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Abstract

The non–commuting graph Γ(G) of a non–abelian group G is defined as follows. The vertex set
V (Γ(G)) of Γ(G) is G \ Z(G) where Z(G) denotes the center of G and two vertices x and y are
adjacent if and only if xy 6= yx. We prove that the rainbow k–connectivity of Γ(G) is equal to⌈
k
2

⌉
+ 2, for 3 ≤ k ≤ |Z(G)|.
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1. Introduction

Let G be a group and Z(G) be the center of G. The non-commuting graph Γ(G) associated to
G is the graph with vertex set G \ Z(G) and such that two vertices x and y are adjacent whenever
xy 6= yx. The non-commuting graph of a group was first considered by Paul Erdös in 1975, [4].
Subsequently, it was strongly developed in [1].

Let Γ be a connected graph with the vertex set V (Γ) and the edge set E(Γ). Define a coloring
ϕ : E(Γ) → {1, 2, . . . , t}, t ∈ N, where adjacent edges may be colored the same. Given an edge
coloring of Γ, a path P is rainbow if no two edges of P are colored the same. An edge-colored
graph Γ is rainbow connected if every pair of vertices of Γ are connected by a rainbow. The rain-
bow connection number rc1(Γ) of Γ is defined to be the minimum integer t such that there exists
an edge-coloring of Γ with t colors that makes Γ rainbow connected.
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From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edge-
colored graph Γ is called rainbow k–connected if any two distinct vertices of Γ are connected by
at least k internally disjoint rainbow paths. The rainbow k–connectivity of Γ, denoted by rck(Γ),
is the minimum number of colors required to color the edges of Γ to make it rainbow k–connected,
and ϕ is called a rainbow k–coloring of Γ. We usually denote rc1(Γ) by rc(Γ).

The commutator of an ordered pair g1, g2 of elements of G is the element

[g1, g2] = g−1
1 g−1

2 g1g2 ∈ G

G is abelian if and only if [g1, g2] = 1

Let G(V,E), and let a = (e1, ..., ej) be a path with ei ∈ E. Then l(a) := j is called the length
of a.

We denote by P (x, y) the set of all x, y paths in G. Then d(x, y) := min{l(a)|a ∈ P (x, y)} is
called the distance from x to y.

We call diam(G) := max{d(x, y)|x, y ∈ G} the diameter of G. The length of a shortest cycle
of G is called the girth of G.

When a pair of vertices gi, gj are joined, we denoted by gi ∼ gj . In otherwise we denoted by
gi � gj .

A non–commutative graph Γ(G) is connected and the diameter of Γ(G) is 2, diam(Γ(G)) = 2.

Theorem 1.1. [1] For any non–abelian group G, diam(Γ(G)) = 2. In particular, Γ(G) is con-
nected.

In [6], it is shown that rc(Γ(G)) =rc2(Γ(G)) = 2.

Theorem 1.2. [6] Let G be a finite non-abelian group. Then rc(Γ(G)) = rc2(Γ(G)) = 2.

In the present article, we estimate rck(Γ(G)) for 3 ≤ k ≤ |Z(G)|. Our main result is the following
theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then rck(Γ(G)) ≤ k, for 3 ≤ k ≤ |Z(G)| with
|Z(G)| ≥ 3. Specifically rck(Γ(G)) =

⌈
k
2

⌉
+ 2.

2. rck(Γ(G)) with 1 ≤ k ≤ |Z(G)|

Let G be a finite non-abelian group, from now on we write the vertices of Γ(G) as the partition

V (Γ(G)) = g1Z ∪̇ g2Z ∪̇ · · · ∪̇ gmZ,

with Z = Z(G), giZ 6= Z, m = [G : Z(G)]− 1 and where giZ is an independent subset of Γ(G).
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Proposition 2.1. Let G be a finite non-abelian group. Then the m–partite graph Γ(G) with parti-
tion V (Γ(G)) = g1Z ∪̇ g2Z ∪̇ · · · ∪̇ gmZ, provides an adjacency by blocks.

Proof. Observe that every pair of vertices gi ∼ gj, if and only if for all x, y ∈ Z gix ∼ gjy. In
addition, for each i, the vertex g ∈ V (Γ(G)) is adjacent to gi if and only if it is adjacent to every
element of the set giZ. In other words, it is an adjacency by blocks.

Definition 2.2. Let G be a non-commutative finite group, with m–partition

V (Γ(G)) = g1Z ∪̇ g2Z ∪̇ · · · ∪̇ gmZ

adjacency by blocks. We define the skeleton of the m–partition as the subgraph induced by M =
{g1, g2, . . . , gm}. The skeleton is denoted by SM

Γ(G).

Remark 2.3. The graph Γ(G) is not complete , however SM
Γ(G) can be complete, we can see this

in the follow example: Let G = D2×4 := 〈a, x : a4 = x2 = 1, xax = a−1〉, the dihedral group of
order 8. Then Z := Z(G) = {1, a2}, and we have

V (Γ(G)) = aZ∪̇xZ∪̇axZ.

Since each pair of {a, x, ax} do not commute, we have SM
Γ(D2×4) is complete.

