 ~ gj%2 giz1 ~ g;z3
2 4 3 4 3 1 2 1 3

giz1 ~ gj22 ~ Gik2 ~ gz giz1 ~ gjz3 ~ giz3 ™~ §jz2 giz1 ~ gjz2 ~ giz3 ~ §;Z3
4 3 2 1 3 4 1 3 2

giz1 ~ gjz3 ~ giZ3 ~ gjz1 giz1 ~ gjz1 ~ GiZ2 ~ JjZ2 giz1 ~ gjc1 ~ Gik2 ™~ gjZ3
3 4 2

giza ~ gjz2 giza ~ gjz2 giz2 ~ gj5z3
4 1 2 3 1 2 3 1 4

Giza ~ gjzo ~ Giz3 ~ gz giza ~ gjz1 ~ giz1 ™~ g2 Giza ~ gjz1 ~ Giz1 ™~ g3
2 4 1 2 3 4 1 3

gizo ~ gjz3 ~ Giz1 ~ gjzZ1 giza ~ gjZ1 ~ GiZ3 ~ g;jZ2 giz2 ~ gjz2 ~ gik3 ~ §j<3
2 1 3

giz3 ~ g5z giz3z ~ gjz2 giz3 ~ g;z3
1 4 3 3 4 2 1 4 2

giz3 ~ gjz2 ~ giz2 ~ gjc1 gizg ~ gjz3 ~ giz1 ~ JjZ2 giz3 ~ gjz2 ~ giz2 ~ gj<3
3 4 1 2 3 4 2 1 4

gizg ~ g;z3 ~ giZ1 ~ gjz1 giz3 ~ gjz1 ~ GiZ2 ~ JjZ2 gizg ~ gjc1 ~ gik1 ™~ gjZ3

]

Theorem 6.2. Let G be a finite non-abelian group. Then rc (I'(G)) < (%W +2 for3<k<s=

| Z(Q)| with | Z(G)| > 4.

Proof. We will proof that 4 is a coloring works for our graph.

1. Case g; ~ gj Let g;2;,, g;j%;, be the end vertices. We want to find the edge-disjoint paths
between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that

the first path is given by g,z2;,

(iavjb)
~

;2 with color (i, ji

).

Let j; be the column assigned to the row i, such that (i,,71) = fi then, we remove the
entries with color f; to the column g;z;, and, the same happen to column g; z;,.

Remark 6.3. When we say remove the entry we say that entry is not consider to form the

rainbow path.

Thus, the path for this case is

f (iapjl)
GiZia ™~ 9jZ5n  ~  Yi%ia,

10

(ial 7jb)

Y

95i%j, (

1y
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with (ia,, 1) # fi # (iay, ) the colors assigned to remaining entries and g;2;,, g;2i,, the
respective vertices from remaining entries.

Let (i4, jo) be the entry with jo # ji, such that (i,, j2) = fo then, we remove the entries with
same color as f5 in column g;z;,. We can not use the entry (g;2,,, g;2;,) because is an edge
for 1, moreover we remove all the entries with same color as f5 in column g;z;,. Thus, the
path is the following:

(ia,j ) (ia 7j2) (ia 7jb)
Ggizi, i~ GjZjs o GiZia, A 9j %5y 2)

with (ia,, j2), (ia,, Jb) the colors assigned to remaining entries and g;z;,, g;2;,, the respective
vertices from remaining entries.

9j %35, 952451
gizial te f

Gizig - f

Under the conditions stated above we apply the same to all the colors assigned to 7,-raw. We
take edges from remaining entries to form the rest paths with the same method. Let ji such
that ' = (44, j1) from j,-column we remove the row with entry same color like f’. The new
path is the following:

(iaj]) (ia'1 J1) (ia/1 ,Jb)
GiZFia N GiE N GiFi, N 9i%, (3)

Take (iq, j1 ), (iaf, J1) as remaining entries from all the entries do not removed before with a
dofferent color as f’.

