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Facultad de Matemáticas, Universidad Veracruzana,
Paseo 122, Sección 2 S/N; Col. Nuevo Xalapa; Xalapa, Ver., México, CP 91097.
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Abstract

Let G be a finite group. The enhanced power graph Γe
G of G is the graph with vertex set G and two

distinct vertices are adjacent if they generate a cyclic subgroup of G. In this article, we calculate
the rainbow connection number of Γe

G.
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1. Introduction

Let G be a finite group. The power graph of G, denoted ΓG, is the graph whose vertex set is G
and two distinct vertices are adjacent if one is a power of the other. In [1] the authors found that the
power graph is contained in the non-commuting graph and, they asked about how much the graphs
are closer, and then, they defined the enhanced power graph of a finite group. The enhanced power
graph of G, denoted Γe

G, is the graph whose vertex set is the group G and two distinct vertices
x, y ∈ V (Γe

G) are adjacent if x, y ∈ ⟨z⟩ for some z ∈ G. In recent years, the study of enhanced
power graphs has been growing, see, for example, “The metric dimension of the enhanced power
graph of a finite group” and “A study of enhanced power graphs of finite groups” will appear in
Journal of Algebra and Its Applications.
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In 2006, Chartrand, Johns, McKean and Zhang [8] introduced the concept of rainbow connec-
tion of graphs. This concept was motivated by communication of information between government
agencies of the United States after the September 11, 2001, terrorist attacks. The situation that
helps to unravel this issue about communications has the following graph-theoretic model. Let Γ
be a nontrivial connected graph, with vertex set V (Γ) and edge set E(Γ). For k ∈ N, we define
an edge–coloring as ζ : E(Γ) → {1, . . . , k}, where adjacent edges may have the same color. A
path P is a rainbow if no two edges have the same color. An edge–colored graph Γ is rainbow
connected if every two distinct vertices are connected by a rainbow. An edge-coloring under which
Γ is rainbow connected is called rainbow coloring. The rainbow connection number of Γ, denoted
by rc(Γ), is the smallest number of colors that are needed in order to make Γ rainbow connected.

We will apply the idea of calculating the rainbow connected number of enhanced power graph
through the graphs such as was carried out by the authors from [10] about the power graph, with the
set of maximal involutions; denoted by MG the set of maximal involutions of G, whose important
theorems we can summarize in the following:

Theorem 1.1. Let G be a finite group of order at least 3 and let MG ̸= ∅. Then

rc(ΓG) =

{
3, if 1 ≤ |MG| ≤ 2,

|MG|, if |MG| ≥ 3.

If |MG| = ∅, let G be a finite group

1. If G is cyclic, then rc(ΓG) =

{
1, if |G| is a prime power,
2, otherwise.

2. If G is noncyclic, then rc(ΓG) = 2 or 3.

In this paper we compute the rainbow connection number of Γe
G and characterize it in terms of

independence cyclic set, whose particular case is maximal involution. This paper is organized as
follows. In section 2 we give some definitions and properties about rainbow connection number
and we describe a way to guarantee a coloring for enchanced power graphs. In section 3 we
summarize the main theorems for determining Γe

G.

2. Definitions and properties

The next proposition follows from the definition of an enhanced power graph.

Proposition 2.1. rc(Γe
G) = 1 if and only if Γe

G is complete if and only if G is cyclic.

Definition 1. Let MaxG = {x1, . . . , xm} be an essential cyclic set if

1. ⟨xi⟩ ≠ ⟨xj⟩ for i ̸= j,
2. Each xi is a maximal cyclic subgroup.