By Theorem 1.2, there is a coloration

ϕ : E(Γ(G))→ {1, 2}

such that rc(Γ) = rc2(Γ) = 2. Thus, the graph Γ(G) is not complete, implies that ϕ(E(SM
Γ(G))) =

{1, 2}. Therefore, the coloration

φ := ϕ|E(SM
Γ(G)

) : E(SM
Γ(G))→ {1, 2}

meets the 2–connectivity, that is to say, rc(SM
Γ(G)) ≤ 2. Consider Z(G) = {e = z1, z2, z3, . . . , zs}

and define the following coloring of Γ(G):

ψ : E(Γ(G))→ {1, 2} given by

ψ({gizp, gjzp}) = φ({gi, gj}) for 1 ≤ i, j, p ≤ m; i 6= j;

ψ({gizp, gjzq}) 6= φ({gi, gj}) for 1 ≤ i, j, p, q ≤ m; i 6= j; p 6= q.

In the next section we give a coloring for 3 ≤ k ≤ s with p 6= q. Moreover in section 6 we will
proof that this coloring works.
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3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for Γ(G), with k ≥ 3. We may
ask for the maximum number of paths from v1 to v2 vertices, no two of which have an edge in
common (such paths are called edge-disjoint paths). As a consequence of Menger’s theorem about
max-flow and min-cut, Witney [7] presented that a graph is k-connected if and only if any two
vertices are connected by k internally disjoint paths. With Whitney’s result we can answer how
many edge-disjoint paths are connecting a given pair of vertices on Γ(G).

Definition 3.1. The edge-connectivity is the minimum size of a subset C ⊂ E(G) for whichG−C
is not connected for a graph G. The edge-connectivity of G is denoted by λ(G). If λ(G) ≥ k then
G es called k-edge connected.

The next theorem is a result implied by Menger’s theorem. This form can be found in [5,
Chapter 15].

Theorem 3.2. An undirected graph G = (V,E) is k-edge-connected if and only if there exist k
edge-disjoint paths between any two vertices s and t.

As we can obtain the rainbow-connectivity number of Γ(G) and this graph is connected by
blocks with s = |Z(G)| as size of each block, we have that the graph Γ(G) is s-edge-connected
and there exist s edge-disjoint paths in Γ(G). Then, our problem now is coloring the s edge-disjoint
paths of Γ(G).

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for gi, gj, gk, gl ∈
SM

Γ(G) and zr, zt, zw, zp ∈ Z(G). The first case is when gizr ∼ gjzt which give us a bipartite
complete graph in Γ(G). The second case is when we have gizr ∼ gjzt ∼ gkzw, but gizr � gkzw.

Remark 3.4. We note that λ(G) ≥ s. Then, if we want a path between end vertices gizr and
gjzt, without loss of generality we start with gizr, necessarily, from 3.2, the edges gizr ∼ gjztb
with tb ∈ {1, ..., s}, are in the set of edge-disjoint paths. The same happens for the edges
gizra ∼ gjzt with ra ∈ {1, ..., s} because we have s disjoint paths, therefore we need all out-
edge from gizr, and all in-edge to gjzt, thus all our edge-disjoint paths have the following form:
(gizr, gjztb , ..., gizra , gjzt), with ta, rb ∈ {1, ..., s}.

4. Rainbow k–connectivity

4.1. Case when gi ∼ gj ∈ V (SM
Γ(G))

Let s = |Z(G)| and let r̄ ≡ r mod s with 1 ≤ r ≤ s. If gi ∼ gj ∈ V (SM
Γ(G)), then the set of

edges is given by
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E1 = {e ∈ E(Γ(G))|gizr ∼ gjzr such that ψ({gizp, gjzp}) = 1}
⋃

{e ∈ E(Γ(G))| for gizr ∼ gjzr+1 such that ψ({gizp, gjzp}) = 2 with
1 ≤ i, j, p ≤ m; i 6= j}

E2 = {e ∈ E(Γ(G))|gizr ∼ gjzr such that ψ({gizp, gjzp}) = 2}
⋃

{e ∈ E(Γ(G))| for gizr ∼ gjzr+1 such that ψ({gizp, gjzp}) = 1 with
1 ≤ i, j, p ≤ m; i 6= j}

E3 = {e ∈ E(Γ(G))|gizr ∼ gjzr+2}
...

...
...

En = {e ∈ E(Γ(G))|gizr ∼ gjzr+n−1}
En+1 = {e ∈ E(Γ(G))|gizr ∼ gjzr+n}
En+2 = E(Γ(G)) \

(
E1 ∪ · · · ∪ En+1

)
with n =

⌊
k
2

⌋
. The coloring given by:

ψ : E(Γ(G)) −→ {1, ..., n+ 2}
f 7→ i if f ∈ Ei

For an easier study of this kind of graph we use a table called rainbow table, whose entries
(ra, tb) are the color from edge (gizra , gjztb). This table is the following form:



gjz1 gjz2 gjz3 ··· gjzn gjzn+1 gjzn+2 ··· gjzs

giz1 1 2 3 · · · n n+ 1
giz2 1 2 · · · n− 1 n n+ 1
giz3 1 · · · n− 2 n− 1 n · · ·

...
...

...
...

gizn 1 2 3 · · · n+ 1
gizn+1 n+ 1 1 2 · · · n

...
...

...
gizs 2 3 4 · · · n+ 1 1


Case gi ∼ gj in SM

Γ(G), s = |Z(G)| and n =
⌊
k
2

⌋
.