Remark 6.4. Suppose that we can coloring with only ng + 1 colors. Let g;z;,, any start
vertex, then there exists a pair of vertices g;z;,, g;z; , such that {(a;, ,b;,)|(a,, b;,) —color #
(|5] 4 1) — color} identify with {(as, ,b; ,)|(a;,,b;,) — color = the last color}, therefore is
impossible to built & paths between any end vertices g;z;,,, g;zj, passes through g;z; ,, just
like 5.1.

2. Case: g; ~ g; ~ g1 with g; ~ g; in S%G).
(a) Repetition of different color to the last color
Case: repetition of one color between columns. Suppose that f is the repeated color
between the columns assigned to the end vertices g;z;, and gz, i.e. f = (Je, %) =
(Je, lp) in the rainbow table, for some ¢ = {1, ..., |Z(G)|}, with [, € ¢;Z and i, € ¢;Z.
Suppose that f is in the path passes through g, z;_, thus for do the rainbow path we need

11
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to find another row j.- such that (j., ;) = f’ # f then for do the rainbow path, to the
row j» we remove the columns with color f (i.e. 2 columns) and one of color f’. To
row j. remove 2 columns for color f’ and 2 columns assigned for i, and /. Then we
remove a total of 7 columns. There are in total 2|Z(G)| columns in our rainbow table,
then it remains 2| Z(G)| — 7 columns with |Z(G)| > 4, leaving at least one column for

do the path without similar colors. The path is g;2;, L 9i%;. L 9(Je) 2 9(je) L a1z,
with fi, f5 colors assigned to left column and ¢(j.), g(j~) vertices in column assigned
to above column.

ia Iy

o | e g e feeeenn f ];/ e f e

Now we make the path who starts in g, 2;, L 9i%j.

When g # f and g # {'. As written above we remove the columns in row j. with color
f and one of color g, i.e. 3 columns, and in the row j. remove the columns assigned
with color g and two of columns ¢, and [;, in total we remove 7 columns and leaving
2|Z(G)| — 7 columns where we can find the desired path.

Case: repetition of two colors between columns with g = f’. We remove 2 columns
with color f’ to j.-row and 2 columns assigned to i, and [,. In row j. remove 2
columns assigned with color f. There are in total 2|Z(G)| — 6 free columns to find
rainbow paths.

Case: repetition of 3 colors Suppose that there are 3 repeated colours between the
columns for do the paths with end vertices g;z;, and g;2;, passes through g;z;_, g;2;,
and g;z; ,. For do the paths passes through g;z; , just like the first case, we remove
columns with color f’ to j.-row and, to row j. remove the 2 columns with color f mi-
nus the rows assigned i, and [, then for |Z(G)| > 4 there are 2|Z(G)| — 6 free columns
for do the rainbow path with end vertices g;z;, and g;2;, cross above g;z;, and g;z;,.
The same happens for rainbow path passes through g;z2; ,, g;2.» and g;2; ,,, g;2;.. The
paths have the following form:

g1

f N N
Gizi, ~ 9jZj. ~ g1 (jc) ~ gé(Jc’) ~ Jizi,,

/ / " "
f 91 / . 92 1/ - f
9izi, ~ G5%5, ~ 91(Jer) ~ g5 (Jer) ~ g,
1

Gz ™ 95750 2 glGe) B 9a(e) £ iz,

12
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_ o b -
Je f a1 g2 f
: :
jo | g @ f

Note that g1, g5; g7, 95 and ¢, go are the colors between free columns with colors as-
signed f, f'; f', f" and f",f respectively, and g1(j.), g2(jc); 91 (der)s92(der)s 97 (Ger)s
g4 (jer) are vertices associated to the colors in the free columns with its rows j, jo, je
respectively.

Repetition of last color between columns

Case: repeat the last color [X] + 2 one time. Let g;z;, and g;z, be the end vertices
and suppose that only is repeated the last color g-‘ + 2 only one time. Let f = [gw +2
be the last color and let B = 2 [k — ((%W + 1) be the number of entries with the last
color in each row of the rainbow table. Let j. be a row associated with different color

to f in the entries (ju, i,) and (jo, lp).

