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1. The Degree/Diameter Problem

Some of the questions arising more frequently in graph theory have to do with the interplay
among different graph parameters. One such question is the Degree/Diameter Problem (or DDP,
for short), which can be stated as:

Problem 1 (Degree/Diameter problem for undirected graphs). Given positive integers ∆ and D,
find the largest possible number of vertices N∆,D of a graph of maximum degree ∆ and diameter D.

It is easy to show that an upper bound for N∆,D is
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M∆,D = 1 + ∆ + ∆(∆ − 1) + · · · + ∆(∆ − 1)D−1

=

{
1 + ∆

(∆−1)D−1
∆−2 if ∆ > 2

2D + 1 if ∆ = 2

The number M∆,D is called the Moore bound, and a graph of order M∆,D is called a Moore
graph. Note that such a graph is necessarily regular of degree ∆.
Moore graphs exist only for a few combinations of ∆ and D. For D = 1 and ∆ ≥ 1, they are the
complete graphs on ∆ + 1 vertices. For D ≥ 2 and ∆ = 2, they are the cycles on 2D + 1 vertices.
For D = 2, Moore graphs exist for ∆ = 2, 3, 7, and possibly 57 [50]. There are no other Moore
graphs.
The same problem can be stated for digraphs, but this survey focuses on the undirected case only.
For more information about the Degree/Diameter Problem, both in the directed and the undirected
case, see [71].

All research related to the Degree-Diameter Problem can be roughly classified as belonging to
one of the following categories:

• Upper bounds: Given that the Moore bound can only be attained for a few combinations of
degree and diameter, it is interesting to know what is the actual largest number of vertices
that a graph can have, for other combinations of ∆ and D. In other words, this line of research
seeks to obtain tighter theoretical upper bounds for all combinations of ∆ and D.

• Lower bounds: This second line of research, of more practical importance perhaps, is re-
lated with the construction of ever larger graphs, with order as close as possible to the theo-
retical upper bound.

The ideal situation is that the lower and upper bounds coincide, but that situation is again very
rare for the moment. Only for a few combinations of degree and diameter the order of the largest
known graph matches the theoretical upper bound, while in the vast majority of cases there is a
gap between the lower and the upper bound, which varies according to ∆ and D.
This situation is especially evident in the case of undirected graphs, where the gap is considerably
large for most combinations of ∆ and D. In the case of directed graphs the situation is more
favourable, since there exist constructions that yield graphs with order close to the theoretical
upper bound for all combinations of ∆ and D.
In this survey we review some of the most effective methods for improving the lower bounds. The
current knowledge about lower bounds is summarized in [64], which contains tables for the largest
known general graphs, the largest known Cayley graphs, circulant, planar, and bipartite graphs, for
degrees 3 to 16 and diameters 2 to 10. For each graph family, the website also maintains tables of
the best known upper bounds, and the percentage of the largest known graph orders in relation to
those upper bounds.
Besides the record graphs, which are the ones shown in the tables, we are also interested in methods
that provide suboptimal graphs, especially when they yield infinite families. For instance, the
method described in [67] yields an infinite family of graphs of diameter 2, and even though some
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of the small-degree members of the family have been superseded by larger graphs, the family
still stands. Additionally, some suboptimal graphs might have other important properties, such as
symmetry and fault-tolerance, which are useful in applications.
Back to lower bounds, all the efforts to construct large graphs can in turn be roughly classified into
two main categories:

• Analytic constructions: Graph operations, like compounding and voltage assignment, pro-
vide the means for building large graphs from smaller base graphs or blocks. A judicious
choice of the building blocks and operations on them can yield large graphs for certain com-
binations of ∆ and D. This is the principle that has been followed in [44, 81] (with graph
compounding), and [67] (with voltage assignment), for instance.

• Computer-based techniques: This second approach relies on the power of electronic com-
puters in order to find larger graphs, either using the standard combinatorial optimization
techniques (as in [100]), or graph operations, like voltage assignment, coupled with com-
puter search (as in [59]).

In terms of the number of graphs produced, the most successful techniques are graph compounding,
polarity graphs of generalized polygons, and voltage assignment, the latter in conjunction with
computer search. Of the 162 entries in the current table of largest known general graphs recorded
in [64], 98 have been found by voltage assignment (60%), while 19 have been found with the
aid of graph compounding (12%), and 18 are somehow related to polarity graphs of generalized
polygons (11%). Finally, 11 entries have been found by other computer-based search techniques
(7%). Together, all these techniques account for 90% of the table. These proportions can be best
visualized in Figure 1.

Figure 1. Number of record graphs by technique
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2. Basic algorithmic techniques

In this section we deal with some computer-based techniques for solving intractable combi-
natorial problems, such as DDP. Computer approaches range from systematic search techniques
to heuristic methods, such as genetic algorithms and simulated annealing, which are now com-
monplace in Combinatorial Optimization. A combinatorial optimization problem consists of an
objective function to be minimized or maximized, f : D1 × · · · × Dk → R