Therefore Proposition 2.1 can be rewritten as follows
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Proposition 2.2. |MaxG| = 1 if and only if G is a cyclic group if and only if rc(Γe
G) = 1

Proposition 2.3. If |MaxG| = 2, then rc(Γe
G) = 2

Proof. Observe that if MaxG = {x1, x2}, 1 ̸= g, and g ∈ ⟨x1⟩ ∩ ⟨x2⟩, then ⟨g⟩ = ⟨x1⟩ or
⟨g⟩ = ⟨x2⟩. Without loss of generality suppose that ⟨g⟩ = ⟨x1⟩, then ⟨x1⟩ = ⟨g⟩ ⊂ ⟨x2⟩, but that
is a contradiction because MaxG is an essential cyclic set. Therefore |⟨x1⟩ ∩ ⟨x2⟩| = 1. Since Γe

G

is not complete, we have rc(Γe
G) ≥ 2, then,

E1 =
{
{a, b}|a, b ∈ ⟨x1⟩

}
E2 =

{
{a, b}|a, b ∈ ⟨x2⟩

}
We notice that the only path between x1j and x2i for all x1j ∈ ⟨x1⟩ and x2i ∈ ⟨x2⟩ is (x1j , e, x2i),
then, the 2-coloring is given by ζ : E(G) −→ {1, 2} with f 7→ i, if f ∈ Ei is a rainbow 2-coloring
of Γe

G.

Definition 2. We define the independence cyclic set of MaxG, denoted by ics(G), as

ics(G) = {xi ∈ MaxG|⟨xi⟩ ∩ ⟨xj⟩ = e for i ̸= j}

The independence cyclic number of MaxG, denoted by icn(G), is icn(G) = |ics(G)|.

Remark 2.1. We note that
MG ⊆ ics(G) ⊆ MaxG.

Proposition 2.4. If |MaxG| = 3, then

rc(Γe
G) =

{
2, if icn(G) = 1,

3, if icn(G) = 3.

Proof. Let MaxG = {x1, x2, x3} be an essential cyclic set.
Remark 2.2. We do not need to be concise with the path with both vertex in ⟨xi⟩ for some i, because
with one color, we can coloring this path. The difficulty is when both vertex are in different ⟨xi⟩.

Case 1. icn(G) = 1
Without loss of generality we suppose ⟨x1⟩ ∩ ⟨x2⟩ = e = ⟨x1⟩ ∩ ⟨x3⟩ and ⟨x2⟩ ∩ ⟨x3⟩ ̸= e.

Since G is not cyclic group, then rc(ΓGe) ≥ 2. Let h ∈ ⟨x2⟩ ∩ ⟨x3⟩ with h ̸= e, thus

E1 =
{
{a, b}|{a, b} ⊂ ⟨x1⟩

}⋃{
{a, b}|{a, b} ⊂ ⟨x2⟩ with a, b ̸= e

}
E2 =

{
{e, g}|g ∈ ⟨x2⟩ ∪ ⟨x3⟩

}⋃{
{a, b}|a ∈ ⟨x3⟩ \ ⟨x2⟩, b ∈ ⟨x2⟩ ∩ ⟨x3⟩, b ̸= e

}
In particular {h, g} ∈ E2 for all g ∈ ⟨x3⟩ \ ⟨x2⟩. Then, we will give a 2-coloring to Γe

G:

ζ : E(G) −→ {1, 2}
f 7→ i

if i ∈ Ei (1)

Case 2. icn(G) = 3
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We suppose that |MG| = 0, and without loss of generality ⟨xi⟩ ∩ ⟨xj⟩ = e for 1 ≤ i < j ≤ 3.
We will give a 3-coloring for ΓGe , with

E1 =
{
{xi, e}|i = 1, 2, 3

}
E2 =

{
{e, xij}|xij ∈

⋃3
i=1⟨xi⟩ \ xi

}
E3 =

{
{a, b}|a, b ∈ ⟨xi⟩ for i = 1, 2, 3

}
With the coloring

ζ : E(G) −→ {1, 2, 3}
f 7→ i

if i ∈ Ei (2)

Now, we suppose that MG = MaxG, then with Ei =
{
{a, b}|a, b ∈ ⟨xi⟩

}
. be the edges set,

and the coloring is given like (2). We can not give a 2-coloring for Γe
G. We claim that there is a

2-coloring. Let u ∈ ⟨x1⟩, v ∈ ⟨x2⟩ and w ∈ ⟨x3⟩. Then, we have ζ(u, e) = 1 and ζ(e, v) = 2, thus
(u, e, v) is the desire rainbow path. Likewise ζ(u, e) = 1 and ζ(e, w) = 2, but for (v, e, w) there is
not a rainbow path.