For make the rainbow path passes through j., to row j. remove B columns associated
to the last color f and one column designated to color f, i.e., we remove B+1 columns.
Further in row j. we remove B — 2 columns associated to f, 2 columns associated to
color f’ and 2 columns for columns associated to i, and [;, thus we remove from row
Je B + 2 columns. If the columns removed are all different from each other then we
keep C' = 2k — (2B + 3) free columns, in the extreme case that we eliminate the same
columns for each case, evaluate in f and f’, thus we would have 2k — (B + 2) free
columns, then the value of free columns is 2k — (2B + 3) < C' < 2k — (B + 2) for
k < 4. The same happens to do a path passes through g;z; ,. Thus, we have enough
free columns to do the rainbow path.

i L,
je - f f
jC/ o o o g f/

Later, for make the rainbow path from g, z;, L gjz-; , we remove 2 columns assigned
to color g to j.-row, B — 2 columns assigned to color f and 2 for the columns i, I,

13
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1.e., remove B + 2 columns. Moreover from j.-row remove B columns for last color
f plus 1 column for color g, i.e. B 4+ 1 columns. In total the amount of free columns is
between:

2k—(2B+3)<C<2k—(B+2) k>4 4)

Then, there are enough free columns for do the rainbow path.

Case: repeat two colors, one of them the last color, i.e., g = ' 4 f. To the row
je We remove B columns associated to last color f and the row j. we remove B — 2
columns associated to last color f, 2 columns associated to color f’ and 2 columns
associated to columns ¢, and [;, i.e. we remove B + 2 columns. In total there are
2k—(2B+4+2)<C<2k—-(B+2)

2k—B-1)<C<2%—(B+2)  fork>4 (5)

Since k — B — 1 > 0 for all k£ we always have a minimum, two columns to form two
paths.

Case: repeat at most % entries between columns. Suppose that between columns

i, and [, assigned to end vertices g;2;,, iz, there are, at most D = k — ((%W +1)

entries with the last color f in each column, since D < [£] + 1 we can proceed like
the previous cases.
3. Case: any vertices of same class We can do the paths directly, if we want to go from g, z2;,

to g;z;, the paths are of the following form g;z;, (fap) 9iZp (ig:2) gizi, forp = {1,...;s =

|Z(G)|}. We note that we can only find up to ([£] + 2) edge disjoint paths for any pair of

vertices.
. 957 gi%s
9iZiq (iaujl) (ia7j2) oo (ia7j8>
gz, | (v, 1) (iv,j2) o o (b Js)
O
Corollary 6.5. Let G be a finite non-abelian group. If g; ~ g; then | 5] + 1 < r¢,(T(Q)).
Proof. From 6.4. [

Corollary 6.6. Let G be a finite non-abelian group. If g; ~ g; ~ g, with g; ~ g, then [%W +1<
reg(D(G)).

Proof. Suppose that B = 2(k — [£]) then, for any value of k, B = 2m (k = {2m,2m + 1}). For
the case where only repeat one time the last color f, from 4

3<C<2m—-2 for k = 2m
-1 <C<2m fork=2m+1

14
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Thus, there are cases when we have not free columns for do the rainbow paths. The same happens
for case 5:

-2<C<2m—-2 for k = 2m
0<C<2m—-1 fork=2m+1

Therefore, we can not form  rainbow paths with [£] + 1 different colors. O

Theorem 1.3 Let G be a finite non-abelian group. Then rei(T(G)) = [£] +2, for3 <k < s =
|Z(G)| with |Z(G)| > 4.

Proof. From 6.2, 6.5 and 6.6. L]
Example 6.7. Let GG be the Heisenberg group for p = 3 with presentation
(x,a,b|lz* = a® =b* = 1,ab = ba, vax™ = ab, xbx™ = b).

We know that |G| = 27, |G\ Z(G)| = 24 and |G/Z(G)| = 9, i.e. the partition for V(I'(G)) =
{Z, a7, 0?7, 2 Z,ax 7, a*x Z, 2> 7, ax*Z, a’x*Z} by [x,a] = b we have za = bax, then zaZ =
axZ. The following is the graph for S%G)

Figure 1. Heisenber skeleton graph for p = 3.