+, and a set of constraints
among the variables xi ∈ Di. A feasible solution is a k−tuple (x1, . . . , xk), such that xi ∈ Di and all
constraints are satisfied. The set S of all feasible solutions is often called the search space, and it
is usually endowed with a neighborhood structure, which is a function N : S → 2S that assigns a
set of neighbours to every feasible solution s ∈ S.
Combinatorial optimization problems include the famous Travelling Salesman Problem (TSP –
Problem ND22 of [38]), the 0 − 1 Knapsack Problem (Problem MP9 of [38]), various scheduling
problems, and so on. In particular, DDP can be seen as a maximization problem, where the objec-
tive function is the number of vertices of the resulting subgraph. Alternatively, we can minimize
the diameter, keeping the degree and the number of vertices constant.
When feasible, an exhaustive exploration of the search space yields the optimal solution to the
problem. However, many of these combinatorial optimization problems are NP−hard, and hence,
exhaustive exploration of the search space is not feasible. Approximate or heuristic methods sacri-
fice the guarantee of finding an optimal solution for the sake of lower computation overhead. The
greatest danger for these methods is to be trapped in a locally optimal solution, which is an ŝ ∈ S
such that f (ŝ) ≤ s (if we have a minimization problem), or f (ŝ) ≥ s (if we have a maximization
problem), for all s ∈ N(ŝ). Different methods are classified according to the strategy they use for
coping with this problem.
In recent years, a set of strategies have been devised, which are very general in nature, and where
particular problem-specific heuristics can be plugged in, in order to solve different combinatorial
optimization problems. Due to their general nature, these methods are collectively called meta-
heuristics. They include greedy algorithms, basic local search, simulated annealing, tabu search,
evolutionary algorithms (comprising genetic algorithms), and ant colony optimization, among oth-
ers.
The complexity status of DDP is not known: no polynomial-time algorithm has been found so
far to solve it, and yet it has not been proved to be NP−hard. For the moment, approximate and
heuristic methods constitute a viable option. In the remaining of this section we review some of
these algorithmic techniques, especially those that have been successfully employed in DDP and
related problems. W.l.o.g. we will assume that we have to minimize the objective function f .
For more information about metaheuristics, including their taxonomy, and a framework for their
analysis and design, we refer the reader to [10].

2.1. Systematic search
The basis of many systematic search procedures is the technique known as backtracking, which

is essentially a depth-first traversal of the search space, that has been organized as a tree. The idea
behind backtracking is that some portions of this search space can be pruned if we realize that they
do not contain an optimal solution.

169



www.ejgta.org

Algebraic and Computer-Based Methods in DDP | Hebert Pérez-Rosés

Suppose that we have a partial solution s(i) = (x1, . . . , xi) to the optimization problem above, with
i ≤ k, and such that x j ∈ D j for j = 1, . . . , i, and all constraints are satisfied. If the value of
the objective function in this partial solution is worse than the best value found so far, there is no
need to explore any of the solutions s = (x1, . . . , xk) having (x1, . . . , xi) as a prefix. Algorithm 1
formalizes these ideas.

Algorithm 1: Backtracking

Input : The objective function f and the set of constraints.
Output: An optimal solution ŝ.

1 i:=1;
2 Initialize ŝ;
3 while i > 0 do
4 while there is an untried xi s.t. s(i) is feasible do
5 if f (s(i)) < f (ŝ) then
6 if i = k then
7 ŝ:=s(k);
8 else
9 i:=i + 1;

10 end
11 end
12 end
13 i:=i − 1;
14 end
15 Return ŝ;

Backtracking can be combined with more aggresive pruning techniques, or isomorph rejection
sieves (e.g. [14, 56]).

2.2. Greedy algorithms
The greedy technique is perhaps the most straightforward and most popular heuristic for deal-

ing with combinatorial optimization problems. It constructs the solution s(k) = (x1, . . . , xk) in
stages, adding each new component xi one by one, and leaving the previous components fixed.
The i-th component is chosen as the xi ∈ Di that optimizes the partial solution s(i) = (x1, . . . , xi).
Algorithm 2 describes the technique more formally.

It is easy to see that the running time of Algorithm 2 is bounded above by
∑k

i=1 |Di|, and hence
polynomial in k, provided that the |Di| are polynomial in k. So simple as it looks, the greedy tech-
nique is the basis of many effient and popular algorithms, such as Dijkstra’s algorithm, for comput-
ing single-source shortest paths in graphs, and Kruskal’s algorithm, for constructing a minimum-
weight spanning tree. Although in general the solution provided by a greedy algorithm is not
optimal, it can be optimal if our problem has an underlying matroid or greedoid structure [55],
such as in the two examples mentioned above.
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Algorithm 2: The greedy method

Input : The objective function f and the set of constraints.
Output: A feasible solution ŝ.

1 for i := 1 to k do
2 Choose xi ∈ Di such that s(i) = (x1, . . . , xi) is feasible,
3 and f (s(i)) is minimal;
4 end
5 Return ŝ = s(k);

2.3. Basic local search and its derivatives
Local search starts with some initial feasible solution s, and iteratively tries to replace s by a

better solution s′ in the neighborhood of s, until a local minimum is reached. This process is also
called iterative improvement for obvious reasons. The replacement of s by s′ can be done in a
number of ways. For instance, we can choose the best feasible solution in N(s), or we can take s′

as the first element of N(s) that we come across, that is better than s, or any intermediate option.
The quality of the solutions obtained by basic local search is usually very poor, therefore a number
of different strategies have been developed to reduce the risk of getting trapped in a local minimum.
Simulated annealing is one of the first strategies in that sense. The main idea behind simulated an-
nealing is to allow occasional moves resulting in a worse solution s′ (uphill moves). This emulates
a cooling process of metals, where the atoms strive to adopt a configuration of minimal potential
energy (a crystal), but occasional rearrangements occur in the opposite direction.
The process is depicted in Algorithm 3. The control parameter T (the temperature) regulates the
speed of convergence and the probability of accepting worse solutions at any given moment. That
probability is usually computed by the formula p(T, s′, s) = exp( f (s′)− f (s)

T ). The temperature is
decreased during the search process, thus the probability of accepting uphill moves is higher at
the beginning of the process, and gradually decreases, so that the process converges to basic lo-
cal search. There is a trade-off associated with temperature regulation, namely computation time
versus quality of solutions. If we decrease the temperature slowly, the chances of converging to a
globally optimal solution are better, whereas computation time obviously increases. On the other
hand, a quick temperature decrease leads to a smaller computation time, but the algorithm is more
likely to get trapped in a local minimum. Therefore, the choice of the cooling schedule is critical
for the performance of the algorithm.
Note that the probability of accepting an uphill move also depends on the absolute value of that
move. Small uphill moves are more likely to be accepted than large ones. A variant of simulated
annealing, called threshold accepting avoids the computation of probabilities in Step 8 of Algo-
rithm 3, and simply compares the difference f (s′) − f (s) with a given threshold, to decide whether
to accept it or not.