The (n+ 2)-color in the table is given by white space.

4.2. Case when gi ∼ gj ∼ gl but gi � gl in SM
Γ(G)

Let s = |Z(G)| and let r̄ ≡ r mod s with 1 ≤ r ≤ s. If gi ∼ gj ∈ V (SM
Γ(G)), then the set of

edges is given by
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E1 = {e ∈ E(Γ(G))|gizr ∼ gjzr such that ψ({gizp, gjzp}) = 1}
⋃

{e ∈ E(Γ(G))| for gizr ∼ gjzr+1 such that ψ({gizp, gjzp}) = 2 with
1 ≤ i, j, p ≤ m; i 6= j}

E2 = {e ∈ E(Γ(G))|gizr ∼ gjzr such that ψ({gizp, gjzp}) = 2}
⋃

{e ∈ E(Γ(G))| for gizr ∼ gjzr+1 such that ψ({gizp, gjzp}) = 1 with
1 ≤ i, j, p ≤ m; i 6= j}

E3 = {e ∈ E(Γ(G))|gizr ∼ gjzr+2}
...

...
...

En = {e ∈ E(Γ(G))|gizr ∼ gjzr+n−1}
En+1 = {e ∈ E(Γ(G))|gizr ∼ gjzr+n}
En+2 = E(Γ(G)) \

(
E1 ∪ · · · ∪ En+1

)
with n =

⌈
k
2

⌉
. The coloring given by:

ψ : E(Γ(G)) −→ {1, ..., n+ 2}
f 7→ i if f ∈ Ei

This give us a table as:



giz1 giz2 ··· gizn gizn+1 ··· gizs glz1 glz2 ··· glzn−1 glzn glzn+1 ··· glzs

gjz1 1 n + 1 n · · · 2 2 1 · · · n− 1 n n + 1 · · ·
gjz2 2 1 n + 1 · · · 3 2 · · · n− 2 n− 1 n · · ·

...
...

...
...

. . .
...

...

gjzn−1 n− 1 n− 2
. . . n 2 1 3 · · · n + 1

gjzn n n− 1 · · · 1 n + 1 n + 1 2 1 · · · n

gjzn+1 n + 1 n · · ·
... 1 n n + 1 2 · · · n− 1

...
...

...
...

...
. . .

...
gjzs n n− 1 · · · 1 1 3 · · · n n + 1 2


Case when gi ∼ gj ∼ gl but gi � gl in SM

Γ(G) with n =
⌈
k
2

⌉
and (n + 2)-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when s = 6 and g1 ∼ g2 in SM
Γ(G) with the coloring assigned before.

Without loss of generality suppose that ψ({g1zp, g2zp}) = 1, then the rainbow table is given by:



g2z1 g2z2 g2z3 g2z4 g2z5 g2z6

g1z1 1 2 3
g1z2 1 2 3
g1z3 1 2 3
g1z4 1 2 3
g1z5 3 1 2
g1z6 2 3 1
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We can see that there is not exist a rainbow k-connectivity with 4 colors. To give s edge-disjoint
paths with ends vertices g1z2 and g2z4, the first path cross above g2z1, then we start the path with
g1z2

4∼ g2z1. Now, we need move from g2z1 but our only options are g2z1
1∼ g1z1, g2z1

3∼ g1z5 and
g2z1

2∼ g1z6 and these edges can not arrive to g2z4 because all the in-edge repeat color 4. For this
reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the
set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need
to add one color more, and the table is given by



g2z1 g2z2 g2z3 g2z4 g2z5 g2z6

g1z1 1 2 3 4
g1z2 1 2 3 4
g1z3 1 2 3 4
g1z4 4 1 2 3
g1z5 3 4 1 2
g1z6 2 3 4 1


Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths
with our table. Let g1 ∼ g2 in SM

Γ(G) and |Z(G)| = 4. Then, we will build our rainbow table with 3
colors the following form.


g2z1 g2z2 g2z3 g2z4

g1z1 1 2
g1z2 1 2
g1z3 1 2
g1z4 2 1


From this table we can found rc3(Γ(G)) = 3 for any vertices. For example, for end vertices

g1z3, g2z4

b

b

b

b

b

b

b b

g2z1

g2z2

g2z3

g2z4

g1z1

g1z2

g1z3

g1z4

1-path: g1z3
2∼g2z4

2-path: g1z3
3∼g2z1

2∼g1z4
1∼g2z4

3-path: g1z3
1∼g2z3

2∼g1z2
3∼g2z4

If we note, we can not find 4 edge-disjoint paths with 3 colors, because g1z1 to g2z1 passes
through g2z3, the paths are the followings: g1z1

3∼ g2z3
2∼ g1z2

3∼ g2z1 or g1z1
3∼ g2z3

1∼ g1z3
3∼

g2z1. Then, we need add another color, then the table is 4 colors the following form:


g2z1 g2z2 g2z3 g2z4

g1z1 1 2 3
g1z2 1 2 3
g1z3 3 1 2
g1z4 2 3 1
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Then, with all this 4 colors we found all 4 edge-disjoint paths from g1z1 to g2z1, and they are the
followings:

b

b

b

b

b

b

b b

g2z1

g2z2

g2z3

g2z4

g1z1

g1z4

g1z3

g1z2

1-path: g1z1
1∼g2z1

2-path: g1z1
2∼g2z2

1∼g1z2
4∼g2z1

3-path: g1z1
3∼g2z3

4∼g1z4
2∼g2z1

4-path: g1z1
4∼g2z4

2∼g1z3
3∼g2z1

and the same is true for any pair of vertices.