The Proposition 2.4 lead us to ask what happens if no one of ⟨xi⟩ can be intersected by another
⟨xj⟩ with i ̸= j or, what happens if all ⟨xi⟩ are intersected with some common elements. For this,
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we have the next propositions.

The following proposition is just like [10, Proposition 2.4]

Proposition 2.5. Let MaxG = {x1, . . . , xm} be an essential cyclic set and MG = MaxG. Then
rc(Γe

G) = m.

Proof. For Γe
G we will give a m-coloring. For each i = 1, . . . ,m we have

Ei(G) =
{
{a, b}|a, b ∈ ⟨xi⟩

}
since for u ∈ ⟨xi⟩ and v ∈ ⟨xj⟩ with i ̸= j we have one path between them, which is (u, e, v), and
the coloring is given by

ζ : E(G) −→ {1, . . . ,m}
f 7→ i if f ∈ Ei

We can see the diagram in figure 1.

Figure 1. MG = MaxG

Proposition 2.6. Let MaxG = {x1, . . . , xm} be an essential cyclic set with m ≥ 2, and hi,j ∈
⟨xi⟩ ∩ ⟨xj⟩ for 1 ≤ i < j ≤ m. If hi,j ̸= hr,s, with i ̸= r or j ̸= s, then rc(Γe

G) = 2.

Proof. By Remark 2.2 we only give the coloring for xi and xj such that i < j. We fix

E1(G) =
{
{a, hi,j}|a ∈ ⟨xi⟩ \ ⟨xj⟩

}⋃{
{a, b}|a, b ∈ ⟨xi⟩

}
E2(G) =

{
{b, hi,j}|b ∈ ⟨xj⟩ \ ⟨xi⟩

}⋃{
{a, b}|a, b ∈ ⟨xj⟩

}
Then, we always have a path for xir ∈ ⟨xi⟩ to xjs ∈ ⟨xj⟩ given by (xir , hi,j, xjs) with i < j,

and the coloring is the same given in (1).

The next definition guarantees the existence of a coloring for Γe
G.

Definition 3. An awning is a collection H1, . . . , Hm−1 where the following occurs:

1. Hi = Ai

⋃̇
Bi = {hi,i+1, . . . , hi,m} ⊂ ⟨Xi⟩ for i = 1, . . . ,m− 1

2. For all i < j, hi,j ∈ ⟨xi⟩ ∩ ⟨xj⟩
3. For i < j with j = 2, . . . ,m − 1 , if hj,s = hi,r ∈ Hj ∩ Hi (s ∈ {j + 1, . . . ,m}, and

r ∈ {i+ 1, . . . ,m}), the following holds:
(a) r = j, hi,r ∈ Ai, then hj,s ∈ Bj

(b) r = j, hi,r ∈ Bi, then hj,s ∈ Aj
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Figure 2. Example for Proposition 2.6 for m = 3

(c) r = s > j, hi,r ∈ Ai, then hj,r ∈ Aj

(d) r = s > j, hi,r ∈ Bi, then hj,r ∈ Bj

Remark 2.3. The case in Proposition 2.5 is a particular case where G does not have an awning. By
the definition of awning, we only need Hi = {e} for only some i, and no more.

Corollary 2.1. If G has an awning and |MaxG| ≥ 3, then icn(G) ≤ 1. In particular, |MG| ≤ 1.