Another metaheuristic that improves basic local search is tabu search. Simple tabu search
keeps a list of the most recently visited solutions (tabu list), in order to avoid re-visiting them.
In other words, it relies on memory to escape local minima and avoid cycles. The trade-off here
involves the benefits provided by the tabu list, and the cost of maintaining and searching it.
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Algorithm 3: Simulated annealing

Input : The objective function f , the set of constraints, and the neighborhood function N .
Output: A feasible solution ŝ (that is in general a local minimum of f ).

1 s:=Generate initial solution;
2 T := T0;
3 while termination conditions not met do
4 s′:=PickAtRandom(N(s));
5 if f (s′) < f (s) then
6 s:=s′;
7 else
8 Accept s′ with probability p(T, s′, s);
9 end

10 Update T ;
11 end

2.4. Evolutionary algorithms
Evolutionary algorithms are inspired by natural evolution principles. The driving force of nat-

ural evolution is natural selection, survival of the fittest individuals among a diverse population.
The main factors that contribute to population diversity are recombination and mutation. An evo-
lutionary algorithm emulates this process: it starts with an initial population of feasible solutions,
and then iterates the three operators (recombination, mutation, and selection) in order to obtain
increasingly better populations, where “better” here means having a lower value of the objective
function f . Algorithm 4 describes a general evolutionary algorithm.

Algorithm 4: General evolutionary algorithm

Input : The objective function f , and the set of constraints.
Output: A good feasible solution ŝ.

1 P:=Generate initial population;
2 Evaluate P;
3 while termination conditions not met do
4 P′:=Recombine(P);
5 P′′:=Mutate(P′);
6 Evaluate(P′′);
7 P:=Select(P ∪ P′′);
8 end
9 Return the ‘best’ individual of P;

In a variant of evolutionary algorithms called memetic algorithms, a local search is applied to
every individual of the population [75]. Memetic algorithms have been used recently to address
various network design problems, although not DDP specifically.
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2.5. Approximation algorithms
An approximation algorithm is any heuristic algorithm for which we can get a performance

guarantee, i.e. we can prove that the solution given by the algorithm will always lie within a certain
neighborhood of the optimal solution. Let us assume that we have a maximization problem, and let
OPT be the value of the objective function f in the optimal solution of some problem instance, and
ALG the value of f produced by the algorithm. The performance of the algorithm is measured by
the ratio OPT/ALG, called the approximation ratio. Usually, the goal is to find a polynomial-time
heuristic algorithm with the smallest approximation ratio OPT/ALG.

Combinatorial optimization problems can be classified according to the difficulty with which
they can be approximated, i.e. the approximation ratio that can be reached in polynomial time, in
the worst or average case. Our maximization problem is said to have a Polynomial-Time Approxi-
mation Scheme (PTAS) if for every ε > 0 there exists a polynomial-time algorithm that computes a
solution with worst-case approximation ratio 1 − ε (or 1 + ε for minimization problems).

In turn, the class of problems having a PTAS is included in the class Apx, that consists of
all NP−hard optimization problems for which there is a polynomial-time algorithm with a con-
stant approximation ratio OPT/ALG, for all problem instances. Loosely speaking, these are the
problems that can be approximated in a reasonable time.

There are a number of books that treat the design of approximation algorithms in depth, e.g.
[95] and [99]. In addition to that, [20] gives a list of optimization problems, and specifies which of
them have a PTAS. [93] focuses on inapproximability results, and [68] investigates the conditions
when the greedy technique yields good approximations.

3. Computer-based techniques in DDP

Since the number of graphs of a given maximum degree and diameter is very large, it is a natural
idea to recourse to computers for help in the task of locating the largest instances. Computer-guided
search has produced some instances of large circulant graphs in [35], and in combination with
algebraic techniques, such as voltage assignment, it has produced many instances of large graphs,
as in [59]. However, as ∆ and D grow, the search space becomes too large, even for computers, so
that brute-force search is not feasible, and some heuristics are needed to guide the search or prune
the search space. In this section we briefly review some heuristic algorithms that have been used
for that purpose.

The first serious attempt in that direction was made by Allwright, who used 2-opting, a local
search technique developed for the Travelling Salesman Problem, to find large graphs with given
degree and diameter [1].

In another landmark paper, Dinneen and Hafner used computer search and clever techniques to
reduce the search space [25]. Their large graphs were Cayley graphs of non-abelian groups, like
semidirect products of cyclic groups, for instance.

Around the same time, Mitjana and Comellas obtained the graph of order 253 at the entry (8,3)
of the table, using a threshold accepting algorithm (see Section 2.3). It is also a Cayley graph of
the semidirect product of two cyclic groups. The idea had been around since 1990, at least [17].