6. Proofs

6.1. Case 3-partite with |Z(G)| = 3

The coloring given before can not help us to find all the disjoint-edge paths for the case when
gi ∼ gj ∼ gl but gi � gl in SM

Γ(G), for example, the rainbow table for this case is the next


giz1 giz2 giz3 glz1 glz2 glz3

gjz1 1 2 2 1
gjz2 2 1 2 1
gjz3 2 1 1 2


But, we can see that for go from giz1 to glz2 we have same colors then, we need to do paths

with length at least 4 like the following picture:

b

b

b

bbb

b

b

b

b

b

b

b

b b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b b

b

b

The coloring given for this specifical case is the following: The rainbow tables for each case

b

b

b

b

b

b

b

b

b

giz1 glz1

gjz1

giz2

giz3

gjz2

gjz3

glz2

glz3

are the following:
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giz1 giz2 giz3 glz1 glz2 glz3

gjz1 1 3 2 2 3 4
gjz2 2 4 1 4 1 3
gjz3 4 2 3 1 4 2


With ψ({gi, gj}) = 1 in SM

Γ(G).


giz1 giz2 giz3 glz1 glz2 glz3

gjz1 2 3 4 1 3 2
gjz2 4 1 3 2 4 1
gjz3 1 4 2 4 2 3


With ψ({gj, gl}) = 1 in SM

Γ(G).

Theorem 6.1. Let G be a non–abelian group with |Z(G)| = 3 and Γ(G) be the non-commutative
graph associated to G, then rc3(Γ(G)) = 4.

Proof. Let the set of edges be the following form:
E1 = {e ∈ E(Γ(G))|gizkr ∼ gjz1 such that ψ({gi, gj}) = 1 for gi, gj ∈ SM

Γ(G) and kr = 1, 2, 3}⋃
{e ∈ E(Γ(G))|gjz2 ∼ glz2, gjz3 ∼ glz1 such that ψ({gj, gl}) = 2 for gj, gl ∈ SM

Γ(S)}
E2 = {e ∈ E(Γ(G))|gizkr ∼ gjz2 such that ψ({gi, gj}) = 1 for gi, gj ∈ SM

Γ(G) and kr = 1, 2, 3}⋃
{e ∈ E(Γ(G))|gjzja ∼ glzja such that ψ({gj, gl}) = 2 for gj, gl ∈ SM

Γ(S) and ja = 1, 3}
E3 = {e ∈ E(Γ(G))|gizkr ∼ gjz3 such that ψ({gi, gj}) = 1 for gi, gj ∈ SM

Γ(G) and kr = 1, 2, 3}⋃
{e ∈ E(Γ(G))|gjz1 ∼ glz2, gjz2 ∼ glz3 such that ψ({gj, gl}) = 2 for gj, gl ∈ SM

Γ(S)}
E4 = E \ (E1 ∪ E2 ∪ E3)

And the coloring is given by

ψ : E(Γ(G)) −→ {1, 2, 3, 4}
f 7→ i if i ∈ Ei.

The following are all the 3 edge-disjoint paths for each pair of vertices when φ({gj, gl}) = 2

gjz1
2∼ glz1 gjz1

3∼ glz2 gjz1
4∼ glz3

gjz1
4∼ glz3

2∼ gjz3
1∼ glz1 gjz1

2∼ glz1
1∼ gjz3

4∼ glz2 gjz1
2∼ glz1

4∼ gjz2
3∼ glz3

gjz1
3∼ glz2

1∼ gjz2
4∼ glz1 gjz1

4∼ glz3
3∼ gjz2

1∼ glz2 gjz1
3∼ glz2

4∼ gjz3
2∼ glz3

gjz2
4∼ glz1 gjz2

1∼ glz2 gjz2
3∼ glz3

gjz2
1∼ glz2

3∼ gjz1
2∼ glz1 gjz2

4∼ glz1
2∼ gjz1

3∼ glz2 gjz2
4∼ glz1

1∼ gjz3
2∼ glz3

gjz2
3∼ glz3

2∼ gjz3
1∼ glz1 gjz2

3∼ glz3
2∼ gjz3

4∼ glz2 gjz2
1∼ glz2

3∼ gjz1
4∼ glz3

gjz3
1∼ glz1 gjz3

4∼ glz2 gjz3
2∼ glz3

gjz3
4∼ glz2

3∼ gjz1
2∼ glz1 gjz3

1∼ glz1
2∼ gjz1

3∼ glz2 gjz3
4∼ glz2

1∼ gjz2
3∼ glz3

gjz3
2∼ glz3

3∼ gjz2
4∼ glz1 gjz3

2∼ glz3
3∼ gjz2

1∼ glz2 gjz3
1∼ glz1

2∼ gjz1
4∼ glz3

All the edge-disjoint paths when φ({gi, gj}) = 2, φ({gj, gl}) = 2 and gi ∼ gj ∼ gl but gi � gl

