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Abstract

This paper discusses the automorphism group of a class of weakly semiregular bipartite graphs
and its subclass called WSBEND graphs. It also tries to analyse the automorphism group of the
SM sum graphs and SM balancing graphs. These graphs are weakly semiregular bipartite graphs
too. The SM sum graphs are particular cases of bipartite Kneser graphs. The bipartite Kneser
type graphs are defined on n-sets for a fixed positive integer n. The automorphism groups of the
bipartite Kneser type graphs are related to that of weakly semiregular bipartite graphs. Weakly
semiregular bipartite graphs in which the neighbourhoods of the vertices in the SD part having
the same degree sequence, possess non trivial automorphisms. The automorphism groups of SM
sum graphs are isomorphic to the symmetric groups. The relationship between the automorphism
groups of SM balancing graphs and symmetric groups are established here. It has been observed
by using the well known algorithm Nauty, that the size of automorphism groups of SM balancing
graphs are prodigious. Every weakly semiregular bipartite graphs with k-NSD subparts has a
matching which saturates the smaller partition.
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Introduction

A simple graph is usually denoted by G = (V,E), where V is the vertex set and E is its edge
set. The order of G is the number of its vertices and size of G is the number of its edges. An
isomorphism from a graph G to a graph H is a bijection f from the vertex set of G to that of H
such that u and v are adjacent in G if and only if f(u) and f(v) are adjacent in H , for all u and v
in the vertex set V (G). Two graphs are isomorphic when there is an isomorphism from one to the
other. Moreover, when two simple graphs are isomorphic, there is a one-to-one correspondence
between the vertices of the two graphs that preserves the adjacency relationship.

All the isomorphisms to the same graph itself play an important role in many applied fields
of Mathematics as well as in security in information technology. An automorphism of a graph
G is an isomorphism with itself. The automorphism group of a graph G is denoted by Aut(G).
The automorphisms of complete graph [10], complete bipartite graph [5] and semiregular bipartite
graphs [6] were studied earlier. Here the automorphism of weakly semiregular connected bipartite
graphs are studied. In the case of complete bipartite graph Km,n, the automorphism group is
isomorphic to Sm × Sn, when m 6= n [3]. The automorphism group of Km,n, is isomorphic to
Sm × Sn × Z2 when m = n [3]. The isomorphism and automorphism of graphs are largely used
in data structure for database retrieval and in cryptography etc. In the study of graph parameters,
the graph isomorphism and graph automorphisms have a big role. Many algorithms like Nauty [4],
Saucy, Trace, Bliss, etc, have been introduced apart from the conventional combinatorial methods.
A study of the direct product and uniqueness of automorphism groups of graphs was done by
Peisert [12]. A characterisation of automorphism groups of the generalized Hamming graphs was
done by Chaouche and Berrachedi [2].

The Kneser graph Kv:r is the graph with the r-subsets of a fixed v-sets as its vertices, with
two r-subsets adjacent if they are disjoint. SM sum graphs are related to the intrinsic connection
between the powers of 2 and the natural numbers which is the basic logic of binary number system.
The SM balancing graphs are associated with the balanced ternary number system which was
used in the SETUN computers made in Russia. These graphs are vertex labelled graphs and are
explained in the following section. The automorphism group of Kneser graph Kv:r is isomorphic
to the symmetric group Sv [11].

1. Preliminary

In this section, we provide the basic definitions and some results from the related previous
work.

Definition 1.1. [11] For a fixed integer n > 1, let Sn = {1, 2, 3, . . . , n} and V be the set of all
k−subsets and (n−k)−subsets of Sn. The bipartite Kneser graph H(n, k) has V as its vertex set
and two vertices A,B are adjacent if and only if A ⊂ B or B ⊂ A.

