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Abstract

Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic additive group Zn (n ≥ 4), where S1 =
{1, n− 1}, ... , Sk = Sk−1 ∪ {k, n− k} are the inverse-closed subsets of Zn − {0} for any k ∈ N,
1 ≤ k ≤ [n

2
]− 1. In this paper, we will show that χ(Γ) = ω(Γ) = k+1 if and only if k+1|n, also

we will show that if n is an even integer and k = n
2
− 1 then Aut(Γ) ∼= Z2wrISym(k + 1) where

I = {1, ..., k + 1} and in this case, we show that Γ is an integral graph.
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1. Introduction

In this paper, a graph Γ = (V,E) always means a simple connected graph with n vertices
(without loops, multiple edges and isolated vertices), where V = V (Γ) is the vertex set and E =
E(Γ) is the edge set. The size of the largest clique in the graph Γ is denoted by ω(Γ) and the size
of the largest independent sets of vertices by α(Γ). A graph Γ is called a vertex-transitive graph if
for any x, y ∈ V there is some π in Aut(Γ), the automorphism group of Γ, such that π(x) = y.
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Let Γ be a graph, the complement Γ of Γ is the graph whose vertex set is V (Γ) and whose edges
are the pairs of nonadjacent vertices of Γ. It is well known that for any graph Γ, Aut(Γ) = Aut(Γ)
[8]. If Γ is a connected graph and ∂(u, v) denotes the distance in Γ between the vertices u and v,
then for any automorphism π in Aut(Γ) we have ∂(u, v) = ∂(π(u), π(v)).

Let k be a positive integer, a k-colouring of a graph Γ is a mapping f : V (Γ) −→ {1, . . . , k}
such that f(x) ̸= f(y) for any two adjacent vertices x and y in Γ, and if such a mapping exists we
say that Γ is k-colorable. The chromatic number χ(Γ) of Γ is the minimum number k such that
Γ is k-colorable. Let Γ be a graph and I(Γ) denote the set of all independent sets of the graph
Γ. A fractional colouring of a graph Γ is a weight function µ : I(Γ) −→ [0, 1] such that for any
vertex x of Γ,

∑
x∈I∈I(Γ) µ(I) ≥ 1, and if such a weight function exists we say that Γ is fractional

colouring. The fractional chromatic number of a graph Γ is denoted by χf (Γ) and defined in [9,
Page 134]. Also a fractional clique of a graph Γ is denoted by ψf (Γ) and defined in [9, Page 134].

Let Υ = {γ1, ..., γk+1} be a set and K be a group then we write Fun(Υ, K) to denote the set
of all functions from Υ into K, we can turn Fun(Υ, K) into a group by defining a product:

(fg)(γ) = f(γ)g(γ) for all f, g ∈ Fun(Υ, K) and γ ∈ Υ,

where the product on the right is in K. Since Υ is finite, the group Fun(Υ, K) is isomorphic to
Kk+1 (a direct product of k + 1 copies of K) via the isomorphism f → (f(γ1), ..., f(γk+1)). Let
H and K be groups and suppose H acts on the nonempty set Υ. Then the wreath product of K
by H with respect to this action is defined to be the semidirect product Fun(Υ, K)⋊H where H
acts on the group Fun(Υ, K) via

fx(γ) = f(γx
−1

) for all f ∈ Fun(Υ, K), γ ∈ Υ and x ∈ H.

We denote this group by KwrΥH . Consider the wreath product G = KwrΥH . If K acts on a set
∆ then we can define an action of G on ∆×Υ by

(δ, γ)(f,h) = (δf(γ), γh) for all (δ, γ) ∈ ∆×Υ,

where (f, h) ∈ Fun(Υ, K)⋊H = KwrΥH [6].
Eigenvalues of an undirected graph Γ are the eigenvalues of an arbitrary adjacency matrix of

Γ. Harary and Schwenk [10] defined Γ to be integral, if all of its eigenvalues are integers. For a
survey of integral graphs see [3]. In [2] the number of integral graphs on n vertices is estimated.
Known characterizations of integral graphs are restricted to certain graph classes, see [1].