giz1 ∼ glz1 giz1 ∼ glz2 giz1 ∼ glz3

giz1
1∼ gjz1

2∼ glz1 giz1
4∼ gjz3

2∼ glz3
3∼ giz2

1∼ glz2 giz1
1∼ gjz1

4∼ glz3

giz1
2∼ gjz2

4∼ glz1 giz1
2∼ gjz2

1∼ giz3
3∼ gjz3

4∼ glz2 giz1
2∼ gjz2

3∼ glz3

giz1
4∼ gjz3

1∼ glz2 giz1
1∼ gjz1

3∼ glz2 giz1
4∼ gjz3

2∼ glz3
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giz2 ∼ glz1 giz2 ∼ glz2 giz2 ∼ glz3

giz2
3∼ gjz1

2∼ gjz1 giz2
2∼ gjz3

4∼ glz2 giz2
3∼ gjz2

4∼ glz3

giz2
2∼ gjz3

3∼ giz3
1∼ gjz2

4∼ glz1 giz2
4∼ gjz2

1∼ giz3
2∼ gjz1

3∼ glz2 giz2
4∼ gjz2

1∼ giz3
3∼ gjz3

2∼ glz3

giz2
4∼ gjz2

3∼ glz3
2∼ gjz3

1∼ glz1 giz2
3∼ gjz1

2∼ glz1
4∼ gjz2

1∼ glz2 giz2
2∼ gjz3

4∼ glz2
1∼ gjz2

3∼ glz3

giz3 ∼ glz1 giz3 ∼ glz2 giz3 ∼ glz3

giz3
3∼ gjz3

1∼ glz1 giz3
2∼ gjz1

3∼ glz2 giz3
2∼ gjz1

4∼ glz3

giz3
2∼ gjz1

3∼ glz2
1∼ gjz2

4∼ glz1 giz3
1∼ gjz2

3∼ glz3
2∼ gjz3

4∼ glz2 giz3
1∼ gjz2

3∼ glz3

giz3
1∼ gjz2

4∼ giz2
3∼ gjz1

2∼ glz1 giz3
3∼ gjz3

2∼ giz2
4∼ gjz2

1∼ glz2 giz3
3∼ gjz3

2∼ glz3

All the edge-disjoint paths when ψ({gi, gj}) = 1

giz1
1∼ gjz1 giz1

2∼ gjz2 giz1
4∼ gjz3

giz1
2∼ gjz2

4∼ giz2
3∼ gjz1 giz1

4∼ gjz3
3∼ giz3

1∼ gjz2 giz1
2∼ gjz2

1∼ giz3
3∼ gjz3

giz1
4∼ gjz3

3∼ giz3
2∼ gjz1 giz1

1∼ gjz1
3∼ giz2

4∼ gjz2 giz1
1∼ gjz1

3∼ giz2
2∼ gjz3

giz2
3∼ gjz2 giz2

4∼ gjz2 giz2
2∼ gjz3

giz2
4∼ gjz2

1∼ giz3
2∼ gjz1 giz2

3∼ gjz1
1∼ giz1

2∼ gjz2 giz2
3∼ gjz1

1∼ giz1
4∼ gjz3

giz2
2∼ gjz3

4∼ giz1
1∼ gjz1 giz2

2∼ gjz1
3∼ giz3

1∼ gjz2 giz2
4∼ gjz2

1∼ giz3
3∼ gjz3

giz3
2∼ gjz1 giz3

1∼ gjz2 giz3
3∼ gjz3

giz3
1∼ gjz2

4∼ giz2
3∼ gjz1 giz3

3∼ gjz3
4∼ giz1

2∼ gjz2 giz3
1∼ gjz2

4∼ giz2
2∼ gjz3

giz3
3∼ gjz3

4∼ giz1
1∼ gjz1 giz3

2∼ gjz1
3∼ giz2

4∼ gjz2 giz3
2∼ gjz1

1∼ giz1
4∼ gjz3

Theorem 6.2. Let G be a finite non-abelian group. Then rck(Γ(G)) ≤
⌈
k
2

⌉
+ 2, for 3 ≤ k ≤ s =

|Z(G)| with |Z(G)| ≥ 4.

Proof. We will proof that 4 is a coloring works for our graph.

1. Case gi ∼ gj Let gizia , gjzjb be the end vertices. We want to find the edge-disjoint paths
between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that

the first path is given by gizia
(ia,jb)∼ gjzb with color (ia, jb).

Let j1 be the column assigned to the row ia such that (ia, j1) = f1 then, we remove the
entries with color f1 to the column gjzj1 and, the same happen to column gjzjb .

Remark 6.3. When we say remove the entry we say that entry is not consider to form the
rainbow path.

Thus, the path for this case is

gizia
f∼ gjzj1

(ia1 ,j1)
∼ gizia1

(ia1 ,jb)
∼ gjzjb (1)

10
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with (ia1 , j1) 6= f1 6= (ia1 , jb) the colors assigned to remaining entries and gjzj1 , gizia1
the

respective vertices from remaining entries.

Let (ia, j2) be the entry with j2 6= j1, such that (ia, j2) = f2 then, we remove the entries with
same color as f2 in column gjzj2 . We can not use the entry (giza1 , gjzjb) because is an edge
for 1, moreover we remove all the entries with same color as f2 in column gjzjb . Thus, the
path is the following:

gizia
(ia,j2)∼ gjzj2

(ia2 ,j2)
∼ gizia2

(ia2 ,jb)
∼ gjzjb (2)

with (ia2 , j2), (ia2 , jb) the colors assigned to remaining entries and gjzj2 , gizia2
the respective

vertices from remaining entries.



gjzjb gjzj1
...