Later, Wohlmuth found another large Cayley graph with the aid of a genetic algorithm (see Sec-
tion 2.4), that today still stands as the largest Cayley graph of degree 6 and diameter 3 [100]. Let us

173



www.ejgta.org

Algebraic and Computer-Based Methods in DDP | Hebert Pérez-Rosés

explain this algorithm briefly. The population consists of a set of Cayley graphs, that are subgroups
of the symmetric group S n, each one being represented by a generating set of n−permutations. Mu-
tation of an individual Cayley graph is achieved by replacing one generator by the product of two
different generators in the same generating set. Therefore, a subgroup of the former Cayley graph
is obtained. The crossover operator exchanges generators from different generating sets. Finally,
the fitness function to be minimized is defined by

f (x1, x2, x3, x4) =


10x2 + 10x1 + 10 if D ≤ 2
10x2 + x3 if D = 3
10x2 − x4 if D ≥ 3

where xi represents the number of vertices with distance i from any fixed vertex x (the choice of
x is irrelevant, since we are working with a Cayley graph, which is vertex-transitive). That function
was chosen so as to minimize the number of cycles of length ≤ 6, which correspond to large values
of x1, x2, x3, and to minimize the number of vertices at distance 4.
Sampels also used a genetic algorithm for constructing large Cayley graphs [85]. Some of the
groups he used were specified by a finite presentation, but the large majority of them were semidi-
rect products of cyclic groups, generated by a set of permutations.
Exoo argued that Cayley graphs are relatively rare, and therefore it makes sense to relax the sym-
metry conditions, and look for improvements in a larger search space. The graphs he considered
have an order that is a small integral multiple of the size of their respective automorphism group.
Thus, he managed to obtain several large graphs in the low-order entries of the table, with the aid
of an algorithm that is a synthesis of simulated annealing and tabu search (see Section 2.3), which
had been previously used to construct Ramsey colourings. The algorithm is described in [29], and
the graphs are given in [30].
Finally, [69] describes a hybrid heuristic algorithm (HSAGA) to solve a relaxed variant of the
Degree-Diameter Problem. HSAGA stands for ‘Hybrid Simulated Annealing Genetic Algorithm’.

4. Cayley graphs

Let Γ be a group, and S ⊂ Γ, where 1 < S .1 The Cayley color digraph on Γ with connection
set S is a digraph with vertex set V = Γ, and there is an arc going from g to h, labeled s (where
s ∈ S ), if sg = h. The labels are the ‘colors’; if we drop them, we get the Cayley digraph on Γ with
connection set S .
Now, if we take S := S ∪ S −1 and collapse two opposing arcs that have inverse labels, then we
get the Cayley color graph and the Cayley graph, respectively, with connection set S . The symbol
Cay(Γ, S ) will denote the Cayley graph on Γ with connection set S .
Cayley graphs are vertex-transitive, however the converse is not true in general. The smallest
example of a vertex-transitive non-Cayley graph is the Petersen graph. The following result gives
a complete characterization of Cayley graphs:

1Some authors require that S be a generating set of Γ.
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Theorem 4.1 ([84]). A graph G is a Cayley graph if, and only if, Aut(G) contains a regular sub-
group.

Recall that a group Γ acting on a set X is said to be regular if for any two x, y ∈ X there is
exactly an element γ ∈ Γ that transforms x into y.

Notable Cayley graphs include the complete graph Kn, the complete multipartite graph, and
the d−dimensional cube Qd. A Cayley graph on the cyclic group Zn is called a circulant graph.
Due to their symmetry properties, among others, Cayley graphs (including circulant graphs) have
been widely studied as models of communication networks since the late 80’s and early 90’s (see
[3, 19, 90, 57, 49, 102, 39], for instance).

M∆,D − 2 is the best general upper bound known so far for Cayley graphs on arbitrary groups
(and for vertex-transitive graphs, for that matter). Many of the largest known general graphs are
Cayley graphs. Additionally, the site [64] maintains a table of the largest known Cayley graphs.

The case of abelian Cayley graphs is treated in depth in [26]. However, in order to obtain a
large Cayley graph, the group should be as far as possible from abelian [32]. Indeed, this had
already been noted by Dinneen and Hafner in [25], who constructed Cayley graphs of semidirect
products of cyclic groups, as well as other combinations of direct and semidirect products.

If G1 = Cay(Γ1, S 1) and G2 = Cay(Γ2, S 2), then the Cartesian product G1�G2 is a Cayley graph
of the group Γ1 × Γ2 on the generating set

(
S 1 × {1Γ2}

)
∪

(
{1Γ1} × S 2

)
, where 1Γ denotes the identity

element of Γ. On the other hand, the Cayley graph of a semidirect product of groups corresponds
to the zig-zag product of their corresponding Cayley factors (see [2, 83], and [48], p. 440).

There is a tradeoff between the order of the Cayley graph and its computational complexity,
and even though semidirect products of cyclic groups are not very far from abelian, they have the
advantage that they are easy to generate and compute with, and they did produce good results in
[25] (probably because they were the first non-abelian groups that were explored systematically).

Additional constructions of large Cayley graphs are given in [21, 87, 88, 65, 66, 89, 96, 97, 98].
Some of them also use combinations of direct and semidirect products of groups (e.g. [87, 65, 96,
97]). More information about Cayley graph constructions can be found in [71].

5. Circulant graphs

Circulant graphs are a special case of abelian Cayley graphs, namely Cayley graphs of cyclic
groups. The study of circulant graphs began in 1970 with Elspas and Turner [28]. Coinciden-
tally, it was also Elspas who had formulated the Degree/Diameter Problem back in 1964 [27], but
apparently he missed the connection between both topics.

