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Abstract

Suppose that G is minimally 4-restricted edge connected graph without triangle, 6(G) > 2 and
a4(G) > 6. Suppose that A is a A\s-atom of G such that for each path of length 3 in A, say
P; = xyz, we have da(y) — 1 = da_{z41(y), where  ~ y ~ 2. In this paper, under these
assumptions, we show that all atoms of G are trivial.
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1. Introduction

Let G be a finite simple graph with vertex set V(G) and edge set £(G). For each vertex
v € V(Q), the neighborhood N (v) of v is defined as the set of all vertices adjacent to v and
d(v) = |N(v)| is the degree of v. For two vertices u,v € V(G), we write u ~ v (or uv € E(Q))
when v and v are adjacent. For two disjoint vertex set Uy, Uy C V(G), denote by [Uy, Us)e the
set of edge of G with one end in U; an the other end in Us, G[U] is the subgraph of G induced by
vertex set U C V(G), U = V(G) — U is the complement of U, wg(U) = |[U, Ulg| is the number
of edges between U and U. When the graph under consideration is obvious, we omit the subscript
G. For asubset S C G write ds(U) = |[U, S — U]| and dg(u) = ds{u}.

A m-restricted edge cut is an edge cut of a connected graph that separates this graph into
components each having order at least m vertices. The size of a minimum m-restricted edge cut of
graph G is called its restricted edge connectivity and denoted by \,,,(G). A m-restricted edge cut S
with |S| = A\, (G) is called a Ap,,-cut. Let e,,,(G) = min{|w(U)|, |U| = m and G[U] is connected }.
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A graph G is \,,-graph (or \,,-optimal) if \,,(G) = €,,(G). There is much research on sufficient
conditions for a graph to be \,,-optimal, such as symmetric conditions [12, 14, 16, 17] degree
conditions [14, 15, 18]. For more information on this topic we refer the reader to the [5].

A graph G is \s-independent if each component of GG has at most three vertices. A connected
graph of order at most three is \4-trivial. A graph is called \s-non-trivial if it has a component
which contains at least four vertices.

For two disjoint non-empty subsets X and Y of V' (G), the following inequality is well known
(see Lovasz 1979, Problem 6.48).

wXNY)+wXUY) <wX)+wlY). (1)

A vertex set U is called a \,,,-fragment if [U, U] is a minimum m-restricted edge cut of graph G.
Am-restricted edge fragment with the least cardinality is called a A,,,-atom. The cardinality of \,,-
atom is denoted by «,,,(G). Clearly m < «,,,(G) < |V(G)|/2. An atom is said to be trivial if it is a
single cycle. In this paper we give another type of sufficient condition called a minimally restricted
edge connected condition. A graph G is a minimally m-restricted edge connected (minimally \,,-
graph for short) if \,,(G — e) < A\, (G) for each e € E(G). If e is a pending edge then G — e
doesnot have \,,-cut for m > 2. So we always assume §(G) > 2 where G is a minimally \,,-
graph for some m > 2 and §(G) is the minimum degree of G. A minimally \,-graph is exactly a
minimally edge connected graph, which has been shown to be A-optimal ( [10, Exercise 49]). In
[6] the authors have proved that every minimally A;-graph is Aq-optimal. Also in [7] the authors
have proved that every minimally As-graph is always As-optimal except the 3-cube. For more
information on this topic we refer the reader to the [1, 2, 3,4, 8,9, 11, 13]. In this paper with the
similar methods we show that all atoms of a minimally 4-restricted edge connected graph without
triangle are trivial (see Figure 1).

2. Main result

Throughout in this section we assume that G is a Ay-connected graph, 6(G) > 2 and ay(G) >
6. First with the similar arguments in the proofs of Lemmas 1 — 5 in [7] we have the following
five results.

Lemma 2.1. Suppose that F' is a subset of G such that G[F] is connected. If one of the following
conditions is satisfied:

(i) w(F) < \M(G), or

(i) w(F) = \M(G) and |F| < ay(G),

then G[F] is A\y-independent.