Let G be a finite group and S a subset of G that is closed under taking inverses and does not
contain the identity. A Cayley graph Γ = Cay(G,S) is a graph whose vertex-set and edge-set are
defined as follows:

V (Γ) = G; E(Γ) = {{x, y} | x−1y ∈ S}.
It is well known that every Cayley graph is vertex-transitive.

For any graph Γ, ω(Γ) ≤ χ(Γ) [8]. Also it is well known that for bipartite graphs ω(Γ) =
χ(Γ) = 2. Let Γ be the Cay(Zn, Sk) where Zn (n ≥ 4), is the cyclic additive group with identity
{0}, and for any k ∈ N, 1 ≤ k ≤ [n

2
]−1, S1 = {1, n−1}, ... , Sk = Sk−1∪{k, n−k} are inverse-

closed subsets of Zn − {0}. In this paper we will show that χ(Γ) = ω(Γ) = k + 1 if and only if
k+1|n, also we show that if n is an even integer and k = n

2
−1 thenAut(Γ) ∼= Z2wrISym(k+1),

where I = {1, ..., k + 1}.
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2. Definitions And Preliminaries

Proposition 2.1. [11] For any graph Γ we have

ω(Γ) ≤ ωf (Γ) ≤ χf (Γ) ≤ χ(Γ).

Proposition 2.2. [8] If Γ is vertex transitive graph, then we have

ωf (Γ) =
|V (Γ)|
α(Γ)

Definition 1. [4] Let Γ be a graph with automorphism group Aut(Γ). We say that Γ is symmetric
if, for all vertices u, v, x, y of Γ such that u and v are adjacent, also, x and y are adjacent, there
is an automorphism π such that π(u) = x and π(v) = y. We say that Γ is distance-transitive if,
for all vertices u, v, x, y of Γ such that ∂(u, v) = ∂(x, y), there is an automorphism π such that
π(u) = x and π(v) = y.

Remark 2.1. [4] Let Γ be a graph. It is clear that we have a hierarchy of conditions:
distance-transitive ⇒ symmetric ⇒ vertex-transitive

Definition 2. [4], [5] For any vertex v of a connected graph Γ we define

Γr(v) = {u ∈ V (Γ) | ∂(u, v) = r},

where r is a non-negative integer not exceeding d, the diameter of Γ. It is clear that Γ0(v) = {v},
and V (Γ) is partitioned into the disjoint subsets Γ0(v), ...,Γd(v), for each v in V (Γ). The graph
Γ is called distance-regular with diameter d and intersection array {b0, ..., bd−1; c1, ..., cd}, if it is
regular of valency k and for any two vertices u and v in Γ at distance r we have |Γr+1(v)∩Γ1(u)| =
br, and |Γr−1(v) ∩ Γ1(u)| = cr, (0 ≤ r ≤ d). The numbers cr, br and ar, where

ar = k − br − cr (0 ≤ r ≤ d),

is the number of neighbours of u in Γr(v) for ∂(u, v) = r, are called the intersection numbers of
Γ. Clearly b0 = k, bd = c0 = 0 and c1 = 1.

Remark 2.2. [4] It is clear that if Γ is distance-transitive graph then Γ is distance-regular.

Lemma 2.1. [4] A connected graph Γ with diameter d and automorphism group G = Aut(Γ) is
distance-transitive if and only if it is vertex-transitive and the vertex-stabilizer Gv is transitive on
the set Γr(v), for each r ∈ {0, 1, ..., d}, and v ∈ V (Γ).

Theorem 2.1. [5] Let Γ be a distance-regular graph which the valency of each vertex as k, with
diameter d, adjacency matrix A and intersection array,

{b0, b1, ..., bd−1; c1, c2, ..., cd}.

Then the tridiagonal (d+ 1)× (d+ 1) matrix
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ȷ(Γ) =



a0 b0 0 0 ...
c1 a1 b1 0 ...
0 c2 a2 b2

...

cd−2 ad−2 bd−2 0
... 0 cd−1 ad−1 bd−1

... 0 0 cd ad


,

determines all the eigenvalues of Γ.