...
gizia1

· · · f · · ·
...

...
gizia · · · f · · ·

...
...


Under the conditions stated above we apply the same to all the colors assigned to ia-raw. We
take edges from remaining entries to form the rest paths with the same method. Let j′1 such
that f ′ = (ia, j

′
1) from jb-column we remove the row with entry same color like f ′. The new

path is the following:

gizia
(ia,j′1)
∼ gjzj′1

(ia′1
,j′1)

∼ gizia′1

(ia′1
,jb)

∼ gjzjb (3)

Take (ia, j
′
1), (ia′1 , j

′
1) as remaining entries from all the entries do not removed before with a

dofferent color as f ′.

Remark 6.4. Suppose that we can coloring with only
⌊
k
2

⌋
+ 1 colors. Let gizim any start

vertex, then there exists a pair of vertices gjzjn , gjzjn′ such that {(air , bjn)|(air , bjn)−color 6=
(
⌊
k
2

⌋
+ 1)− color} identify with {(air , bjn′ )|(air , bjn)− color = the last color}, therefore is

impossible to built k paths between any end vertices gizim , gjzjn passes through gjzjn′ , just
like 5.1.

2. Case: gi ∼ gj ∼ gl with gi � gl in SM
Γ(G).

(a) Repetition of different color to the last color
Case: repetition of one color between columns. Suppose that f is the repeated color
between the columns assigned to the end vertices gizia and glzlb i.e. f = (jc, ia) =
(jc, lb) in the rainbow table, for some c = {1, ..., |Z(G)|}, with lb ∈ glZ and ia ∈ giZ.
Suppose that f is in the path passes through gjzjc , thus for do the rainbow path we need

11
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to find another row jc′ such that (jc′ , lb) = f ′ 6= f then for do the rainbow path, to the
row jc′ we remove the columns with color f (i.e. 2 columns) and one of color f ′. To
row jc remove 2 columns for color f ′ and 2 columns assigned for ia and lb. Then we
remove a total of 7 columns. There are in total 2|Z(G)| columns in our rainbow table,
then it remains 2|Z(G)| − 7 columns with |Z(G)| ≥ 4, leaving at least one column for

do the path without similar colors. The path is gizia
f∼ gjzjc

f1∼ g(jc)
f2∼ g(jc′)

f ′∼ glzlb
with f1, f2 colors assigned to left column and g(jc), g(jc′) vertices in column assigned
to above column.



ia lb

...
...

jc · · · · · · f · · · · · · f ′ · · f1 · · f ′ · · f · · · · · ·
...

...
jc′ · · · f ′ · · g · · f · · · · · · f2 f ′ · · · f · ·

...
...


Now we make the path who starts in gizia

g∼ gjzjc′
When g 6= f and g 6= f ′. As written above we remove the columns in row jc′ with color
f and one of color g, i.e. 3 columns, and in the row jc remove the columns assigned
with color g and two of columns ia and lb, in total we remove 7 columns and leaving
2|Z(G)| − 7 columns where we can find the desired path.
Case: repetition of two colors between columns with g = f ′. We remove 2 columns
with color f ′ to jc-row and 2 columns assigned to ia and lb. In row jc′ remove 2
columns assigned with color f . There are in total 2|Z(G)| − 6 free columns to find
rainbow paths.
Case: repetition of 3 colors Suppose that there are 3 repeated colours between the
columns for do the paths with end vertices gizia and glzlb passes through gjzjc , gjzjc′
and gjzjc′′ . For do the paths passes through gjzjc , just like the first case, we remove
columns with color f ′ to jc-row and, to row j′c remove the 2 columns with color f mi-
nus the rows assigned ia and lb, then for |Z(G)| ≥ 4 there are 2|Z(G)|−6 free columns
for do the rainbow path with end vertices gizia and glzlb cross above gjzjc and gjzjc′ .
The same happens for rainbow path passes through gjzjc′ , gjzc′′ and gjzjc′′ , gjzjc . The
paths have the following form:

gizia
f∼ gjzjc

g1∼ g1(jc)
g′2∼ g′2(jc′)

f ′∼ glzlb ,

gizia
f ′∼ gjzjc′

g′1∼ g′1(jc′)
g′′2∼ g′′2(jc′′)

f ′′∼ glzlb

gizia
f ′′∼ gjzjc′′

g′′1∼ g′′1(jc′′)
g2∼ g2(jc)

f∼ glzlb

12
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ia lb

...
...

jc · · · f g1 g2 f · · ·
...

...
jc′ · · · f ′ g′2 g′1 f ′ · · ·

...
...

jc′′ · · · f ′′ g′′2 g′′1 f ′′ · · ·
...

...


Note that g1, g

′
2; g′1, g

′′
2 and g′′1 , g2 are the colors between free columns with colors as-

signed f, f ′; f ′, f ′′ and f ′′,f respectively, and g1(jc), g2(jc); g′1(jc′),g′2(jc′); g′′1(jc′′),
g′′2(jc′′) are vertices associated to the colors in the free columns with its rows jc, jc′ , jc′′
respectively.