A bipartite graph G with bipartition (V1, V2), is called (q1 + 1, q2 + 1)− semiregular if the
degree of the vertex v, d(v) = qi + 1 for each v ∈ Vi, i = 1, 2 [6]. Furthermore q1 + 1 and q2 + 1
are called the degrees of G. We begin with the definition of some families of graphs. First let
us see the definition of SM balancing graphs [8]. Consider the set Tn = {3m : m is an integer,
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0 ≤ m ≤ n− 1} for a fixed positive integer n ≥ 2. Let I = {−1, 0, 1} and x ≤ 1
2
(3n − 1) be any

positive integer which is not a power of 3. Then x can be expressed as

x =
n∑
j=1

αjyj (1)

where αj ∈ I , yj ∈ Tn and y′js are distinct. Each yj such that αj 6= 0 is called a balancing
component of x. Consider the simple digraph G = (V,E), where V = {v1, v2, . . . , v 1

2
(3n−1)}

and adjacency of vertices is defined by: for any two distinct vertices vx and vyj , (vx, vyj) ∈ E
if (1) holds and αj = −1, and (vyj , vx) ∈ E if (1) holds and αj = 1. This digraph G is called
the nthSMD Balancing Graph, denoted by SMD(Bn). Its underlying undirected graph is called
the nth SM Balancing Graph, denoted by SM(Bn). Now let us see the definition of SM sum
graphs [7]. For a fixed integer n ≥ 2, consider the positive integers p < 2n, that are not powers

of 2, then p =
n∑
i=1

xi, with xi = 0 or 2m,m is an integer, 0 ≤ m ≤ n − 1 and x′is are distinct.

The coefficient of each x′is is 1. Each xi 6= 0 is called an additive component of p. For a fixed
integer n ≥ 2, the simple graph SM(

∑
n), called nth SM sum graph [9], is the graph with vertex

set {v1, v2, . . . , v2n−1} and adjacency of vertices defined by: vi and vj are adjacent if either i is
an additive component of j, or j is an additive component of i. For a fixed integer n ≥ 2, let
Tn = {3m : m is an integer, 0 ≤ m ≤ n− 1}, Nn = {1, 2, 3, . . . , t}, where t = 1

2
(3n − 1). Also,

let Pn = {2m : m is an integer, 0 ≤ m ≤ n − 1}, Mn = {1, 2, 3, . . . , 2n − 1}. Then consider
P c
n = Mn − Pn, T cn = Nn − Tn throughout this paper unless otherwise specified. The Hamming

weight of a string was defined as the number of 1’s in the string representation using 0 and 1. Here
the number of additive components is the Hamming weight of string (binary) representation of all
numbers in P c

n. The Hamming weight of string (binary) representation of numbers in Pn is always
1. In SM(

∑
n), the degree of the vertex v2n−1 is n and

∑
v∈V

d(v) = 2n(2n−1 − 1) [7]. In SM(Bn),

the number of vertices is 1
2
(3n − 1) and

∑
v∈V

d(v) = 2n(3n−1 − 1) [8].

A graph G is asymmetric if its automorphism group, Aut(G) does not contain any permuta-
tion other than the identity. It has been proved by Erdös and Rényi, that almost all graphs are
asymmetric. This means that the proportion of graphs on n vertices that are asymmetric goes to
one as n → ∞. All regular graphs need not be non asymmetric, for example, the Frucht graph
which is a 3-regular graph with 12 vertices and has no non-trivial automorphism. The problem of
finding the automorphisms of a graph belongs to the class NP of computational complexity [4].

The SM sum graphs are closely related to bipartite Kneser graphs. The bipartite Kneser type-1
graph is defined as follows.

Definition 1.2. Let Sn = {1, 2, 3, . . . , n} for a fixed integer n > 1. Let φ(Sn) be the set of all
non-empty subsets of Sn. Let V1 be the set of 1- element subsets of Sn and V2 = φ(Sn) − V1.
Define a bipartite graph with adjacency of vertices as: a vertex A ∈ V1 is adjacent to a vertex
B ∈ V2 if and only if A ⊂ B. This graph is called a bipartite Kneser type-1 graph.