Theorem 2.2. [7] Let Γ be a graph such that contains k + 1 components Γ1, ...,Γk+1. If for any
i ∈ I = {1, ..., k + 1}, Γi

∼= Γ1 then Aut(Γ) ∼= Aut(Γ1)wrISym(k + 1).

3. Main results

Proposition 3.1. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where
S1 = {1, n − 1}, ... , Sk = Sk−1 ∪ {k, n − k} are the inverse-closed subsets of Zn − {0} for any
k ∈ N, 1 ≤ k ≤ [n

2
]− 1. Then χ(Γ) = ω(Γ) = k + 1 if and only if k + 1|n.

Proof. By definition of Si, 1 ≤ i ≤ k clearly | Si |= 2i, hence | Sk |= 2k. Let Γ = Cay(Zn, Sk)
be the Cayley graph on the cyclic group Zn and Sk be the set of inverse-closed subset of Zn − {0}
which is defined as before. By definition of Γ clearly ω(Γ) = k + 1. So, if χ(Γ) = ω(Γ) = k + 1
then by Proposition 2.1, χf (Γ) = ωf (Γ) = k+1. Also we know that Γ is a vertex transitive graph,
so by Proposition 2.2, k + 1 = ωf (Γ) = |V (Γ)|

α(Γ)
therefore k + 1|n. Conversely, if k + 1|n then

χ(Γ) = k + 1, because Γ is a vertex transitive graph and the size of every clique in the graph Γ is
k + 1, therefore χ(Γ) = ω(Γ) = k + 1.

Example 1. Suppose Γ1 = Cay(Z12, S2) and Γ2 = Cay(Z12, S3) are two Cayley graphs, then
χ(Γ1) = ω(Γ1) = 3 and χ(Γ2) = ω(Γ2) = 4.

..
Fig1 : χ(Γ1) = ω(Γ1) = 3

.
Fig2 : χ(Γ2) = ω(Γ2) = 4
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Proposition 3.2. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where
S1 = {1, n − 1}, ... , Sk = Sk−1 ∪ {k, n − k} are the inverse-closed subsets of Zn − {0} for any
k ∈ N, 1 ≤ k ≤ [n

2
]− 1. If n is an even integer and k = n

2
− 1 then Aut(Γ) ∼= Z2wrISym(k + 1),

where I = {1, ..., k + 1}.

Proof. Let V (Γ) = {1, ..., n} be the vertex set of Γ. By assumptions and Proposition 2.2, the size
of the largest independent set of vertices in the Γ is 2, because Γ is a vertex transitive graph and the
size of every clique in the graph Γ is k + 1. Thus, the size of the every independent set of vertices
in the Γ is 2. Therefore for any x ∈ V (Γ), there is exactly one y ∈ V (Γ) such that x−1y = k + 1.
Hence, if x−1y = k + 1 then two vertices x and y adjacent in the complement Γ of Γ, so Γ
contains k + 1 components Γ1, ...,Γk+1 such that for any i ∈ I = {1, ..., k + 1}, Γi

∼= Γ1
∼= K2,

where K2 is the complete graph of 2 vertices. Therefore Γ ∼= (k + 1)K2, hence by Theorem 2.2,
Aut(Γ) ∼= Aut(K2)wrISym(k + 1) = Z2wrISym(k + 1), soAut(Γ) ∼= Z2wrISym(k + 1).

Example 2. Let Γ = Cay(Z12, S5) be the Cayley graph on the cyclic group Z12, then χ(Γ) =
ω(Γ) = 6, and Aut(Γ) = Z2wrISym(6), where I = {1, ..., 6}.

..

Fig3 : χ(Γ) = ω(Γ) = 6
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Proposition 3.3. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where
S1 = {1, n − 1}, ... , Sk = Sk−1 ∪ {k, n − k} are the inverse-closed subsets of Zn − {0} for any
k ∈ N, 1 ≤ k ≤ [n

2
] − 1. If n is an even integer and k = n

2
− 1 then Γ is a distance-transitive

graph.