Proof. Suppose that icn(G) = 2, then Hi1 = Hi2 = {e}. Hence (xi1 , e, xi2) is a rainbow path, and
(xi1 , e, xi3) is another rainbow path, but in (xi2 , e, xij) we do not have a rainbow path for Γe

G.

Corollary 2.2. If | ∩Hi| ≥ m− 1 with MaxG = m, then G has an awning.

Corollary 2.3. If |MaxG| = 2 then icn(G) = 0 or 2, and G has an awning.

Corollary 2.4. If G has an awning, then icn(G) = 1. In particular |MG| ≤ 1.

We notice that the coloring whether we have to MG or ics(G) does not change, both can be
colored by one color. The only difference in MG is that there is only two elements in the subset
of G and, for a set taken of ics(G) there are more than two elements, however, the behaviour in
coloring is exactly the same, because, in a set taken of ics(G) all the elements are associated each
of them, then, one color is enough for coloring all set.

In the following properties we only consider the set ics(G) unless otherwise indicated.

Proposition 2.7. If G has an awning, then rc(Γe
G) = 2

Proof. We will give to Γe
G a rainbow 2-coloring, for 1 ≤ r < s ≤ m, let:

E1
r,s = {{a, hr,s}|a ∈ ⟨xr⟩\⟨xs⟩;hr,s ∈ Ar}

E2
r,s = {{b, hr,s}|b ∈ ⟨xs⟩\⟨xr⟩;hr,s ∈ Ar}

E1
r,s = {{a, hr,s}|a ∈ ⟨xr⟩\⟨xs⟩;hr,s ∈ Br}

E2
r,s = {{b, hr,s}|b ∈ ⟨xs⟩\⟨xr⟩;hr,s ∈ Br}
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Write E1 =
⋃

1≤r<s≤m

E1
r,s and E2 =

⋃
1≤r<s≤m

E2
r,s and we define a coloring

ζ : E(Γe
G) −→ {1, 2}
f 7→ i, if f ∈ Ei

We are going to check that this is a 2-coloring for Γe
G. We will make a coloring for j, s−step. If

these edges have been colored in a before step, i.e., if hj,s = hi,r with i < j, thus we will have
coloring problems with r = j or r = s.

For r = j (r=s), for (a)-(d) from Definition 3 we can guarantee in before step we can conserve
the coloring and that, not affect us with the 2-coloring that we gave.

Proposition 2.8. If rc(Γe
G) = 2, then for any order of MaxG, we have an awning.

Proof. We have rc(Γe
G) = 2 and suppose E1

⋃̇
E2 = E be the set of edges of Γe

G and a 2-coloring
given by (1) and let MaxG = {x1, . . . , xm} be an independence cyclic set of Γe

G, thus there is
h ∈ ⟨xi⟩ ∩ ⟨xj⟩ such that {xi, h} ∈ E1 and {h, xj} ∈ E2 (or {xi, h} ∈ E2 and {h, xj} ∈ E1). We
define hi,j := h, moreover Hi := {hi,1, . . . , hi,m} =: Ai

⋃̇
Bi such that

Ai = {hi,j|{xi, hi,j} ∈ E1} and Bi = {hi,j|{xi, hi,j} ∈ E2},

where (a)− (b) from Definition 3 are met.

Corollary 2.5. If G has an awning with any order on MaxG, then for every order, G has an
awning.

Theorem 2.1. rc(Γe
G) = 2 if and only if G has an awning and G is not cyclic group.

Proof. By Propositions 2.7 and 2.8

By Remark 2.1 we obtain a similar proposition like [10, Lemma 2.2].

Lemma 2.1. Let MaxG = {x1, . . . , xm} be an essential cyclic set. If MG ̸= ∅, then |MG| ≤
rc(Γe

G).

Proof. As in the proof of [10, Lemma 2.2].