Proof. Suppose that C' is A\s-non-trivial component of G[F]. Since G[C] is connected, we have
w(F) > w(C) > A\y(G) which contradicts the first condition. Also if condition (ii) occurs then we
have w(F') = w(C) = A\(G). Hence V (C) is a \y(G)-fragment. But we have |F'| > |C| > ay(G)
which contradicts the second condition. Thus G[F] is \s-independent, as wanted. ]

Lemma 2.2. Suppose that A is a \y-atom of G and B is a \4-fragment of G.
(i) If U is a subset of A such that G|U| is connected and G[A\U] has \y-non-trivial component,
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then dA(U) > dz(U)
(ii) If U is a subset of B such that G|U| is connected and G|B\U| has \y-non-trivial component,
(iii) 5(G[A]) > 2.

Proof. (i) Suppose to contrary that d4(U) < dz(U). Now we have w(A —U) = w(A) +da(U) —
dz(U) < w(A) = M\(G). Since |[A — U] < |A| = au(G), it follows by Lemma 2.1, G[A — U] is
As-independent, a contradiction.

(i1) The proof is similar to the first case.

(iii) If A — x is A\s-independent for each = € A, the we have d(x) > 2. Thus we may suppose
that A — z has a A\;-non-trivial component for some = € A. Set U = x. Now d(z) > dx(x) and
since da(z) > 1/2(da(z) + d4z(x)) we see that d4(z) > 2, as wanted. O

Similar to Lemma 2.2, we can prove the following lemma. The key observation to the proof,
as well as some proofs after it, is that for any edge e € E(G), if \y(G — e) < A\y(G), then any
As-fragment of G — e contains exactly on end of e, and is a A\4-fragment of G.

Lemma 2.3. Suppose that e = wv is an edge of G, \y(G — €) < M\(G) and A is a \y-atom of
G—ewithue A v ¢ A

(i) If U is a subset of A such that G[U] is connected and G[A] — U has \4-non-trivial component
and e is not incident with U then do(U) > d4(U).

(ii) dgpa)(z) > 2 for each x(# u) € A.

Lemma 2.4. Suppose that A is a \y-atom and B is a \y-fragment of G and AN B # (). Then for
any component C of G[A N B| either G|A] — C or G|B] — C'is A\y-independent.

Proof. Suppose to contrary that G[A] — C' and G[B] — C have a A\s-non-trivial component. Set
U = G[C]. By Lemma 2.2 we have ds(U) > dx(U) > dg_a(U) = dp(U) and dg(U) >
dg(U) > da_p(U) = da(U), a contradiction. O

With the similar arguments with proof of Lemma 2.4 we have the following lemma.

Lemma 2.5. Suppose that e = uv is an edge of G, \y(G — €) < M\(G), A is a M\y-atom of G — e
withu € A, v & A, Bis a \y-fragment of G, AN B # () and e is not incident with B. Then for
any component C of G[A N B] either G[A] — C or G[B] — C'is \y-independent.

Lemma 2.6. Suppose that A is a \y-atom of G, e = uv is an edge of G|A] and B is a \y-atom of
G — e. Then G[AN B|,G[A — B] and G|B — A] are connected.

Proof. Suppose to contrary that G[A N B] is not connected. Suppose that C; and Cy are two
components of G[A N B] and one of them has at least three elements, say Cy. By Lemma 2.4,
G[A] — C} has A\s-non-trivial component. This contradicts Lemma 2.4 contradicting. Thus all
components of G[A N B] have at most 2 vertices. Suppose that C' is a component of G[A N BJ.
Thus G[A] — C} and G[B] — Cy are \s-nontrivial, a contradiction and so G[A N BJ is connected.
Now suppose that G[A — B] is not connected. Suppose that C; and Cy are two components of
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G[A — BJ. Suppose that one of the component has at least four elements, say Cy. Then G[A] — C
and G[B] — C'is A4-non-trivial. This contradicts Lemma 2.4. Now suppose that all components has
at most three elements. Now G[A] — C and G[B] — C are \4-non-trivial, where C' is a component
of GG, a contradiction. Similarly we can show that G[B — A] is connected. ]

Lemma 2.7. Suppose that A is a \y-atom of G, e = uv is an edge of G|A] and B is a \y-atom of
G —e. Then |A — B| =3 and |AN B| = 3.