This bipartite kneser type-1 graph has 2n − 1 vertices and n(2n−1 − 1) edges for each n ≥ 2.
Also, bipartite kneser type graphs are neither vertex transitive nor edge transitive. But they are non
asymmetric. The SM sum graphs are isomorphic to this bipartite kneser type graph for each n ≥ 2.
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2. Weakly semiregular bipartite graphs

Revisiting bipartite graphs, a simple graph G is called bipartite if its vertex set V can be parti-
tioned into two disjoint sets V1 and V2 such that every edge in the graph connects a vertex in V1 and
a vertex in V2 and no edge in G connects either two vertices in V1 or two vertices in V2. We call
(V1, V2) the bipartition of G; V1 and V2 are called the parts of G. Here we consider only connected
bipartite graphs.

A bipartite graph G is semiregular of bi-degree (k,m) if every vertex in one member of the
bipartition has degree k and every vertex in the other has degree m. We considered cases where
one part of G has vertices of equal degree.

Definition 2.1. A bipartite graph G with bipartition (V1, V2), |V1| > 1 and |V2| > 1 is weakly
semiregular if the vertices in exactly one Vi have the same degree. The part of G in which all
vertices have the same degree is called a SD-part. The other part of G is called a NSD-part.

Let G = (V,E) be a graph. The neighbourhood of v ∈ V , written NG(v) or N(v), is the set of
vertices adjacent to v.

Definition 2.2. A weakly semiregular bipartite graph G is called a WSBEND graph if the vertices
in the NSD-part do not have all distinct degrees and the neighbourhoods of the vertices in the
SD-part have same degree sequence. For each k ≥ 1, the set of vertices in the NSD-part of degree
k is called a k-NSD subpart.

Suppose there are 3 servers, 5 computers and the maximum allowed connections to each server
is 4. So we have a total of 4×3 = 12 possible connections. 5 computers need to be connected. One
of the arrangements is as follows: 3 computers (having only 2 ports) to two each server and other
two computers (having only 3 ports) to all the 3 servers. Only one direct connection to a server
can be active at any time. This connection leads to a graph which is a WSBEND. The question
of interchanging the connections without altering the connection structure raising the question of
automorphism. In the cases of online examinations, these connection automorphisms may reduce
the possibility of cheating. This can be solved by using a symmetric swap using an automorphism.

The automorphism relationship is an equivalence relation on the vertices of a graph. Two
vertices are equivalent if there exists an automorphism taking one to the other. Like all equivalence
relations, this also produces a partition of the vertex set into equivalence classes. These classes are
usually called automorphism classes or orbits. Here the orbits are the vertices of each k-NSD
subpart and SD part. The automorphism classes of these types of graphs are yet to be studied.

3. Main Results

The automorphism group is an algebraic invariant of a graph. The main results regarding the
automorphisms of connected WSBEND graphs are given in this section.

Proposition 3.1. Let G be a connected WSBEND graph. Then G has non trivial automorphism
group.
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Proof. Let V1 and V2 be the parts of G. Let |V1| = m > 1 and |V2| = n > 1. Let V1 be the SD part
having degree p to each of its vertices and V2 be the NSD part. Let {n1, n2, . . . , nj} = {d(x) : x ∈
V2} with n1 < n2 < · · · < nj . Let V i

2 = {x ∈ V2 : d(x) = ni} be the j k-NSD sub parts having
n1, n2, . . . , nj as the corresponding degrees of vertices in each k-NSD subpart. Obviously m > n1

and also mp = |V 1
2 |n1 + |V 2

2 |n2 + · · · + |V j
2 |nj . Now consider a permutation on m + n vertices.

Since the vertices in the SD part are of same degree and each is having a neighbourhood with same
degree sequence, there exist some permutations which permute among these vertices together with
elements of k-NSD subpart so that it results in automorphisms. In this way these graphs have non
trivial automorphisms too.