Proof. By Lemma 2.1, it is sufficient to show that vertex-stabilizer Gv is transitive on the set
Γr(v) for every r ∈ {0, 1, 2} and v ∈ V (Γ), because of Γ is a vertex-transitive graph. We know
V (Γ) = {1, 2, ..., n

2
−1, n

2
, n
2
+1, ..., n} is the vertex set of Γ. LetG = Aut(Γ). Consider the vertex

v = 1 in the V (Γ), then Γ0(v) = {1}, Γ1(v) = {2, ..., n
2
− 1, n

2
, n
2
+2, ..., n} and Γ2(v) = {n

2
+1}.

Let ρ = (2, 3, ..., n
2
, n
2
+ 2, ..., n) be the cyclic permutation of the vertex set of Γ. It is an easy

task to show that ρ is an automorphism of Γ. We can show that H =< (2, 3, ..., n
2
, n
2
+ 2, ..., n) >

acts transitively on the set Γr(v) for each r ∈ {0, 1, 2}, because H is a cyclic group. Note that if
1 ̸= v ∈ V (Γ) then, we can show that vertex-stabilizer Gv is transitive on the set Γr(v) for each
r ∈ {0, 1, 2}, because Γ is a vertex-transitive graph.
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Proposition 3.4. Let Γ = Cay(Zn, Sk) be the Cayley graph on the cyclic group Zn (n ≥ 4), where
S1 = {1, n − 1}, ... , Sk = Sk−1 ∪ {k, n − k} are the inverse-closed subsets of Zn − {0} for any
k ∈ N, 1 ≤ k ≤ [n

2
]− 1. If n is an even integer and k = n

2
− 1 then Γ is an integral graph.

Proof. By Remark 2.2, it is clear that Γ is distance-regular, because Γ is a distance-transitive
graph. Let V (Γ) = {1, 2, ..., n} be the vertex set of Γ. Consider the vertex v = 1 in the V (Γ),
then Γ0(v) = {1}, Γ1(v) = {2, ..., n

2
− 1, n

2
, n
2
+ 2, ..., n} and Γ2(v) = {n

2
+ 1}. Let be u in the

V (Γ) such that ∂(u, v) = 0 then u = v = 1 and |Γ1(v) ∩ Γ1(u)| = 2k, hence b0 = 2k and by
Definition 2, a0 = 2k − b0 = 0. Also, if u in the V (Γ) and ∂(u, v) = 1 then two vertices u, v
are adjacent in Γ, so |Γ0(v) ∩ Γ1(u)| = 1 and |Γ2(v) ∩ Γ1(u)| = 1, hence c1 = 1, b1 = 1 and
a1 = 2k− b1− c1 = 2k−2. Finally, if u in the V (Γ) and ∂(u, v) = 2 then two vertices u, v are not
adjacent in Γ, so |Γ1(v) ∩ Γ1(u)| = 2k, hence c2 = 2k and a2 = 2k − c2 = 0. So the intersection
array of Γ is {2k, 1; 1, 2k}. Therefore by Theorem 2.1, the tridiagonal (3)× (3) matrix,a0 b0 0

c1 a1 b1
0 c2 a2

 =

0 2k 0
1 2k − 2 1
0 2k 0

 ,
determines all the eigenvalues of Γ. It is clear that all the eigenvalues of Γ are 2k, 0,−2 and their
multiplicities are 1, k + 1, k, respectively. So Γ is an integral graph.

References

[1] A. ABDOLLAHI AND E. VATANDOOST, Which Cayley graphs are integral?, Elec-tron. J.
Comb. 16(1) (2009), r122 1-17.

[2] O. AHMADI, N. ALON, L.F. BLAKE AND I.E. SHPARLINSKI, Graphs with integral spec-
trum, Linear Alg. Appl. 430 (2009), 547-552.

[3] K. BALINSKA, D. CVETKOVIĆ, Z. RODOSAVLJEVIĆ, S. SIMIĆ AND D.STE-VANOVIĆ, A
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