In S%G) the only vertices with distance 2 are a with a? and x with 2. Suppose without loss of
generality that ¢)({g,a}) = 1. The edge-disjoint paths for end vertices a and a? are the following

ab  ab? 2 a?b  a?b?

g 1 3 2 2 3 4
o |2 4 1 4 1 3
@ |4 2 3 1 4 2

And all the paths are given in 6.1.

Example 6.8. Let GG be the Heisenberg group for p = 5 with presentation

(z,a,b|lz’ = a® =b° = 1,ab = ba, vaxr™ = ab, zbx™* = b).

15
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Figure 2. Heisenber skeleton graph for p = 5.

We know that |G| = 125, |G\ Z(G)| = 120 and |G/Z(G)| = 25. Since [z,a] = b we have
xa = bax, then raZ = axZ. The graph 2 is the skeleton S%C;) of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without
loss of generality we give the 5 edge-disjoint paths for end vertices z, az? € S%G). By 1.3 we

know that we need (| 2| + 2)-color. The rainbow table is given below

ax?  ax?b  a?b®  az?b®  ax?bt

x 1 2 3

b 1 2 3
xb? 1 2 3
xb? 3 1 2
b 2 3 1

Rainbow table for x ~ ax? € S%G)

Then, the 5 edge-disjoin paths are given by:

16
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T NCZZEQ

2 1

x ~ar’b ~
3 1

x ~arh® ~
4

T ~ax

4
T ~ax

2b3 /1_’

2b4 r_L

Luis A. Dupont et al.

axr

e -

axr

e

ax

axr

We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices

x*, 2363 are the following
z* ozt 2?0 et 2B
a3 1 3 2 2
a3b 2 1 3
a3b? 3 2 1
a3b3 3 2 1 3
a3b? 3 2 1 1

z3b 236?23 23p?
1 3
2 1 3
2 1 3
2 1
3 2

1
~Q

2
~a’b

ia3b2 rl;

4

~Y

3 ZL’3 b?;

3

~

2253
223
4 2
~ath? & b3

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end
vertices x%b* and 23b? we have the following paths:

Start with color 1 Start with color 2
4b4 a3bt L 232 240 2 a3 2 32
3 2 4 3 1
2t ~ @bt St N adhd ~ 23h? 2002 a3 A L 3h A k2
3 2 2 3 1 4
:L‘4b4 3b4 > 5(34 2, a3b2 3b2 [L’4b4 ~, a3 2, :L'4b3 ~ a3b3 ~ ZE3b2
3 2 3 4
24 A a3t 2 a8 L g3 2 32 2002 a3 A 3 A @3t A dp?
; ; Z ;
Start with color 3 Start with color z*b* ~ a®b®> | Start , with color 4 from
4t ~ @’

3 1 1 i 3

$4b4 N a3b ~ beQ 4b4 362 3b2 1'4[)4 ~ &3b3 ~ $3b4 ~,
230% X 3h?

3 1 2 2 1 4 2 3 1
$4b4 ~, a3b 4b2 3b2 < 1‘4b4 3b2 2, $4 < a3b ~ :E4b4 > a3b3 < :L‘3b3 =, Il?sb ~
x3b? 232 232

4
Color 3 can not came to color 4 Color 4 can not came to color | Color z*b* ~ a3b3 can not
a3 2 23p2 came to color a® ~ z3b?

17
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Thus, we have not columns for do the rainbow path from z*b* 2 a3bto a®bd L 23p?

4zt 2?2t atbt 3 23b  z3h2  z3p3  3bd

a3 1 3 2 2 1 3
21 ) /3 /2 1 g
a3 | 3 2 1 2 1 3
S| )3 2 1 3/ 2 1
a3bt 3 2 1 1 3 2

Then, we can not find a path from z*b* to 23b? passes through a3b, because the last color from
3 b2

2*b* only can came to 3b? passes through a3b and ab?. Then we need one more color.

a? 1 4 3 2 2 1 3 4

b | 2 1 4 3 2 1 3 4
B | 3 2 1 4 4 2 1 3
a3 | 43 1 3 4 2 1
a3b? 4 3 2 1 1 3 4 2

Rainbow table for found the 5 edge-disjoin paths between x* and 23
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