Even though the abelian property of the underlying group prevents abelian Cayley graphs in
general (and circulant graphs in particular) to grow as large as their non-abelian counterparts, these
graphs have been widely used as topologies for computer networks and parallel computers, due to
their other nice properties. Paraphrasing [26]: “. . . the extra structure provided by the groups may
provide compensating advantages . . . , such as good routing algorithms, easy constructibility, and
the ability to map common problems onto the architecture”.

An undirected circulant graph C(n; S ) is a Cayley graph on the cyclic group Zn, with a sym-
metric connection set S (i.e. S = S −1). Since Zn is abelian, we can switch to additive notation and
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rephrase the symmetry condition of the connection set as S = −S . Being a Cayley graph, C(n; S )
is vertex-transitive. The degree of C(n; S ) is ∆ = |S |, and its order is obviously n. A circulant
graph can also be defined as a graph of n vertices whose adjacency matrix is circulant [27].

Regarding the degree, we distinguish two cases:

1. Even degree: ∆ = 2t. In that case, S = {±s1, . . . ,±st}, where 1 ≤ s1 < . . . < st <
n
2 .

2. Odd degree: ∆ = 2t + 1. In that case, S = {±s1, . . . ,±st,
n
2 }, where 1 ≤ s1 < . . . < st <

n
2 . It

follows that odd degree is only possible when n is even.

C(n; S ) is connected if, and only if, gcd(n, s1, . . . , st) = 1. If gcd(n, r) = 1, then C(n; S ) is
isomorphic to C(n; rS ), where multiplication is taken modulo n. In that case we say that the con-
nection sets S and rS are multiplicatively related. It should be noted, however, that two circulant
graphs may be isomorphic without their connection sets being multiplicatively related [27, 77].

Now let Ncirc
∆,D be the number of vertices of the largest circulant graph with degree ∆ and diameter

D. It was proved in [13] that, if ∆ = 2t, then

Ncirc
∆,D ≤ F(t,D) =

t∑
i=0

2i

(
t
i

)(
D
i

)
(1)

This upper bound was later rediscovered by Muga [76]. The quantity F(t,D) also turns out
to be an upper bound for NAC

∆,D, the order of the largest Cayley graph over an abelian group, with
degree ∆ and diameter D [26]. It is quite surprising that no better upper bound (yet) exists for
circulant graphs, considering that they are a special case of abelian Cayley graphs.

By the way, the numbers F(t,D) of Eq. 1 are known as Delannoy numbers (sequence A008288
of [78]), and they arise in a variety of combinatorial and geometric problems [92]. For example,
they correspond to the volume of the ball of radius D/2 in the L1 metric in t dimensions [26, 70, 94].
Unaware of the Delannoy connection, Stanton and Cowan had already studied these numbers back
in 1970 [91], and had given several interesting formulas for them, such as:

F(t,D) =

t∑
i=0

(
t
i

)(
D + i

t

)
=

t∑
i=0

(
D + i

i

)(
D

t − i

)
(2)

Other exact and asymptotic formulas are given in [70].
In the case of odd ∆ (i.e. ∆ = 2t + 1) we have the generator n

2 , which is its own inverse. Figure
2 provides a graphical example of that case, for ∆ = 5 and D = 3. We have denoted the generators
as a, b, c, where c = −c. We can see in this example that the edges labeled with c duplicate every
vertex, except those in the lowest level (level D). Therefore, an upper bound for the maximum
number of vertices in this case is:

F′(t,D) = F(t,D) + F(t,D − 1) (3)

Circulant graphs of the form C(n; {±1,±s2, . . . ,±st}) are called multi-loop graphs. In particular,
for t = 2 and t = 3 they are called double-loop graphs and triple-loop graphs, respectively.
According to [74], the maximum order of a triple-loop network C(n; {±1,±s2,±s3}) is:
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Figure 2. Tree representation of a maximal abelian Cayley graph of degree 5 and diameter 3.

T6,D =


32
27 D3 + 16

9 D2 + 2D + 1 if D ≡ 0 mod 3
32bD

3 c
3 + 48bD

3 c
2 + 30bD

3 c + 7 if D ≡ 1 mod 3
32bD

3 c
3 + 80bD

3 c
2 + 70bD

3 c + 21 if D ≡ 2 mod 3
(4)

Some important sources of large circulant graphs are:

1. For t = 2 an optimal circulant graph C(n;±s1,±s2), is achieved for s1 = b 1
2 (
√

2n − 1 − 1)c
and s2 = s1 + 1 [9, 13, 72].

2. Monakhov and Monakhova [73] used an evolutionary algorithm to find dense families of
undirected circulant graphs. In particular, with the aid of this algorithm they found some
families of large triple-loop graphs.

3. For larger degrees we have the construction C(n;±1,±s, . . . ,±st−1), where n = st, and s is
an odd integer, which yields good circulant graphs of diameter t

2 (s − 1) = t
2n1/t − t

2 [101].

4. Applying the methods described in [26] for abelian Cayley graphs, Delorme and Lewis have
recently obtained several circulant graphs of large order [24, 58].

5. By a systematic computer-based search, several large circulant graphs have been found in
[35].
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6. Voltage assignment

So far we have seen specializations of Cayley graphs, such as circulant graphs. In this section
we deal with a generalization of the Cayley graph construction, called voltage assignment. In its
original form, voltage assignment takes a base digraph and a group to obtain a new, larger digraph.
By dropping arc directions, or by taking a symmetric generating set for the group, one can also
construct undirected graphs.

This section is divided into two subsections, the first one devoted to the definition and basic
properties of the construction, and the second one to a short review of its connection with the
Degree-Diameter Problem. For more detail we refer the reader to [46, 4, 5].

