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Abstract

Suppose that G is minimally 4-restricted edge connected graph without triangle, δ(G) ≥ 2 and
α4(G) ≥ 6. Suppose that A is a λ4-atom of G such that for each path of length 3 in A, say
P3 = xyz, we have dA(y) − 1 = dA−{x,y,z}(y), where x ∼ y ∼ z. In this paper, under these
assumptions, we show that all atoms of G are trivial.
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1. Introduction

Let G be a finite simple graph with vertex set V (G) and edge set E(G). For each vertex
v ∈ V (G), the neighborhood N(v) of v is defined as the set of all vertices adjacent to v and
d(v) = |N(v)| is the degree of v. For two vertices u, v ∈ V (G), we write u ∼ v (or uv ∈ E(G))
when u and v are adjacent. For two disjoint vertex set U1, U2 ⊆ V (G), denote by [U1, U2]G the
set of edge of G with one end in U1 an the other end in U2, G[U ] is the subgraph of G induced by
vertex set U ⊂ V (G), U = V (G)− U is the complement of U , wG(U) = |[U,U ]G| is the number
of edges between U and U . When the graph under consideration is obvious, we omit the subscript
G. For a subset S ⊆ G write dS(U) = |[U, S − U ]| and dS(u) = dS{u}.

A m-restricted edge cut is an edge cut of a connected graph that separates this graph into
components each having order at least m vertices. The size of a minimum m-restricted edge cut of
graph G is called its restricted edge connectivity and denoted by λm(G). A m-restricted edge cut S
with |S| = λm(G) is called a λm-cut. Let εm(G) = min{|w(U)|, |U | = m and G[U] is connected}.
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A graph G is λm-graph (or λm-optimal) if λm(G) = εm(G). There is much research on sufficient
conditions for a graph to be λm-optimal, such as symmetric conditions [12, 14, 16, 17] degree
conditions [14, 15, 18]. For more information on this topic we refer the reader to the [5].

A graph G is λ4-independent if each component of G has at most three vertices. A connected
graph of order at most three is λ4-trivial. A graph is called λ4-non-trivial if it has a component
which contains at least four vertices.

For two disjoint non-empty subsets X and Y of V (G), the following inequality is well known
(see Lovász 1979, Problem 6.48).

w(X ∩ Y ) + w(X ∪ Y ) ≤ w(X) + w(Y ). (1)

A vertex set U is called a λm-fragment if [U,U ] is a minimum m-restricted edge cut of graph G.
λm-restricted edge fragment with the least cardinality is called a λm-atom. The cardinality of λm-
atom is denoted by αm(G). Clearly m ≤ αm(G) ≤ |V (G)|/2. An atom is said to be trivial if it is a
single cycle. In this paper we give another type of sufficient condition called a minimally restricted
edge connected condition. A graph G is a minimally m-restricted edge connected (minimally λm-
graph for short) if λm(G − e) < λm(G) for each e ∈ E(G). If e is a pending edge then G − e
doesnot have λm-cut for m ≥ 2. So we always assume δ(G) ≥ 2 where G is a minimally λm-
graph for some m ≥ 2 and δ(G) is the minimum degree of G. A minimally λ1-graph is exactly a
minimally edge connected graph, which has been shown to be λ-optimal ( [10, Exercise 49]). In
[6] the authors have proved that every minimally λ2-graph is λ2-optimal. Also in [7] the authors
have proved that every minimally λ3-graph is always λ3-optimal except the 3-cube. For more
information on this topic we refer the reader to the [1, 2, 3, 4, 8, 9, 11, 13]. In this paper with the
similar methods we show that all atoms of a minimally 4-restricted edge connected graph without
triangle are trivial (see Figure 1).

2. Main result

Throughout in this section we assume that G is a λ4-connected graph, δ(G) ≥ 2 and α4(G) ≥
6. First with the similar arguments in the proofs of Lemmas 1 − 5 in [7] we have the following
five results.

Lemma 2.1. Suppose that F is a subset of G such that G[F ] is connected. If one of the following
conditions is satisfied:
(i) w(F ) < λ4(G), or
(ii) w(F ) = λ4(G) and |F | < α4(G),
then G[F ] is λ4-independent.

Proof. Suppose that C is λ4-non-trivial component of G[F ]. Since G[C] is connected, we have
w(F ) ≥ w(C) ≥ λ4(G) which contradicts the first condition. Also if condition (ii) occurs then we
have w(F ) = w(C) = λ4(G). Hence V (C) is a λ4(G)-fragment. But we have |F | ≥ |C| ≥ α4(G)
which contradicts the second condition. Thus G[F ] is λ4-independent, as wanted.