Proof. Suppose that |[AN B| < 2. Thus G[A— B] and G[B — A] are \s-non-trivial. This contradict
Lemma 2.4. Now suppose that |A N B| > 4. Thus G[A N B] is A\y-non-trivial. Also since G[A]
and G[B] are connected, it follows that G[A U B] = G[A N B] is connected. Taking F = AN B
in Lemma 2.1. Noting that |F| = |A N B| < |A| = a4(G) and since A is an \s-atom and
e € A we have w(A) = w(B) = \(G). Since A is an atom, it follows that A is conncted and
there is an edge between A — B and A — B. Thus w(A N B) > A\(G). Now by equation (1)
w(AN B)+w(AU B) < w(A) + w(B), and so w(AUB) = w(AU B) < \(G). Taking
F = AU BinLemma 2.1. We see that G[A U B| is A\4-independent and so G[A U B| is composed
of some components of cardinality less than or equal 3.
Claim d4(C) = dp(C) and d4np(C) = 0, where C' is a component of G[A U B].

Suppose that 1 < |C] < 2. Thus G[A] — C' is A4-non-trivial and so by Lemma 2.2, d(C) >
dA(C). Also since C'is a component of G[A U B, it implies that |[C, A — C]| = |[C, B — A — (]|
and hence d4(C) = dp_4(C). Therefore

d(C) < d5(C) = dp-a(C) = dp(C) — danp(C).

Similarly,
' dp(C) < dg(C) = da-p(C) = da(C) — danp(C).

Thus d4(C) = dB(C) and d4~p(C) = 0. Now supposethat t|C] = 3. Assume that [AU B| = 4
and |A — B| = 1. Put A" = (A — B)UC. Then G[A'] and G[A'] are subgraphs of order at least 4
and w(A') = w(A") = w(BU (UC’Z-)) = w(B)+da_p(UC;) —dp_a(UC;) = A\y(G), where C; are
components of G[AU B] and 1 < |Cy| < 2. Thus A’ is an atom and |A'| < |A|, a contradiction.
Therefore we may suppose that |A U B| > 5 or |A — B| > 2. Now with the similar arguments as
above for every component C of G[A U B], G[A] — C has at least order 4, a contradiction. Thus
|JANB|=3.Also |A—B|=|A|—|ANB| >3.1If|[A— B| > 4 then A — B is a A\y-non-trivial,
a contradiction. Thus |[A — B| = 3. O

Now by Lemmas 2.6 and 2.7, we have the following result.

Lemma 2.8. Suppose that A is a \y-atom of G, e = uv is an edge of G|A] and B is a \y-atom of
G — e. Then G[A] = X, where X is a subgraph of complete graph K.

For the rest of paper we may assume that GG is K3-free or (without triangle), A N B is a path of
length 3, say P5 = xyz, and da(y) — 1 = da_{(s4,.}(y). Also we note that x ~ y ~ z.

Lemma 2.9. Suppose that A is a \y-atom of G, e = uv is an edge of G|A] and B is a \4-atom of
G — e. Then.
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(i) da(ryz) > dz(ryz).

(ii) da-p(zyz) = dp—a(zy2).

(iii) For each vertex a of A, dx(a) = da(a) —
(iv)|[ANB,AUB]|=1|[A—- B,B— A]| =

Proof. (1) By Lemma 2.2, da(x) > dx(x)and so d5(z) < ( )—1. Now da(zyz) = da—fuy.-)(x)+
Ada—foy:3(Y) + da—foy:1(2) = dz(x) + dx(y) + dz(z) = dz(zy=).