6.1. Definition and main properties
Let G be a digraph, Γ a finite group, and α : A → Γ a labelling of the arcs with elements of

Γ. The labels are usually called voltages, and α is a voltage assignment. Given G, Γ, and α, a new
digraph Gα is constructed as follows: V(Gα) = Vα = V × Γ, and A(Gα) = Aα = A × Γ. If we have
an arc (u, v) ∈ A in G, with voltage h ∈ Γ, then (u, g) is joined to (v, gh) in Gα, for all g ∈ Γ. Quite
often the vertex (v, g) ∈ Vα is written vg. The digraph Gα is a topological covering of G, and it
is commonly referred to as the the derived digraph or the lift of G by Γ and α. The digraph G is
called the base digraph. A straightforward consequence of this definition is that both the number
of vertices and the number of arcs of Gα are divisible by |Γ|. Figure 3 shows an example of a
voltage assignment of a dipole, with voltages in Z3, and the resulting derived digraph.

x ya
b

0

0

(x, 0)

(x, 1)

(x, 2)

(y, 0)

(y, 1)

(y, 2)

c

(a, 0)

(b, 0)
1

Figure 3. Voltage assignment of a dipole, with voltages in Z3, and the resulting derived digraph.

The function π : Gα → G that erases the second coordinate of any vertex or arc of Gα, is called
the natural projection of Gα onto G. The natural projection is defined for individual vertices or
arcs of Gα, but it can be extended to subgraphs of Gα in two ways. The most obvious extension
is the set-theoretic extension, i.e. π(S ) = ∪s∈Sπ(s). Let us denote this extension by π1. However,
in some cases it is very useful to consider another extension π2 of π, namely the one that allows
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repetition of elements.2 For example, if we have a walk W in Gα, consisting of the arcs ag, bh, ai,
then π2(W) = a, b, a, while π1(W) = {a, b}. That is, π2(W) is also a walk in G, while π1(W) is just
a set of arcs. If W is a natural walk in Gα, then π2(W) is also a natural walk (in G).
A lift of the walk W = a1, a2, . . . , ak, in G, is a walk W ′ = a′1, a

′
2, . . . , a

′
k in Gα, such that π2(W ′) =

W. We say that W lifts to W ′. On the other hand, we say that a walk W in G expands to a subgraph
W ′ of Gα if π1(W ′) = W, and W ′ is maximal with respect to that property. W ′ is the expansion3 of
W. In some sense, the lifting operation is the ‘inverse’ of π2, and the expansion is the ‘inverse’ of
π1.
Given a walk W = a1, a2, . . . , ak, on G, whose arcs have voltages g1, g2, . . . , gk, the net voltage (or
simply the voltage) of W, denoted α(W), is defined as the product ge1

1 ge2
2 , . . . , g

ek
k , where ei = 1 if

the corresponding arc ai is traversed in the natural direction, and ei = −1 if it is traversed in reverse
direction. If W is a natural walk, then all the exponents are 1. With the aid of projection π2 we can
also define the net voltage of a walk W ′ on Gα, just as the net voltage of π2(W ′), which is a walk
on G.
If x is a vertex (resp. an arc) of G, then π−1

1 (x) = {(x; g) : g ∈ Γ} is called the vertex (resp. arc) fibre
over x. There are several known facts concerning fibres:

1. If a = (u, v) is an arc in G, then the fibre over a is a perfect matching between the fibre over
u and the fibre over v (see 2.1.2 in [46], p 60).

2. The fibre over a loop is a set of cycles (Idem).

3. If the walk W starts at vertex u ∈ G, then for each vertex ug in the fibre over u, there is a
unique lift of W that starts at ug (hence it can be denoted Wg). Moreover, if W ends at vertex
v, and has net voltage h, then Wg terminates at vgh (Theorems 2.1.1 and 2.1.2 of [46], p 62).

Now, given the set of voltages X = {x1, x2, . . . , xk} on the arcs leaving a vertex v of G, and
given an arbitrary g ∈ Γ, define gα to be the voltage assignment identical to α, such that the set U
is modified as follows: X = {gx1, gx2, . . . , gxk}. The resulting derived graph Ggα is isomorphic to
Gα. This implies that any voltage assignment α is equivalent to a voltage assignment gα with the
identity element of G assigned to the arcs of any spanning tree of G.
A voltage assignment a is said to be in standard form if a spanning tree of G is assigned the identity
element of G. From the above results we conclude that for each voltage assignment α′ we can find
α in standard form. The relation defined by ‘having the same standard form’ is an equivalence
relation on voltage assignments. It is possible, however, that two voltage assignments from two
different equivalence classes will give rise to isomorphic lifts.

6.2. Voltage assignment in DDP
Voltage assignment has been the most successful technique so far for obtaining large graphs of

given degree and diameter: It is responsible of about 60% of the largest known graphs of the table
[64]. Therefore, this application of voltage assignment merits a detailed account here.

2Most authors do not make any distinction between π1 and π2, but we believe that this omission may be a source
of confusion.