Lemma 2.2. Suppose that A is a λ4-atom of G and B is a λ4-fragment of G.
(i) If U is a subset of A such that G[U ] is connected and G[A\U ] has λ4-non-trivial component,
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then dA(U) > dA(U).
(ii) If U is a subset of B such that G[U ] is connected and G[B\U ] has λ4-non-trivial component,
then dB(U) ≥ dB(U).
(iii) δ(G[A]) ≥ 2.

Proof. (i) Suppose to contrary that dA(U) ≤ dA(U). Now we have w(A−U) = w(A) + dA(U)−
dA(U) ≤ w(A) = λ4(G). Since |A − U | < |A| = α4(G), it follows by Lemma 2.1, G[A − U ] is
λ4-independent, a contradiction.
(ii) The proof is similar to the first case.
(iii) If A − x is λ4-independent for each x ∈ A, the we have dA(x) ≥ 2. Thus we may suppose
that A− x has a λ4-non-trivial component for some x ∈ A. Set U = x. Now dA(x) > dA(x) and
since dA(x) > 1/2(dA(x) + dA(x)) we see that dA(x) ≥ 2, as wanted.

Similar to Lemma 2.2, we can prove the following lemma. The key observation to the proof,
as well as some proofs after it, is that for any edge e ∈ E(G), if λ4(G − e) < λ4(G), then any
λ4-fragment of G− e contains exactly on end of e, and is a λ4-fragment of G.

Lemma 2.3. Suppose that e = uv is an edge of G, λ4(G − e) < λ4(G) and A is a λ4-atom of
G− e with u ∈ A, v /∈ A.
(i) If U is a subset of A such that G[U ] is connected and G[A] − U has λ4-non-trivial component
and e is not incident with U then dA(U) > dA(U).
(ii) dG[A](x) ≥ 2 for each x(̸= u) ∈ A.

Lemma 2.4. Suppose that A is a λ4-atom and B is a λ4-fragment of G and A ∩ B ̸= ∅. Then for
any component C of G[A ∩B] either G[A]− C or G[B]− C is λ4-independent.

Proof. Suppose to contrary that G[A] − C and G[B] − C have a λ4-non-trivial component. Set
U = G[C]. By Lemma 2.2 we have dA(U) > dA(U) ≥ dB−A(U) = dB(U) and dB(U) >
dB(U) ≥ dA−B(U) = dA(U), a contradiction.

With the similar arguments with proof of Lemma 2.4 we have the following lemma.

Lemma 2.5. Suppose that e = uv is an edge of G, λ4(G − e) < λ4(G), A is a λ4-atom of G − e
with u ∈ A, v /∈ A, B is a λ4-fragment of G, A ∩ B ̸= ∅ and e is not incident with B. Then for
any component C of G[A ∩B] either G[A]− C or G[B]− C is λ4-independent.

Lemma 2.6. Suppose that A is a λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of
G− e. Then G[A ∩B], G[A−B] and G[B − A] are connected.

Proof. Suppose to contrary that G[A ∩ B] is not connected. Suppose that C1 and C2 are two
components of G[A ∩ B] and one of them has at least three elements, say C2. By Lemma 2.4,
G[A] − C1 has λ4-non-trivial component. This contradicts Lemma 2.4 contradicting. Thus all
components of G[A ∩ B] have at most 2 vertices. Suppose that C is a component of G[A ∩ B].
Thus G[A] − C1 and G[B] − C2 are λ4-nontrivial, a contradiction and so G[A ∩ B] is connected.
Now suppose that G[A − B] is not connected. Suppose that C1 and C2 are two components of
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G[A−B]. Suppose that one of the component has at least four elements, say C2. Then G[A]− C
and G[B]−C is λ4-non-trivial. This contradicts Lemma 2.4. Now suppose that all components has
at most three elements. Now G[A]−C and G[B]−C are λ4-non-trivial, where C is a component
of G, a contradiction. Similarly we can show that G[B − A] is connected.

Lemma 2.7. Suppose that A is a λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of
G− e. Then |A−B| = 3 and |A ∩B| = 3.