Let Aut(G) be the collection of all these automorphisms of G. Here the trivial permutation
is the identity automorphism. The collection of all permutations is closed under the operation of
composition. Also, the permutations on the k-NSD subpart permute in itself in accordance with
the permutation of elements of SD part. Consider two automorphisms α and β having cycles on
the k-NSD subpart, then there will be two cases.
Case 1. When α and β belonging to the set of permutations containing cycles of the same orbit. In
this case when the composition is taken, then α ◦ β is a member of the permutation with product
of cycles on the same k-NSD subpart. Therefore, α ◦ β ∈ Aut(G).
Case 2. When α and β belonging to the set of permutations containing cycles of the different or-
bits. In this case these are disjoint permutations. Therefore, α ◦ β is a member of the permutation
on Aut(G). In both the cases α ◦ β ∈ Aut(G). Therefore, Aut(G) is closed under the opera-
tion of composition. The function composition is associative on Aut(G). Now for each of these
permutations, there exists an inverse permutation. This inverse permutation acts as the inverse au-
tomorphism for each of these elements of Aut(G). Therefore, G has a non trivial automorphism
group.

The degree sequences given in this work have been already explained in [7] and [8].

Theorem 3.2. The graphs SM(
∑

n) and SM(Bn) are WSBEND graphs for all n > 2.

Proof. Consider the graph G = SM(
∑

n), n > 2. The graph G is a bipartite graph with parts
V1 = {vi : i ∈ Pn} and V2 = {vj : j ∈ P c

n} where Pn = {2m : m is an integer, 0 ≤ m ≤ n− 1}.
Also,G has 2n−1 vertices and n(2n−1−1) edges. All the vertices of V1 are of same degree 2n−1−1.
The vertices of V2 are not of same degree and has a degree sequence {2((n

2))
, 3((n

3))
, . . . , n((n

n))
},

for n > 2. There are
(
n
2

)
vertices of degree 2 and

(
n
3

)
vertices of degree 3 and so on. Also, each

vertices in V1 has a neighbourhood with degree sequence {2((n−1
1 )), 3((n−1

2 )), . . . , n((n−1
n−1))
}. This

implies that G is a WSBEND graph. Similarly for the graph SM(Bn), is having 1
2
(3n−1) number

of vertices and n(3n−1 − 1) edges. It is a bipartite graph with parts V3 = {vi : i ∈ Tn} and
V4 = {vj : j ∈ T cn}. The vertices in V3 are of same degree 3n−1 − 1 and each vertex is having a
neighbourhood with same degree sequence {2(2(n−1

1 )), 3(22(n−1
2 )), . . . , n(2n−1(n−1

n−1))
}. The vertices in

V4 are of different degree and has a degree sequence {2(2(n
2))
, 3(22(n

3))
, . . . , n(2n−1(n

n))
}. Therefore,

the graph SM(Bn) is also a WSBEND graph for each n > 2. Hence proved.

Corollary 3.3. The graph G = SM(
∑

n), n > 2, has at least one subgraph which is WSBEND

graph.
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Proposition 3.4. Let G be a WSBEND graph and having parts V1 and V2, |V1| = p > 1 and
|V2| = q > 1. Let the k-NSD subparts be X1, X2, . . . , Xm with |Xi| = ki, i = 1, 2, . . . ,m. Then
the number of automorphisms of G is at most p!(k1! + k2! + · · ·+ km!).

Proof. The graph G has m numbers of k-NSD subparts. It has been proved in Proposition 3.1 that
G has a non trivial automorphism group. Here the total number of vertices is p + q. Consider
a permutation on p + q vertices. Assume that the vertices of V1 are of same degree n. Each
vertex of V1 has a neighbourhood of the same degree sequence. Therefore, we can permute the p
elements in the p + q element permutations in p! ways. And in each of these permutations again
can be permuted among each of the ki vertices, i = 1, 2, 3, . . . ,m. Thus each of these give raise
to ki! permutations, where i = 1, 2, 3, . . . ,m which include automorphisms of G. Therefore, by
using the sum and product rule of permutations, the total number of automorphisms is at most
p!(k1! + k2! + · · ·+ km!). Hence proved.

Corollary 3.5. The graph SM(Bn) has less than n!((2(
(
n
2

)
)! + (22

(
n
3

)
)! + · · ·+ (2n−1

(
n
n

)
)!) auto-

morphisms.