(i) da—p(xyz) = da(zyz) — danp(ryz) = da(zyz) > dz(xyz) = dp_a(zyz) + dyp(ryz) =
dp-a(zyz). If |B — A| = 3 then B is \s-atom of G and so dp_a(2yz) > da_p(zryz). Thus
da—p(zyz) = dp_a(zyz). If |B — A| > 4 then G[B — A] is As-non-trivial. Now by Lemma 2.2,
dp_a(zyz) > da_p(ryz) and so da_p(ryz) = dg_a(zy2).

(iii) Since da(ryz) = dz(xyz) by part (i), da—{ay 1 () + da—(oy} (Y) F da—foy.1(2) = dz(z) +
dz(y) + dz(2). On the other hand da_j, .1 (2) = da(x) — 1, da_(zy3(y) = da(y) — 1 and
dA—{2y.21(2) = da(z) —1. Since dz(a) < da(a), where a € {x,y, 2}, we have dz(a) = da(a) —
fora € {z,y,z}. Now we considering the vertex set {2',y', 2’ }. By replace B by B we see that
d(a) = da(a) — 1fora € {z',y,2'}.

(iv) By taking the place B by B dp_a(z'y'2") = 0. Thus |[A — B, B — A]| = 0. On the other
hand [[AN B, AU BJ]| = 0. O

Lemma 2.10. Suppose that A is a \s-atom of G, e = uv is an edge of G[A]| and B is a A\y-atom of
G — e. Then G[A U B] is connected.

Proof. Suppose to contrary that G[A U B is disconnected and C and C5 are two components of

G[AU B]. By Lemma 2.9, du(z'y'2") > dy(2'y'2"), where 2',y', 2" € A — B. Thus w(C;) <

w(AU /B)/ = w(AU B) = w(B) + dgg(*'y'2) — davs(z'y'z") = w(B) + (dg(s'y'2") —

dp-a(ryz)—

(dp—a(xy z)+da(xy z)) =w(B)—da(ry z )+dz(ry 2z )—2dp_a(zy 2z ) <w(B) = M\(G).
Now by Lemma 2.1, C is \s-independent and so V' (C3) < 3. Since G[B\A4] is connected ,

|B\A| > 3 and Cs is connected to B\ A, we see that G[A] — C} has a \;-non-trivial component.

Now by Lemma 2.2, we have
da(Cy) < d5(Cy) = dp_a(Cy) = dp(Ch).

Similarly
dp(Cy) < dp(Ch) = da—p(Cy) = da(Ch).

Put A" = (A — B) U C,. Thus G[A'] and G[A] are connected. Also

Thus dA(Cl): B( )
= W(A — B) + dB(Cl) — dA—B(Cl) = ’LU(A — B) + dB(Cl) — dA(C1) =

by Lemma 2.9, w(A)
w(A—B) =

w(A) + da_p(ryz) — dg_a(zyz) = w(A) = M\(G). Thus A" is \s-fragment and since |A'| <
|A| we see that A" is also a \s-atom of G. Now dz(x/y'z') = dp(z'y'2) + duc,(v'y ) =
di a@'y'2) + dansl0'y' =) + dog, (0 ) 2 daon('y' =) + dey (' ) =

da(ry z)+de,(xyz)>da(xy z), where the C? are component of GG, a contradiction. O

Theorem 2.1. Suppose that G is the minimally \,-connected graph. Then G is isomorphic to the
Figure 1 and all the atoms of G are trivial.
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Proof. Suppose that A is A\s-atom of GG, e = uw is an edge of G[A] and B is a \y-atom of G — e.
We can apply Lemma 2.6 to A and B. Suppose that AN B = {z,y,2}and A — B = {2', ¢, 2'}.
By Lemma 2.9 dz(t) = da(t) — 1 for each t € A. Thus \y(G) = w(A) = dx(x) + dx(y) +
dx(z) +dz(2') +dz(y) + dx(z)) = / o

da(x) +daly) +da(z) +da(z ) +daly ) +da(z) —6—242=du(zyz) +dalzy z)+2=
[xyz, 'y 2| + 2.