Proof. Suppose that |A∩B| ≤ 2. Thus G[A−B] and G[B−A] are λ4-non-trivial. This contradict
Lemma 2.4. Now suppose that |A ∩ B| ≥ 4. Thus G[A ∩ B] is λ4-non-trivial. Also since G[A]
and G[B] are connected, it follows that G[A ∪ B] = G[A ∩B] is connected. Taking F = A ∩ B
in Lemma 2.1. Noting that |F | = |A ∩ B| < |A| = α4(G) and since A is an λ4-atom and
e ∈ A we have w(A) = w(B) = λ4(G). Since A is an atom, it follows that A is conncted and
there is an edge between A − B and A−B. Thus w(A ∩ B) > λ4(G). Now by equation (1)
w(A ∩ B) + w(A ∪ B) ≤ w(A) + w(B), and so w(A ∪B) = w(A ∪ B) < λ4(G). Taking
F = A ∪B in Lemma 2.1. We see that G[A ∪B] is λ4-independent and so G[A ∪B] is composed
of some components of cardinality less than or equal 3.
Claim dA(C) = dB(C) and dA∩B(C) = 0, where C is a component of G[A ∪B].

Suppose that 1 ≤ |C| ≤ 2. Thus G[A] − C is λ4-non-trivial and so by Lemma 2.2, dA(C) ≥
dA(C). Also since C is a component of G[A ∪B], it implies that |[C,A−C]| = |[C,B−A−C]|
and hence dA(C) = dB−A(C). Therefore

dA(C) ≤ dA(C) = dB−A(C) = dB(C)− dA∩B(C).

Similarly,
dB(C) ≤ dB(C) = dA−B(C) = dA(C)− dA∩B(C).

Thus dA(C) = dB(C) and dA∩B(C) = 0. Now suppose that |C| = 3. Assume that |A ∪B| = 4
and |A−B| = 1. Put A′

= (A−B) ∪ C. Then G[A
′
] and G[A′ ] are subgraphs of order at least 4

and w(A
′
) = w(A′) = w(B∪ (∪Ci)) = w(B)+dA−B(∪Ci)−dB−A(∪Ci) = λ4(G), where Ci are

components of G[A ∪B] and 1 ≤ |Ci| ≤ 2. Thus A′ is an atom and |A′| < |A|, a contradiction.
Therefore we may suppose that |A ∪B| ≥ 5 or |A − B| ≥ 2. Now with the similar arguments as
above for every component C of G[A ∪B], G[A] − C has at least order 4, a contradiction. Thus
|A ∩ B| = 3. Also |A− B| = |A| − |A ∩ B| ≥ 3. If |A− B| ≥ 4 then A− B is a λ4-non-trivial,
a contradiction. Thus |A−B| = 3.

Now by Lemmas 2.6 and 2.7, we have the following result.

Lemma 2.8. Suppose that A is a λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of
G− e. Then G[A] ∼= X , where X is a subgraph of complete graph K6.

For the rest of paper we may assume that G is K3-free or (without triangle), A∩B is a path of
length 3, say P3 = xyz, and dA(y)− 1 = dA−{x,y,z}(y). Also we note that x ∼ y ∼ z.

Lemma 2.9. Suppose that A is a λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of
G− e. Then.
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(i) dA(xyz) ≥ dA(xyz).
(ii) dA−B(xyz) = dB−A(xyz).
(iii) For each vertex a of A, dA(a) = dA(a)− 1.
(iv) |[A ∩B,A ∪B]| = |[A−B,B − A]| = 0.

Proof. (i) By Lemma 2.2, dA(x) > dA(x) and so dA(x) ≤ dA(x)−1. Now dA(xyz) = dA−{x,y,z}(x)+
dA−{x,y,z}(y) + dA−{x,y,z}(z) ≥ dA(x) + dA(y) + dA(z) = dA(xyz).
(ii) dA−B(xyz) = dA(xyz) − dA∩B(xyz) = dA(xyz) ≥ dA(xyz) = dB−A(xyz) + dA∪B(xyz) =
dB−A(xyz). If |B − A| = 3 then B is λ4-atom of G and so dB−A(xyz) ≥ dA−B(xyz). Thus
dA−B(xyz) = dB−A(xyz). If |B − A| ≥ 4 then G[B − A] is λ4-non-trivial. Now by Lemma 2.2,
dB−A(xyz) ≥ dA−B(xyz) and so dA−B(xyz) = dB−A(xyz).
(iii) Since dA(xyz) = dA(xyz) by part (i), dA−{x,y,z}(x)+dA−{x,y,z}(y)+dA−{x,y,z}(z) = dA(x)+
dA(y) + dA(z). On the other hand dA−{x,y,z}(x) = dA(x) − 1, dA−{x,y,z}(y) = dA(y) − 1 and
dA−{x,y,z}(z) = dA(z)−1. Since dA(a) ≤ dA(a), where a ∈ {x, y, z}, we have dA(a) = dA(a)−1
for a ∈ {x, y, z}. Now we considering the vertex set {x′