(b) Repetition of last color between columns
Case: repeat the last color

⌈
k
2

⌉
+ 2 one time. Let gizia and glzlb be the end vertices

and suppose that only is repeated the last color
⌈
k
2

⌉
+ 2 only one time. Let f =

⌈
k
2

⌉
+ 2

be the last color and let B = 2
[
k −

(⌈
k
2

⌉
+ 1
)]

be the number of entries with the last
color in each row of the rainbow table. Let jc′ be a row associated with different color
to f in the entries (jc′ , ia) and (jc′ , lb).

For make the rainbow path passes through jc, to row jc′ remove B columns associated
to the last color f and one column designated to color f ′, i.e., we removeB+1 columns.
Further in row jc we remove B − 2 columns associated to f , 2 columns associated to
color f ′ and 2 columns for columns associated to ia and lb, thus we remove from row
jc B + 2 columns. If the columns removed are all different from each other then we
keep C = 2k− (2B + 3) free columns, in the extreme case that we eliminate the same
columns for each case, evaluate in f and f ′, thus we would have 2k − (B + 2) free
columns, then the value of free columns is 2k − (2B + 3) ≤ C ≤ 2k − (B + 2) for
k ≤ 4. The same happens to do a path passes through gjzjc′ . Thus, we have enough
free columns to do the rainbow path.



ia lb

...
...

jc · · · f f · · ·
...

...
jc′ · · · g f ′ · · ·

...
...


Later, for make the rainbow path from gizia

g∼ gjzzjc′
we remove 2 columns assigned

to color g to jc-row, B − 2 columns assigned to color f and 2 for the columns ia, lb,

13
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i.e., remove B + 2 columns. Moreover from jc′-row remove B columns for last color
f plus 1 column for color g, i.e. B + 1 columns. In total the amount of free columns is
between:

2k − (2B + 3) ≤ C ≤ 2k − (B + 2) k ≥ 4 (4)

Then, there are enough free columns for do the rainbow path.

Case: repeat two colors, one of them the last color, i.e., g = f ′ 6= f . To the row
jc′ we remove B columns associated to last color f and the row jc we remove B − 2
columns associated to last color f , 2 columns associated to color f ′ and 2 columns
associated to columns ia and lb, i.e. we remove B + 2 columns. In total there are
2k − (2B + 2) ≤ C ≤ 2k − (B + 2)

2(k −B − 1) ≤ C ≤ 2k − (B + 2) for k ≥ 4 (5)

Since k − B − 1 > 0 for all k we always have a minimum, two columns to form two
paths.

Case: repeat at most B
2

entries between columns. Suppose that between columns
ia and lb assigned to end vertices gizia , glzlb there are, at most D = k − (

⌈
k
2

⌉
+ 1)

entries with the last color f in each column, since D <
⌈
k
2

⌉
+ 1 we can proceed like

the previous cases.
3. Case: any vertices of same class We can do the paths directly, if we want to go from gizia

to gizib the paths are of the following form gizia
(ia,p)∼ gjzp

(ij ,p)∼ gizib for p = {1, ..., s =
|Z(G)|}. We note that we can only find up to (

⌈
k
2

⌉
+ 2) edge disjoint paths for any pair of

vertices. 

gjz1 gjz2 ··· ··· gjzs

gizia (ia, j1) (ia, j2) · · · · · · (ia, js)

gizib (ib, j1) (ib, j2) · · · · · · (ib, js)



Corollary 6.5. Let G be a finite non-abelian group. If gi ∼ gj then
⌊
k
2

⌋
+ 1 < rck(Γ(G)).

Proof. From 6.4.

Corollary 6.6. Let G be a finite non-abelian group. If gi ∼ gj ∼ gl with gi � gl then
⌈
k
2

⌉
+ 1 <

rck(Γ(G)).

Proof. Suppose that B = 2(k −
⌈
k
2

⌉
) then, for any value of k, B = 2m (k = {2m, 2m+ 1}). For

the case where only repeat one time the last color f , from 4

−3 ≤ C ≤ 2m− 2 for k = 2m
−1 ≤ C ≤ 2m for k = 2m+ 1

14
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Thus, there are cases when we have not free columns for do the rainbow paths. The same happens
for case 5:

−2 ≤ C ≤ 2m− 2 for k = 2m
0 ≤ C ≤ 2m− 1 for k = 2m+ 1

Therefore, we can not form k rainbow paths with
⌈
k
2

⌉
+ 1 different colors.

Theorem 1.3 Let G be a finite non-abelian group. Then rck(Γ(G)) =
⌈
k
2

⌉
+ 2, for 3 ≤ k ≤ s =

|Z(G)| with |Z(G)| ≥ 4.

Proof. From 6.2, 6.5 and 6.6.

Example 6.7. Let G be the Heisenberg group for p = 3 with presentation

〈x, a, b|x3 = a3 = b3 = 1, ab = ba, xax−1 = ab, xbx−1 = b〉.

We know that |G| = 27, |G \ Z(G)| = 24 and |G/Z(G)| = 9, i.e. the partition for V (Γ(G)) =
{Z, aZ, a2Z, xZ, axZ, a2xZ, x2Z, ax2Z, a2x2Z} by [x, a] = b we have xa = bax, then xaZ =
axZ. The following is the graph for SM

Γ(G)

Figure 1. Heisenber skeleton graph for p = 3.