!

x' y z' x! y 7'
X y X y
X! -Y, Z e x' yr 7'
Yy z Fs Xy z
xl’ yf Zf C‘._‘. r yf Zf
x ¥ z X y z
fig2 fig1 Fy fig3

Now suppose that D is \s-atom of G —xy and C'is a \s-atom of G—y'z'. We apply Lemma 2.10
to A, D and A, C. Without loss of generality we may suppose that AND = {2, z,y} and ANC =
{z,2',y}. Set } = (B—A)—D)-C,F,=(B-A)ND,F,=(AUB)n(D-C0C),
F,=(AuUB)—D)-C,Fs=(AUuB)N(C —-D), Fs = (B—A)NCand F; = (CND).
By Lemma 2.9 we have |[{z',y, 2}, i U U Fs U FY]| = |[{z,y, 2}, Fs U F, U Fs U ]| =
{z, 2", y'}, BURURUFR| = |[{y, 2,2 }, FUFSUFsUR]| = |[{z, 2,y }, FLUFsUFsUFY)| =
|[{I,7I,y},FQUF3UF4UF7]|:O. .

Thus |[ZL’, F1UF2UF3UF4UF5UF7]| = 0 and so |[ZL‘,F6]| = |[[E,A]| = dz(a) = dA(CL) —1 Z
dgra) — 1 = 1. With the same argument we have

HmaFGH > 1,’[$I,F5” Z 17|[y/7F4]| > 17|[yaFlH 2 17’[Z7F2” Z 17|[Z/7F3” Z L. (2)

Thus non of Fy, Fy, F3, Fy, F5 and Fy; are empty and [A, A] = [z, F5]U][y, Fl]U[z,FQ]U[x/,Fg)]U
[y, Fy] U [z, F3]. Also note that since |[F5 U Fg, I%]| > 1 and |[F, U F3, Fy]| > 1 we have Fy # (.
Since G[Fl U F2 U Fﬁ] = G[B - A], G[F5 U F6 U F7] = G[C - A], G[FQ U F3 U F7] = G[D - A],

G[F1UF,UF;U Fg) = G[AU D] and G[F3 U Fy U F5 U F;] = G[A U B] are connected without
loss of generality we have

HFDFQ” 2 1aHF27F3” 2 17‘[F17F4” 2 17”F37F4” 2 17
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[F5, Fol| > 1, |[Fy, Fsl| > 1, |[Fy, Fr] > 1, [F5, Fr] > 1 (3)

Therefore we have

UJ(B) = |[33y2’,.73/y/2/]| + |[F1 U FQ U F@,Fg U F4 U F5 U F7”, (4)
w(D) = |[yzz',zz'y']| + |[Fo U F3 U Fy, Fy U Fy U Fg U F5]| + |[y, Fi]), (5)
w(C) = [y, ]| + |{z. 2,y Y {y, 2z, 2 Y|+ [[Fs UFs U Fr, U, UF, U F)|. (6)

We know that G[A] is isomorphic to the subgraph of K. Thus either G[A] = Cs or G[A] is one
of the graphs in Figures (2) and (3). Suppose that G[A] = Cs. Then A\y(G) = 2|[zyz, 'y 2]|+2 =
6 and so equalities hold in (2). Also by (3), (4), (5) and (6) we have w(B) > 6, w(D) > 6 and
w(C) > 6. Since B, C and D are \s-fragment, we have w(B) = w(C) = w(D) = M\(G) = 6.
In particular, |[F}, F3]| = 0. Now by considering |[F7, A]| = [y, F1]| = 1 we have w(F}) = 4 <
Ai(G). Now by Lemma 2.1, G[F}] is A\s-independent. Also since G[F} U F» U Fg| is connected,
without loss of generality we may suppose that |[F}, F3]| = 1. We see that G[F}] is connected and
so |Fy| < 3. Suppose that |Fi| = 2 or |[F}| = 3. Put F = Fy; Uz Uy. We have |F| < au(G)
and w(F) = w(Fy) — |[r, B]| + da(z) — |ly, Bl + day) — fr.9]| = 4—0+2—1+2 1 =
6 = \(G). By Lemma 2.1, G[F] is \s-independent, a contradiction. Thus |F}| = 1. Similarly,
IRl = || = Bl = |Fil = |Fs| = |Fo| = |Fo| = 1.