Proof. Let G = SM(Bn), n ≥ 2. It can be easily seen that G is a WSBEND graph. G has a
degree sequence {2(2(n

2))
, 3(22(n

3))
, . . . , n(2n−1(n

n))
, 3n−1 − 1(n)} for n ≥ 3. The automorphisms of

G depends completely on the permutations of the elements of SD part but not in a unique way. So
from Theorem 3.2 and Proposition 3.4, it follows that the total number of automorphisms is less
than n!((2(

(
n
2

)
)! + (22

(
n
3

)
)! + · · ·+ (2n−1

(
n
n

)
)!).

Let X and Y be the parts of a bipartite graph G. It is known that if a matching M saturates X ,
then for every S ⊆ X there must be at least |S| vertices that have neighbours in S. We use N(S)
to denote the set of vertices having a neighbour in S.

Theorem 3.6. Every weakly semiregular bipartite graphs with k-NSD subparts has a matching
which saturates the smaller partition.

Proof. Let G be a weakly semiregular bipartite graph with k-NSD subparts. Let X and Y be the
parts of G. Since it has k-NSD subparts, |X| 6= |Y |. Let |X| < |Y |. This implies that for all
x ∈ X and y ∈ Y , deg x ≥ deg y. Now to prove the theorem, we use Hall’s necessary and
sufficient conditions. It says that ’an X, Y bigraph G has a matching that saturates X if and only
if |N(S)| ≥ |S|, for all S ⊆ X’. For proving that there exists a matching that saturates the smaller
partition X , it is enough to prove that |N(S)| ≥ |S|, for all S ⊆ X . On the contrary assume that
|N(S)| < |S|. Let G1 be the sub graph induced by S ∪ N(S). Let M be a matching in G and M
does not saturate X . So we get deg x < deg y and |X| > |Y |. This is a contradiction. Therefore,
|N(S)| < |S| is wrong. So we get |N(S)| ≥ |S|. Hence proved.

Automorphisms of SM(
∑

n) and SM(Bn)

The automorphism of graphs is a degree preserving as well as distance preserving function.
In this section, we are examining the automorphism group of SM sum graphs and SM balancing
graphs. The maximum simple bipartite graph is the complete bipartite graph. If G = Km,n is the
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complete bipartite graph, then G is a subgraph of SM(
∑

p) or SM(Bp), where p = max(m,n) +
1. There is a relationship between a bipartite graph especially complete bipartite graph with the
intrinsic relationship between the powers of 2 and other integers as well as powers of 3 and other
integers.

Proposition 3.7. Any bipartite graph is isomorphic to a subgraph of SM sum graph or SM balanc-
ing graph.

Proof. Consider the graph SM(
∑

n) with vertex set V = {vi : 1 ≤ i ≤ 2n − 1} for an integer
n ≥ 2. Also, SM(Bm) is a graph with the vertex set V ′ = {v1, v2, . . . , v 1

2
(3m−1)}, where m is

an integer ≥ 2. Both are bipartite graphs. Let G be any bipartite graph with parts V1 and V2,
|V1| = r ≥ 1 and |V2| = s ≥ 1. Let λ = max(r, s) + 1. From the definition of SM(

∑
n)

or SM(Bm), it is clear that any bipartite graph G is isomorphic to a subgraph of SM(
∑

λ) or
SM(Bλ).

Theorem 3.8. The graph SM(
∑

n) has n! automorphisms for all n ≥ 2.

Proof. Let G = SM(
∑

n), n ≥ 2. When n = 2, the result is obvious. Now consider the case
when n > 2. From the results obtained earlier from Theorem 3.2, we have that G is a WSBEND

graph for each n. Also, G has a degree sequence {2((n
2))
, 3((n

3))
, . . . , n((n

n))
, (2n−1 − 1)(n)}, for

n > 2. Here Pn is one of the orbits for each n. Since the orbits are the vertices of each k-NSD
subpart and SD part, as we permute the elements of SD part, this fixes how the elements of k-NSD
subpart must be permuted to give automorphisms. The automorphisms of G depends completely
on the permutations of the elements of SD part in a unique way. So we get that the number of
automorphisms is n!.