, y
′
, z

′}. By replace B by B we see that
dA(a) = dA(a)− 1 for a ∈ {x′

, y
′
, z

′}.
(iv) By taking the place B by B, dB−A(x

′
y

′
z
′
) = 0. Thus |[A − B,B − A]| = 0. On the other

hand |[A ∩B,A ∪B]| = 0.

Lemma 2.10. Suppose that A is a λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of
G− e. Then G[A ∪B] is connected.

Proof. Suppose to contrary that G[A ∪B] is disconnected and C1 and C2 are two components of
G[A ∪B]. By Lemma 2.9, dA(x

′
y

′
z
′
) ≥ dA(x

′
y

′
z
′
), where x

′
, y

′
, z

′ ∈ A − B. Thus w(C1) <
w(A ∪B) = w(A ∪ B) = w(B) + dA∪B(x

′
y

′
z
′
) − dA∪B(x

′
y

′
z
′
) = w(B) + (dA(x

′
y

′
z
′
) −

dB−A(x
′
y

′
z
′
))−

(dB−A(x
′
y

′
z
′
)+dA(x

′
y

′
z
′
)) = w(B)−dA(x

′
y

′
z
′
)+dA(x

′
y

′
z
′
)−2dB−A(x

′
y

′
z
′
) ≤ w(B) = λ4(G).

Now by Lemma 2.1, C1 is λ4-independent and so V (C2) ≤ 3. Since G[B\A] is connected ,
|B\A| ≥ 3 and C2 is connected to B\A, we see that G[A] − C1 has a λ4-non-trivial component.
Now by Lemma 2.2, we have

dA(C1) ≤ dA(C1) = dB−A(C1) = dB(C1).

Similarly
dB(C1) ≤ dB(C1) = dA−B(C1) = dA(C1).

Thus dA(C1) = dB(C1). Put A′
= (A − B) ∪ C1. Thus G[A

′
] and G[A′ ] are connected. Also

by Lemma 2.9, w(A′
) = w(A − B) + dB(C1) − dA−B(C1) = w(A − B) + dB(C1) − dA(C1) =

w(A−B) =
w(A) + dA−B(xyz) − dB−A(xyz) = w(A) = λ4(G). Thus A

′ is λ4-fragment and since |A′| ≤
|A| we see that A′ is also a λ4-atom of G. Now d

A′ (x
′
y

′
z
′
) = dB(x

′
y

′
z
′
) + d∪Ci

(x
′
y

′
z
′
) =

dB−A(x
′
y

′
z
′
) + dA∩B(x

′
y

′
z
′
) + d∪Ci

(x
′
y

′
z
′
) ≥ dA∩B(x

′
y

′
z
′
) + dC1(x

′
y

′
z
′
) =

dA(x
′
y

′
z
′
) + dC1(x

′
y

′
z
′
) > dA(x

′
y

′
z
′
), where the Cs

i are component of G, a contradiction.

Theorem 2.1. Suppose that G is the minimally λ4-connected graph. Then G is isomorphic to the
Figure 1 and all the atoms of G are trivial.
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Proof. Suppose that A is λ4-atom of G, e = uv is an edge of G[A] and B is a λ4-atom of G − e.
We can apply Lemma 2.6 to A and B. Suppose that A ∩ B = {x, y, z} and A− B = {x′

, y
′
, z

′}.
By Lemma 2.9 dA(t) = dA(t) − 1 for each t ∈ A. Thus λ4(G) = w(A) = dA(x) + dA(y) +
dA(z) + dA(x

′
) + dA(y

′
) + dA(z

′
) =

dA(x) + dA(y) + dA(z) + dA(x
′
) + dA(y

′
) + dA(z

′
)− 6− 2 + 2 = dA(xyz) + dA(x

′
y

′
z
′
) + 2 =

2|[xyz, x′
y

′
z
′
]|+ 2.