Now suppose that G[A] is isomorphic to one of the graphs in Figure 2. We have \(G) =
2|[xyz, 2y 2| +2 = 8and w(B) = w(D) = w(C) = \(G) = 8. Now by (6), |[FsUF;UFy, F1U
F, U F3 U Fy]| < 4 and so by (3) without loss of generality we may suppose that |[F, Fg]| < 1.
By (4), |[F1 U Fy U Fg, F3 U Fy U F5 U F7|| = 5 and so by (3) we have |[F], Fy]| < 2. Also by
(5), [[Fo U F3 U Fr, Fy U Fy U F5 U Fg]| < 4 and so by (3) we have |[F}, F5]| < 2. Therefore
w(F) = |y, Fi]| + |[F1, F2]| + |[F1, F6]| + |[F1, F7]| < 6 < 8. Now by Lemma 2.1, G[F}] is
As-independent. Also since |[Fy, Fy]| = 1 and G[F; U Fy] is connected we conclude that G[F}]
is connected. Thus |F}| < 3. Suppose that |[F}| = 3 and put F = F} Uy. G[F] and G[F] are
connected and |F'| = 4 < ay(G) and w(F) = w(Fy) +da(y) — |y, Fi]| < 6+2—1=T7 < \(G).
Thus G[F] is \s-independent, a contradiction. Thus we may suppose that |F}| = 1 or |F}| = 2.
If |F;| = 1for1 < i < 7. Since G is simple by (3) we conclude that |[F}, Fg]| = |[F1, F3]| =
|[F1, Fy| = 1 and w(Fy) = |y, Fi]| + |[F1, Fo]| + |[Fy, F»]| + |[F1, Fu]| = 4. Thus if we put
F=F Uz UyUzthenw(F) = 8andby |F| < ay(G), a contradiction. Thus we may suppose
that |Fy| = |Fs| = 2. Weput F = Fy U Fg. Thus w(F) = w(F) + w(Fy) — |[F1, Fg]| <
[y, Fall + |[Fy, Fol| + [[Fy, Ba]| + [[Fy, Fu]l + +[[Fy, Fl| + |[F5, Fo]| + [ [Fs, ]| — [[Fy, Fsl| < 8,
a contradiction. Now suppose that G[A] is isomorphic to one of the graphs in Figure 3. We have
MG) = 2|[zyz, 2’y 2']| +2 = 8 +2 = 10. Suppose that |F}| = 3 and put F' = F; Uy. Thus G[F]
and G[F are connected and w(F) = w(Fy)—|[y, Fi]|+da(y) < 8—1+2 =10 = \4(G) = 10 and
so F'is A\s-independent a contradiction. Thus we may suppose that |F| = 1 or |Fy| = 2. If |F}| = 2
then by (4) we have |[F; U Fob U F3U Fy, FsUFgU Fy]| =5, |[FAUF,UF5 U Fg, FoUEF3UF)| =5
and |[F1 U Fy U Fg, F3 U Fy U F5 U Fr]| = 6. By (3) without loss of generality we may suppose
that |[F17F6H = ]_, [F17F2]| S 3 and |[F1,F4]| S 2. Now U)(Fl) S 7. Put F' = F1 Uax U Y. Thus
w(F) = w(Fy) — |ly, Bl + da(z) + day) — |z 9)] <T—1+2+3 = 10 and by |F| < a(G)
we get a contradiction. Therefore we may suppose that |F;| = 1 for 1 < ¢ < 7. Now since G is
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simple we have |[F, Fy|| = |[F1, Fo)| = |[F1, F4)| = land sow(F)) = 4. Put F = F{UxUyU 2.
Now w(F') <9 < A\(G), a contradiction. O
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