3This should not be confused with expanding graphs, or expanders.
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Voltage assignment has been used in a variety of ways, ranging from ad hoc constructions, to
general constructions, and in combination with computer search. For example, in a classic paper,
McKay, Miller and Širáň describe a family of large vertex-transitive graphs with ∆ = (3q − 1)/2,
where q is a prime power congruent with 1 (mod 4), though the construction generalizes to all
prime powers [67]. The base graphs used in [67] are complete bipartite graphs with loops. Later,
Šiagiová showed that the McKay-Miller-Širáň graphs can also be obtained as lifts of dipoles [86].
Other authors played for some time with the possibility of using voltage assignment for obtaining
large graphs (e.g. [4, 5, 103]), until a breakthrough occurred in 2008, when Loz and Širáň published
a large number of new record graphs found with the aid of voltage assignment and computer search
[59]. Their algorithm explores a search space consisting of lifts of simple base graphs (bouquets,
dipoles, etc.) by non-abelian groups. Their groups were taken among the ones suggested by
Dinneen and Hafner for constructing large Cayley graphs [25], namely semidirect products of
cyclic groups, such as Zm or Zn, (Zm ×Zm)oψ Zn, and (Zm or Zn)o (Zm or Zn). Those were precisely
the groups that were used later in [62] to enlarge the table of the largest known graphs up to degree
20 [64].
Indeed, the method of [59] can be seen as a generalization of [25] inasmuch as Cayley graphs can
be obtained as lifts of bouquets. The algorithm used by Loz and Širáň is a basic random search,
combined with a number of clever sieves, designed to prune the search space. The algorithm starts
with a base graph and a certain family of groups, and then iterates through the groups, generating
random voltage assignments, and computing the diameter of the corresponding lift in each case.
The sieves control the prospective voltage groups, the number of trials to be made with each group,
and further computations with the derived graph.
The first sieve consists of sorting out the groups that do not meet certain criteria, like having a small
center, for instance. Then, the escalation sieve controls the number of random trials to be made
with each voltage group. Initially, it assigns a predefined number of trials to each group, and then,
the number of trials is modified during the search process, according to the prospects of finding a
good derived graph with the given group. Finally, the girth sieve abandons the computation of the
diameter, if the girth is found to be smaller than a predefined threshold.
Algorithm 5 describes the basic random search structure of this procedure, to which the sieves can
be plugged in. Some more details concerning the sieves and the implementation of the algorithm
are given in [61], but no detailed pseudo-code description of the algorithm has been published so
far.

Just as in the case of Cayley graphs, recent results show that in order to obtain good graphs by
voltage assignment, the underlying group should be as far as possible from abelian [60, 32, 33].
An alternative for the use of non-abelian groups is to use base graphs that are not bouquets (e.g.
dipoles). Recent progress in finding large graphs with given degree and diameter via voltage as-
signment includes [88, 65, 66, 16], which illustrate these alternatives. For instance, [88] uses
abelian groups on the dipole, while [65] uses non-abelian groups that can be factorized as a com-
bination of direct and semidirect products. In [16], Canale and Rodrı́guez improve some of the
values in the table of general graphs using a computer-guided search similar to that of [59].

Finally, it is worth mentioning that the voltage assignment technique has also been used to
find other types of graphs, like cages [31, 61, 63]. In particular, the paper [31] explores some
interesting methods to find the appropriate voltage group and voltage assignment. That paper
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Algorithm 5: Basic random search

Input : A base graph G, and a family of groups Ω.
Output: A set (possibly empty) of large graphs, that are lifts of G by Γ ∈ Ω.

1 Initialize the max. number of trials, md,k;
2 Choose a BFS spanning-tree T of G, and label the arcs of T with the generic identity

element;
3 foreach unexplored group Γ ∈ Ω do
4 for i:= 1 to md,k do
5 Generate a random voltage assignment α;
6 Compute the girth and diameter of G′;
7 if diameter ≤ k then
8 Return Γ and α;
9 Break;

10 end
11 end
12 end

contains the seeds of a theory that was developed later in [33]. For a comprehensive account see
[34].

7. The constructions by De Bruijn and Kautz, and their variants

The de Bruijn graph of type (t, k) [12] is a graph G = (V, E), such that V is formed by all words
of length k over a finite alphabet A with cardinality t, and two vertices a = (a1, a2, . . . , ak) and
b = (b1, b2, . . . , bk) are joined by an edge if either ai = bi+1 or ai+1 = bi, for 1 ≤ i ≤ k − 1. In other
words,

(a1, a2, . . . , ak) ∼
{

(a0, a1, . . . , ak−1) for any a0 ∈ A
(a2, a3, . . . , ak+1) for any ak+1 ∈ A

For t ≥ 3 and k ≥ 3, the de Bruijn graph of type (t, k) has order tk, diameter D = k and
maximum degree ∆ = 2t. That gives the following lower bound for the size of the largest graph
with maximum even degree ∆, and diameter D:

N∆,D ≥
(∆

2

)D
(5)

Given a de Bruijn graph of type (t, k), a Kautz graph of type (t, k) is obtained by deleting words
with two consecutive identical letters [54]. The Kautz graph is therefore an induced subgraph of
the de Bruijn graph, and if t ≥ 3 and k ≥ 3, it has order t(t−1)k−1, diameter k and maximum degree
2t − 2. Again, if ∆ is even we get the bound:

N∆,D ≥
(∆

2

)D
+

(∆

2

)D−1
(6)
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type (3,1)

type (3, 2)

type (3, 3)

Figure 4. The first three Kautz graphs on a three-letter alphabet

which is an improvement over (5).
Undirected Kautz digraphs are obtained from directed Kautz digraphs by removing the orien-

tation of the arcs, and removing duplicate edges. In turn, directed Kautz graphs can be obtained by
line digraph iteration, starting from a complete digraph [37]. Figure 4 depicts the first three Kautz
graphs on a three-letter alphabet.

A further improvement of the bound (6) was obtained by Canale and Gómez [15]. They proved
that there are two constants D0 and α < 1.59 such that, for each D ≥ D0 and infinitely many values
of ∆, it is possible to construct a (∆,D)−graph of order (∆

α
)D.