Proposition 2.9. Let MaxG = {x1, . . . , xm} be an essential cyclic set. If icn(G) ≥ 3, then
3 ≤ rc(Γe

G).

Proof. Suppose that |M | = 0 and ics(G) = {x1, . . . , xk} be an independence cyclic set with
k ≥ 3. We can not give a 2-coloring for the graph induced by ⟨x1⟩ ∪ · · · ∪ ⟨xk⟩, but we will give a
3-coloring induced by the following edge sets

E1 =
{
{xi, e}|i = 1, . . . ,m

}
E2 =

{
{e, xij}|xij ∈

⋃m
i=1⟨xi⟩ \ xi

}
E3 =

{
{a, b}|a, b ∈ ⟨xi⟩ for each i

}

241



www.ejgta.org

The rainbow connection number of the enhanced power graph of a finite group | Luis A. Dupont et al.

Figure 3. MG = ∅

with the rest edges just like Propositions 2.6 and 2.7. Thus the 3-coloring is given by (2).

If |MG| ≥ 3 then the edges set is

E1 =
{
{xi, e}|i = l + 1, . . . ,m

}
E2 =

{
{e, xij}|xij ∈

⋃m
i=l+1⟨xi⟩ \ xi

}
E3 =

{
{a, b}|a, b ∈ ⟨xi⟩ for each i

}
Ei =

{
{xi, e}|i = 1, . . . , l

}
and the coloring given by

ζ : E(G) −→ {1, . . . , l}
f 7→ i

if f ∈ Ei

Figure 4. MG ̸= ∅

In particular we have the following

Proposition 2.10. Let MaxG = {x1, . . . , xm} be a essential cyclic group with m ≥ 4 and
icn(G) ≥ 2, then 3 ≤ rc(Γe

G).

Remark 2.4. We have rc(Γe
G) ≤ rc(ΓG) because E(ΓG) ⊆ E(Γe

G).

3. Main Theorems

In this section we summarize our main theorems as immediate consequences of our previous
results and definitions. For instance, by definition of icn(G) and Propositions 2.1, 2.2 and 2.5 it
follows the next theorem.
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Theorem 3.1. Let MaxG = {x1, . . . , xm} be an essential cyclic set. If icn(G) = 1 then rc(Γe
G) =

1 if and only if m = 1. In particular, if |MG| = 1 then rc(Γe
G) = 1 if and only if G ∼= Z2.

In a similar way, by Proposition 2.4, Corollary 2.4 and Proposition 2.7 the following theorem
holds.

Theorem 3.2. Let MaxG = {x1, . . . , xm} be an essential cyclic set. If icn(G) = 1 then rc(Γe
G) =

2 if and only if G has an awning.

Accordingly to Proposition 2.9 we get the following result.

Theorem 3.3. Let MaxG = {x1, . . . , xm} be a essential cyclic set with m ≥ 3. If icn(G) = 1
then rc(Γe

G) = 3 if and only if G has not an awning.

The following theorem holds from Propositions 2.9 and 2.10.

Theorem 3.4. Let MaxG = {x1, . . . , xm} be a essential cyclic set with m ≥ 4. If icn(G) = 2,
then rc(Γe

G) = 3.

By Propositions 2.9 and 2.5, we have the next theorem.

Theorem 3.5. Let MaxG = {x1, . . . , xm} be an essential cyclic set. If icn(G) ≥ 3, then rc(Γe
G) =

|MG|.

Finally, we have the following theorem.

Theorem 3.6. Let MaxG = {x1, . . . , xm} be an essential cyclic set with icn(G) = 0, then

rc(Γe
G) =


1, if and only if G is a cyclic group,
2, if and only if G has an awning and G is not cyclic,
3, iff G has not an awning.

Proof. The first case is a consequence of Proposition 2.2. The second case is from Proposition 2.7.
The third case is derived from Remark 2.3 and Proposition 2.9.
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