Now suppose that D is λ4-atom of G−xy and C is a λ4-atom of G−y
′
z
′ . We apply Lemma 2.10

to A,D and A,C. Without loss of generality we may suppose that A∩D = {z′
, z, y} and A∩C =

{x, x′
, y

′}. Set F1 = ((B − A) − D) − C, F2 = (B − A) ∩ D, F3 = (A ∪B) ∩ (D − C),
F4 = (A ∪B) − D) − C, F5 = ((A ∪B) ∩ (C − D), F6 = (B − A) ∩ C and F7 = (C ∩ D).
By Lemma 2.9 we have |[{x′

, y
′
, z

′}, F1 ∪ F2 ∪ F6 ∪ F7]| = |[{x, y, z}, F3 ∪ F4 ∪ F5 ∪ F7]| =
|[{x, x′

, y
′}, F3∪F1∪F2∪F7]| = |[{y, z, z′}, F4∪F5∪F6∪F7]| = |[{z, z′

, y
′}, F1∪F6∪F5∪F7]| =

|[{x′
, x, y}, F2 ∪ F3 ∪ F4 ∪ F7]| = 0.

Thus |[x, F1 ∪F2 ∪F3 ∪F4 ∪F5 ∪F7]| = 0 and so |[x, F6]| = |[x,A]| = dA(a) = dA(a)− 1 ≥
δG[A] − 1 ≥ 1. With the same argument we have

|[x, F6]| ≥ 1, |[x′
, F5]| ≥ 1, |[y′

, F4]| ≥ 1, |[y, F1]| ≥ 1, |[z, F2]| ≥ 1, |[z′
, F3]| ≥ 1. (2)

Thus non of F1, F2, F3, F4, F5 and F6 are empty and [A,A] = [x, F6]∪[y, F1]∪[z, F2]∪[x
′
, F5]∪

[y
′
, F4] ∪ [z

′
, F3]. Also note that since |[F5 ∪ F6, F7]| ≥ 1 and |[F2 ∪ F3, F7]| ≥ 1 we have F7 ̸= ∅.

Since G[F1 ∪F2 ∪F6] = G[B −A], G[F5 ∪F6 ∪F7] = G[C −A], G[F2 ∪F3 ∪F7] = G[D−A],
G[F1 ∪ F4 ∪ F5 ∪ F6] = G[A ∪D] and G[F3 ∪ F4 ∪ F5 ∪ F7] = G[A ∪B] are connected without
loss of generality we have

|[F1, F2]| ≥ 1, |[F2, F3]| ≥ 1, |[F1, F4]| ≥ 1, |[F3, F4]| ≥ 1,
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|[F5, F6]| ≥ 1, |[F1, F6]| ≥ 1, |[F2, F7] ≥ 1, [F5, F7] ≥ 1. (3)

Therefore we have

w(B) = |[xyz, x′
y

′
z
′
]|+ |[F1 ∪ F2 ∪ F6, F3 ∪ F4 ∪ F5 ∪ F7]|, (4)

w(D) = |[yzz′
, xx

′
y

′
]|+ |[F2 ∪ F3 ∪ F7, F1 ∪ F4 ∪ F6 ∪ F5]|+ |[y, F1]|, (5)

w(C) = |[y′
, F4]|+ |[{x, x′

, y
′}, {y, z, z′}]|+ |[F6 ∪ F5 ∪ F7, F1 ∪ F2 ∪ F4 ∪ F3]|. (6)

We know that G[A] is isomorphic to the subgraph of K6. Thus either G[A] ∼= C6 or G[A] is one
of the graphs in Figures (2) and (3). Suppose that G[A] ∼= C6. Then λ4(G) = 2|[xyz, x′

y
′
z
′
]|+2 =

6 and so equalities hold in (2). Also by (3), (4), (5) and (6) we have w(B) ≥ 6, w(D) ≥ 6 and
w(C) ≥ 6. Since B,C and D are λ4-fragment, we have w(B) = w(C) = w(D) = λ4(G) = 6.
In particular, |[F1, F3]| = 0. Now by considering |[F1, A]| = [y, F1]| = 1 we have w(F1) = 4 <
λ4(G). Now by Lemma 2.1, G[F1] is λ4-independent. Also since G[F1 ∪ F2 ∪ F6] is connected,
without loss of generality we may suppose that |[F1, F2]| = 1. We see that G[F1] is connected and
so |F1| ≤ 3. Suppose that |F1| = 2 or |F1| = 3. Put F = F1 ∪ x ∪ y. We have |F | < α4(G)
and w(F ) = w(F1)− |[x, F1]| + dA(x)− |[y, F1]| + dA(y)− |[x, y]| = 4− 0 + 2− 1 + 2− 1 =
6 = λ4(G). By Lemma 2.1, G[F ] is λ4-independent, a contradiction. Thus |F1| = 1. Similarly,
|F1| = |F2| = |F3| = |F4| = |F5| = |F6| = |F7| = 1.