Imase and Ito generalized de Bruijn graphs in [52] and Kautz graphs in [53]. Both Kautz and de
Bruijn graphs are also special cases of linear congruential graphs [79, 80]. A linear congruential
graph has vertex set V = {0, 1, . . . , n−1}. A set F of linear functions is given (called the generators),
and every vertex x ∈ V is joined to f (x) mod n, for every f ∈ F.

Note that linear congruential graphs also constitute a generalization of circulant graphs. Some
linear congruential graphs represent an improvement over 6, but tight general upper and lower
bounds for their diameter are still unknown.

8. Graph compounding

As mentioned in Section 1, graph compounding is one of the most successful techniques for
the construction of large graphs of given maximum degree and diameter. Let us recall that the
technique consists of replacing one or more vertices of a graph with elements of a set of graphs
S , and then the edges of the resulting graph are rearranged appropriately. So stated, graph com-
pounding is not well defined as a graph operation; it is simply an ambiguous generalization of the
graph replacement product ([48], p. 440).

182



www.ejgta.org

Algebraic and Computer-Based Methods in DDP | Hebert Pérez-Rosés

Nevertheless, the idea is straightforward and easy to apply, the only drawback being the calcu-
lation of the diameter, which depends on the choice of the edges connecting the elements of S . In
particular, the special case of graph replacement product has been used for a long time in network
design. Some popular computer architectures, such as the Cube-Connected Cycles (shown in Fig.
5), can be defined that way.

Figure 5. Cube-connected cycles of dimension 3

In the Degree/Diameter Problem, the technique was introduced by Bermond, Delorme and
Quisquater [6], and later it has been systematically used by other authors, either alone or in combi-
nation with other methods (see, for example, [7, 8, 15, 18, 22, 23, 36, 41, 44, 40, 42, 45, 43, 81]).

In particular, compounding of complete graphs into bipartite Moore graphs has been used re-
cently with good results. It was first suggested in [82], where a single vertex from a bipartite Moore
graph is replaced with a suitable complete graph. In a bipartite Moore graph it is even possible to
replace several vertices with copies of suitable complete graphs without increasing the diameter of
the bipartite Moore graph. This idea was first used in [42]. Subsequently, using bipartite Moore
graphs of diameter 6, some improvements of this approach have been achieved in [18, 43], and
more recently in [44, 81].

9. Conclusion

As we have seen, there is a wide variety of algebraic and computer-based techniques to con-
struct large graphs with given degree and diameter, whose potential is still far from exhausted. In
particular, voltage assignment, combined with computer-based search, has produced the largest
number of record graphs, and is likely to produce more in the future.

However, the use of voltage assignment has been so far limited to judicious choices of base
graphs and voltage groups (as in [67]), or to nearly brute-force computer search (as in [59]). The
powerful group-theoretic machinery has been barely exploited, and very little is known about the
conditions, either necessary or sufficient, that a base graph, a voltage group, and a particular volt-
age assignment must satisfy, in order to obtain a graph with some desired properties (e.g. small
diameter, bipartiteness, planarity, etc.).
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Taking into account that even under these circumstances the voltage assignment technique has
been so successful, we are totally convinced that its potential is still enormous. For example, both
in voltage assignment and in Cayley graphs there is still great scope in the use of non-abelian
groups, especially solvable groups with large derived length, or outright non-solvable groups (e.g.
perfect groups).

The Degree/Diameter Problem also poses interesting challenges to Computer Science, the
main of them being the determination of its complexity, which remains open.

References

[1] J. Allwright, Cayley graphs with optimal fault tolerance, Discrete Appl. Math. 37-38 (1992),
3–8.

[2] N. Alon, A. Lubotzky, and A. Wigderson, Semidirect product in groups and zig-zag prod-
uct in graphs: Connections and applications, Procs 42nd IEEE Symp Foundations of Comp
Science (FOCS) (2001), 630–637.

[3] B. Alspach, New (δ; d)-graphs discovered by heuristic search, IEEE Trans. Comput. 41
(1992), 1337–1339.
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[71] M. Miller and J. Širáň, Moore graphs and beyond - A survey of the Degree/Diameter Prob-
lem, Electron. J. Combin., Dynamic Survey 20(2) (2013), #DS14v2.

[72] E.A. Monakhova, On analytical representation of optimal two-dimensional Diophantine
structures of homogeneous computer systems (in Russian), Computing systems 90 (1981),
81–91.

[73] O. Monakhov and E.A. Monakhova, Using evolutionary algorithm for generation of dense
families of circulant networks, Procs. IEEE Congress on Evolutionary Computation, Hon-
olulu, Hawai, (2002), 1854–1859.

[74] E.A. Monakhova, A survey on undirected circulant graphs, Discrete Math. Algorithm. Appl.
4 (1) (2012).

[75] P. Moscato, Memetic algorithms - a short introduction. In New Ideas in Optimization, 37–47.
McGraw-Hill (1999).

[76] F.P. Muga, II, Undirected circulant graphs, Procs. of the IEEE Int. Symp. on Parallel Archi-
tectures, Algorithms and Networks (ISPAN) (1994), 113–118.

[77] M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Procs. London
Math. Soc. 3 (88) (2004), 1–41.

[78] OEIS: The On-Line Encyclopedia of Integer Sequences. http://oeis.org/classic/
index.html.

188

http://combinatoricswiki.org/wiki/The_Degree/Diameter_Problem
http://combinatoricswiki.org/wiki/The_Degree/Diameter_Problem
http://oeis.org/classic/index.html
http://oeis.org/classic/index.html


www.ejgta.org

Algebraic and Computer-Based Methods in DDP | Hebert Pérez-Rosés
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