In SM
Γ(G) the only vertices with distance 2 are a with a2 and x with x2. Suppose without loss of

generality that ψ({g, a}) = 1. The edge-disjoint paths for end vertices a and a2 are the following

b b ba a2g

b

b

b

b

b

b

ab

ab2

gb

gb2 a2b2

a2b


a ab ab2 a2 a2b a2b2

g 1 3 2 2 3 4
gb 2 4 1 4 1 3
gb2 4 2 3 1 4 2


And all the paths are given in 6.1.

Example 6.8. Let G be the Heisenberg group for p = 5 with presentation

〈x, a, b|x5 = a5 = b5 = 1, ab = ba, xax−1 = ab, xbx−1 = b〉.

15
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a

a2

a3

a4

x

x2

x3

x4

ax a2x
a3x

a4x

ax2

a2x2

a3x2

a4x2

ax3
a2x3

a3x3

a4x3

ax4

a2x4

a3x4

a4x4

Figure 2. Heisenber skeleton graph for p = 5.

We know that |G| = 125, |G \ Z(G)| = 120 and |G/Z(G)| = 25. Since [x, a] = b we have
xa = bax, then xaZ = axZ. The graph 2 is the skeleton SM

Γ(G) of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without
loss of generality we give the 5 edge-disjoint paths for end vertices x, ax2 ∈ SM

Γ(G). By 1.3 we
know that we need

(
b5

2
c+ 2

)
-color. The rainbow table is given below

b

b

b

b

b

b

b

b

b

b

ax2

ax2b

ax2b2

ax2b3

ax2b4

x

xb

xb2

xb3

xb4



ax2 ax2b a2b2 ax2b3 ax2b4

x 1 2 3
xb 1 2 3
xb2 1 2 3
xb3 3 1 2
xb4 2 3 1


Rainbow table for x ∼ ax2 ∈ SM

Γ(G)

Then, the 5 edge-disjoin paths are given by:
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b

b

b

b

b

b

b

b

b

b

x
1∼ax2

x
2∼ax2b

1∼ xb4 4∼ ax2

x
3∼axb2 1∼ xb2 4∼ ax2

x
4∼ax2b3 1∼ xb3 3∼ ax2

x
4∼ax2b4 1∼ xb4 2∼ ax2

We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices
x4, x3b3 are the following



x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 3 2 2 1 3
a3b 2 1 3 2 1 3
a3b2 3 2 1 2 1 3
a3b3 3 2 1 3 2 1
a3b4 3 2 1 1 3 2


x4 1∼a3 4∼ x3b3

x4 2∼a3b
3∼ x3b3

x4 3∼a3b2 1∼ x3b3

x4 4∼a3b3 2∼ x3b3

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end
vertices x4b4 and x3b2 we have the following paths:

Start with color 1 Start with color 2

x4b4 1∼ a3b4 4∼ x3b2 x4b4 2∼ a3 3∼ x3b2

x4b4 1∼ a3b4 3∼ x4b2 2∼ a3b3 4∼ x3b2 x4b4 2∼ a3 3∼ x4b3 4∼ a3b
1∼ x3b2

x4b4 1∼ a3b4 4∼ x4 3∼ a3b2 2∼ x3b2 x4b4 2∼ a3 3∼ x4b3 1∼ a3b3 4∼ x3b2

x4b4 1∼ a3b4 2∼ x3b3 4∼ a3 3∼ x3b2 x4b4 2∼ a3 1∼ x3b
3∼ a3b4 4∼ x3b2

Start with color 3 Start with color x4b4 4∼ a3b2 Start with color 4 from
x4b4 4∼ a3b3

x4b4 3∼ a3b
1∼ x3b2 x4b4 4∼ a3b2 2∼ x3b2 x4b4 4∼ a3b3 1∼ x3b4 3∼

x3b2 2∼ x3b2

x4b4 3∼ a3b
4∼ x4b2 1∼ a3b2 2∼

x3b2

x4b4 4∼ a3b2 3∼ x4 2∼ a3b
1∼

x3b2

x4b4 4∼ a3b3 2∼ x3b3 3∼ x3b
1∼

x3b2

Color 3 can not came to color 4 Color 4 can not came to color
a3 3∼ x3b2

Color x4b4 4∼ a3b3 can not
came to color a3 3∼ x3b2

17
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Thus, we have not columns for do the rainbow path from x4b4 3∼ a3b to a3b3 4∼ x3b2



x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 3 2 2 1 3
a3b 2 1 / / 3 / 2 1 �3 /
a3b2 3 2 1 2 1 3
a3b3 / �3 2 1 �3 / 2 1
a3b4 3 2 1 1 3 2


Then, we can not find a path from x4b4 to x3b2 passes through a3b, because the last color from

x4b4 only can came to x3b2 passes through a3b and a3b2. Then we need one more color.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x4 x3
a3

x4b

x4b2

x4b3

x4b4

a3b

a3b2

a3b3

a3b4

x3b

x3b2

x3b3

x3b4

Figure 3. Graph in Γ(G)



x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 4 3 2 2 1 3 4
a3b 2 1 4 3 2 1 3 4
a3b2 3 2 1 4 4 2 1 3
a3b3 4 3 2 1 3 4 2 1
a3b4 4 3 2 1 1 3 4 2


Rainbow table for found the 5 edge-disjoin paths between x4 and x3
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