Now suppose that G[A] is isomorphic to one of the graphs in Figure 2. We have λ4(G) =
2|[xyz, x′

y
′
z
′
]|+2 = 8 and w(B) = w(D) = w(C) = λ4(G) = 8. Now by (6), |[F5∪F6∪F7, F1∪

F2 ∪ F3 ∪ F4]| ≤ 4 and so by (3) without loss of generality we may suppose that |[F1, F6]| ≤ 1.
By (4), |[F1 ∪ F2 ∪ F6, F3 ∪ F4 ∪ F5 ∪ F7]| = 5 and so by (3) we have |[F1, F4]| ≤ 2. Also by
(5), |[F2 ∪ F3 ∪ F7, F1 ∪ F4 ∪ F5 ∪ F6]| ≤ 4 and so by (3) we have |[F1, F2]| ≤ 2. Therefore
w(F1) = |[y, F1]| + |[F1, F2]| + |[F1, F6]| + |[F1, F7]| ≤ 6 < 8. Now by Lemma 2.1, G[F1] is
λ4-independent. Also since |[F1, F4]| = 1 and G[F1 ∪ F4] is connected we conclude that G[F1]
is connected. Thus |F1| ≤ 3. Suppose that |F1| = 3 and put F = F1 ∪ y. G[F ] and G[F ] are
connected and |F | = 4 < α4(G) and w(F ) = w(F1)+dA(y)−|[y, F1]| ≤ 6+2−1 = 7 < λ4(G).
Thus G[F ] is λ4-independent, a contradiction. Thus we may suppose that |F1| = 1 or |F1| = 2.
If |Fi| = 1 for 1 ≤ i ≤ 7. Since G is simple by (3) we conclude that |[F1, F6]| = |[F1, F2]| =
|[F1, F4]| = 1 and w(F1) = |[y, F1]| + |[F1, F6]| + |[F1, F2]| + |[F1, F4]| = 4. Thus if we put
F = F1 ∪ z

′ ∪ y ∪ z then w(F ) = 8 and by |F | < α4(G), a contradiction. Thus we may suppose
that |F1| = |F6| = 2. We put F = F1 ∪ F6. Thus w(F ) = w(F1) + w(F2) − |[F1, F6]| ≤
|[y, F1]|+ |[F1, F6]|+ |[F1, F2]|+ |[F1, F4]|++|[F1, F6]|+ |[F5, F6]|+ |[F6, x]| − |[F1, F6]| ≤ 8,
a contradiction. Now suppose that G[A] is isomorphic to one of the graphs in Figure 3. We have
λ(G) = 2|[xyz, x′

y
′
z
′
]|+ 2 = 8+ 2 = 10. Suppose that |F1| = 3 and put F = F1 ∪ y. Thus G[F ]

and G[F ] are connected and w(F ) = w(F1)−|[y, F1]|+dA(y) ≤ 8−1+2 = 10 = λ4(G) = 10 and
so F is λ4-independent a contradiction. Thus we may suppose that |F1| = 1 or |F1| = 2. If |F1| = 2
then by (4) we have |[F1∪F2∪F3∪F4, F5∪F6∪F7]| = 5, |[F1∪F4∪F5∪F6, F2∪F3∪F7]| = 5
and |[F1 ∪ F2 ∪ F6, F3 ∪ F4 ∪ F5 ∪ F7]| = 6. By (3) without loss of generality we may suppose
that |[F1, F6]| = 1, |[F1, F2]| ≤ 3 and |[F1, F4]| ≤ 2. Now w(F1) ≤ 7. Put F = F1 ∪ x ∪ y. Thus
w(F ) = w(F1)− |[y, F1]|+ dA(x) + dA(y)− |[x, y]| ≤ 7− 1 + 2 + 3 = 10 and by |F | < α4(G)
we get a contradiction. Therefore we may suppose that |Fi| = 1 for 1 ≤ i ≤ 7. Now since G is
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simple we have |[F1, F6]| = |[F1, F2]| = |[F1, F4]| = 1 and so w(F1) = 4. Put F = F1 ∪ x∪ y ∪ z.
Now w(F ) ≤ 9 < λ4(G), a contradiction.
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