Theorem 3.9. The automorphism group of SM(
∑

n) is isomorphic to the symmetric group Sn for
all n ≥ 3.

Proof. Let G = SM(
∑

n). It has been observed that the graph G is non asymmetric for all n ≥ 2.
By Theorem 3.8, G has n! automorphisms for all n ≥ 2. Also, the automorphism group of G is
non abelian for all n > 2. Therefore, the automorphism group of G = SM(

∑
n), is isomorphic to

Sn for all n ≥ 3. Hence the theorem.

More precisely, we get the following Theorem 3.13 for the automorphism group of the SM
balancing graphs.

Proposition 3.10. Let G be a bipartite graph isomorphic to Km,n with parts V1 and V2, |V1| = m,
|V2| = n, m < n, and H be an edgeless graph with V (H) as a proper subset of V1. Let |H| = r <
m. Then Aut[(rK1 ∨H)∪̇G] ∼= Sr × Sm × Sn, where ∪̇ stands for edge disjoint union.

Proof. Consider the graph rK1 ∨ H . It is a bipartite graph having r elements in one partition.
Then we have r! permutations. Since the vertices of H are fixed and H is a proper subset of V1
=⇒ Aut(rK1 ∨ H) ∼= Sr, by fixing all vertices in H . Also, we have Aut(Km,n) ∼= Sm × Sn.
Therefore, we get Aut[(rK1 ∨H)∪̇G] ∼= Sr × Sm × Sn.
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Corollary 3.11. Let G ∼= Km,n be the complete bipartite graph with partition V1 ∪ V2, |V1| = m,
|V2| = n, m < n. Let Hi, 1 ≤ i ≤ p, be an edgeless graph with V (Hi) as a proper subset of V1
with |Hi| = |Hj| for all i, j. Let |Hi| = r < m. ThenAut[

⋃̇p

i=1(rK1∨Hi)∪̇G] ∼= (Sr)
p×Sm×Sn.

Proof. Since V (Hi), 1 ≤ i ≤ p, are proper subsets of V1 with |Hi| = |Hj| for all i, j, Aut[(rK1 ∨
Hi) ∼= Sr, for a fixed i. Therefore, Aut[(rK1 ∨H1)∪̇(rK1 ∨H2)∪̇ . . . (rK1 ∨Hp)∪̇G] ∼= (Sr)

p ×
Sm × Sn.

Corollary 3.12. Aut[
⋃̇n−1
r=1

⋃̇p

j=1(rK1 ∨Hj)∪̇G] ∼=
∏n−1

r=1 (Sr)
p × Sm × Sn, where Hj and G are

defined as in Corollary 3.11.

For different values of r, |Hj| may be assumed different values accordingly.

Theorem 3.13. The automorphism group, Aut(SMBn) is isomorphic to[∏n
k=2(S2k−1)(

n
k)
]
× Sn, for all integers n ≥ 3.

Proof. Consider SM(Bn), n ≥ 3. By Theorem 3.2, SM(Bn) is a WSBEND graph. Here
SM(Bn) ∼=

[⋃̇n−2
r=1

⋃̇n−1
j=2 (2rK1∨H(n

j)
)
]
∪̇K2n−1,n, where ∪̇ stands for edge disjoint union, |H(n

j)
| =

j, H(n
j)

is a collection of isolated vertices andH(n
j)

is a proper subset of Tn. Also, H(n
j)

is an edge-
less graph on j vertices. So r = j − 1.

Therefore, by applying the Corollary 3.12, we get

Aut(SM(Bn)) ∼=
[ n−1∏
k=2

(S2k−1)(
n
k)
]
× S2n−1 × Sn

∼=
[ n∏
k=2

(S2k−1)(
n
k)
]
× Sn.

4. More results on automorphisms of weakly semiregular bipartite graphs

For n = 2, the the automorphism group of the graph G = SM(Bn) is isomorphic to the
dihedral group D4. The automorphism groups of the graph G = SM(Bn) are related to the
conjugacy classes of some of the sporadic simple groups [1]. But the relation is yet to be studied
furthermore. Also, it has been observed that the automorphism group of SM balancing graph is a
simple group for n = 2.

Proposition 4.1. The graph SM(
∑

n) has no perfect matching and but have a non trivial biclique
for all n ≥ 2.

Proof. Let X and Y be the parts of G = SM(
∑

n). Here |X| 6= |Y |. Then G has no perfect
matching but a biclique by Proposition 3.7.

Also, we can observe that a WSBEND graph having odd number of edges is non-Eulerian.
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Definition 4.2. A semiregular bipartite graph G is called with equal parity if each vertex in either
of the parts have a neighbourhood with same degree sequence.

Theorem 4.3. A semiregular bipartite graph with equal parity is non asymmetric.

Proof. Let G be a (k,m) semiregular bipartite graph with parts X and Y . Since it has same parity,
it will have non trivial automorphisms. Therefore, it is non asymmetric.

Lemma 4.4. [9] The graph SM(
∑

n) is isomorphic to an edge induced sub graph of SM(Bn).

Theorem 4.5. Suppose G = SM(
∑

n), n ≥ 2 be an nth SM sum graph. Then the number of
isomorphisms of G = SM(

∑
n) to edge induced subgraph of SM(Bn) is n!× n!.

Proof. The proof follows from Lemma 4.4 and above Theorem 3.8.

Example 4.6. The automorphism group of SM(
∑

n), n = 3 is isomorphic to S3.

When n = 3, the graphG = SM(
∑

n) has 7 vertices and 9 edges. From Theorem 3.2, we have
that G is a WSBEND graph. Therefore, G has parts V1 = {v1, v2, v4} and V2 = {v3, v5, v6, v7}.
Also, the vertices in V1 are of degree 3 each and the vertices of V2 are having degree 2 each ex-
cept v7. The vertex v7 has degree 3 and is adjacent to vertices of degree 3. The permutations
(v1, v2)(v5, v6),(v1, v4)(v3, v6), (v2, v4)(v3, v5) produce 3 automorphisms. Furthermore if we fix
any permutation of the vertices of {v1, v2, v4}, this fixes how {v3, v5, v6} must be permuted to give
an automorphism. So we get two more automorphisms which adds to a total of 6 automorphisms
including the trivial automorphism. On the other hand, no automorphisms can result from swap-
ping the vertex from the first bipartite set and second bipartite set because unless such a swap is
done in its entirety, the adjacency will be lost. A swap can be done in entirety only if |V1| = |V2|
which is not the case here as G is not a complete bipartite graph as well. Therefore, finally we can
see that Aut(G) is isomorphic to S3. The orbits are v1, v2, v4; v3, v5, v6 and v7.

A graph G is vertex-transitive [13] if for every vertex pair u, v ∈ V (G) there is an automor-
phism that maps u to v. A graph G is edge transitive if for every edge pair (d, e) ∈ E(G), there
is an automorphism that maps d to e. Also, it is observed that SM(

∑
n) or SM(Bn) are neither

bi-regular, nor edge transitive nor vertex transitive. The graph SM(
∑

n) contains vertex transitive
subgraphs for all n > 2 because it contains biclique for each n > 2.

5. Conclusion

The automorphisms given in this paper are worthwhile as the non trivial symmetries of graphs
are concerned. We have proved that the WSBEND graphs are having a non trivial automorphism
group. Also as n increases, the number of automorphisms of SM sum graphs as well as SM
balancing graphs is increasing. The number of automorphisms was calculated for each n by using
the Nauty algorithm. The automorphism group of the SM family of graphs are noteworthy as
almost all other graphs are asymmetric. Also, the automorphism classes of the SM family of
graphs are yet to be studied in detail. The automorphism classes of SM family of graphs may
lead to a decomposition of these graphs. In which all cases the binary number system or balanced
ternary number system are being used, in those cases these automorphisms will make significant
effects. Further scope of edge automorphisms of these weakly semiregular bipartite graphs is to be
examined.
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