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Abstract

The anti-Ramsey number arn(H) of an r-uniform hypergraph is the maximum number of colors
that can be used to color the hyperedges of a complete r-uniform hypergraph on n vertices without
producing a rainbow copy of H . In this paper, we determine anti-Ramsey numbers for paths of
length 2, certain stars and complete hypergraphs, and the complete 3-uniform hypergraph of order
4 with a single hyperedge removed.
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1. Introduction

First defined by Erdős, Simonovits, and Sós [4] in 1973, the anti-Ramsey number of an r-
uniform hypergraph H(r) determines the number of colors needed for the hyperedges of a complete
r-uniform hypergraph to guarantee the existence of a rainbow subhypergraph isomorphic to H(r).
While much work has been done on the evaluation of such numbers in the case of graphs (e.g., see
[1], [5], [6], and [8]), little work has considered more general uniformities. One exception is the
recent work of Özkahya and Young [7], where anti-Ramsey numbers for hypergraph matchings
were studied. In this article, we determine the anti-Ramsey numbers for r-uniform paths of length
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2, certain stars and complete r-uniform hypergraphs, and the complete 3-uniform hypergraph of
order 4 missing a single hyperedge.

We begin with the relevant definitions. Suppose throughout that r ≥ 2. An r-uniform hyper-
graph H(r) = (V,E) consists of a nonempty set V of vertices and a set E consisting of unordered
r-tuples of distinct vertices. Elements of E are called hyperedges. When we wish to specify the
underlying hypergraph, we write V (H(r)) and E(H(r)) in place of V and E, respectively. We refer
to such a hypergraph by just H(r), including the superscript (r) to emphasize the specific unifor-
mity being considered. If the uniformity is dropped from the notation, it should be assumed that
r = 2. The complete r-uniform hypergraph K

(r)
n contains n vertices and every r-tuple of distinct

vertices forms a hyperedge. If a single hyperedge is removed, we write K
(r)
n − e to denote the

resulting hypergraph.
The other two types of hypergraph that we will consider fall under the category of trees when

r = 2: paths and stars. Let 1 ≤ t < r. The t-tight r-uniform path of length k, denoted P
(r)
k,t ,

consists of distinct vertices x1, x2, . . . , xr+(k−1)(r−t) and hyperedges

ei = x(r−t)(i−1)+1x(r−t)(i−1)+2 · · ·x(r−t)(i−1)+r, for 1 ≤ i ≤ k.

Figure 1 gives some examples of paths with varying parameters. In the special case where t = 1

P

P

P

(5)

(3)

(4)

3,3

3,1

4,2

Figure 1. Examples of paths with various uniformities, lengths, and tightnesses.

and r = 2, we replace Pk,1 with the usual notation Pk. The t-tight r-uniform star of order p,
denoted S

(r)
p,t , has vertex set V = C ∪ U , where C ∩ U = ∅, |C| = t, and |U | = p − t. The

hyperedge set of S(r)
p,t consists of all hyperedges that include all vertices in C and some selection

of r − t vertices from U . The set C is called the center of the star S(r)
p,t . Figure 2 provides some

examples of stars with varying parameters. In the special case where t = 1 and r = 2, we replace
Sp,1 with the usual (bipartite) notation K1,p−1.
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9,4 5,2

Figure 2. Examples of stars with various uniformities, orders, and center cardinalities.

For k ≥ 1, a k-coloring of K(r)
n is a map

c : E(K(r)
n ) −→ {1, 2, . . . , k}.

A k-coloring is called exact if it is surjective. Denote the set of all exact k-colorings of K(r)
n by

Ck(K(r)
n ). Given an exact k-coloring c of K(r)

n , we say that a subhypergraph H(r) of K(r)
n is rainbow

if the restriction of c to H(r) is injective:

c|H(r) : E(H(r)) ↪→ {1, 2, . . . , k}.

If we assume that H(r) is an r-uniform hypergraph of order p that lacks isolated vertices, then for
n ≥ p, the anti-Ramsey number arn(H(r)) is defined to be the maximum k such that some exact
k-coloring in Ck(K(r)

n ) lacks a rainbow subhypergraph isomorphic to H(r). Observe that every
(
n
r

)
-

coloring of K(r)
n results in a rainbow copy of H(r) and |E(H(r))| colors are required to produce a

rainbow H(r). It follows that

|E(H(r))| − 1 ≤ arn(H
(r)) ≤

(
n

r

)
− 1.

The anti-Ramsey number arn(H(r)) is related to the rainbow number rbn(H(r)), defined to be the
minimum k such that every exact k-coloring of K(r)

n contains a rainbow H(r) (c.f. Section 11.4 of
[3]). It follows that

rbn(H
(r)) = arn(H

(r)) + 1,

and the reader should be aware that the definition of a rainbow number is sometimes given as the
definition of an anti-Ramsey number.

In Section 2, we prove several results for general uniformity. In particular, we show that

arn(P
(r)
2,t ) = 1 for all n ≥ 2r − t.

We also provide a theorem relating anti-Ramsey numbers for r-uniform complete hypergraphs to
anti-Ramsey numbers for certain (n − r)-uniform stars. This result allows us to use some known
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results on graphs to obtain anti-Ramsey numbers for certain hypergraphs. The section is concluded
with the determination of lower bounds for the anti-Ramsey numbers arr+2(K

(r)
r+1).

The anti-Ramsey number for K(3)
4 − e (the complete 3-uniform hypergraph of order 4 with a

single hyperedge removed) is the focus of Section 3. We prove a general upper bound and give
exact evaluations in the cases n = 5, 6. Section 4 concludes with a few directions for future inquiry.

2. General r-Uniform Results

In this section, we focus on proving a few results that are independent of uniformity. First, we
consider the case of paths of length 2.

Theorem 2.1. For all n ≥ 2r − t, arn(P
(r)
2,t ) = 1.

Proof. Observe that 2 colors are needed to produce a rainbow path of length 2. So, arn(P
(r)
2,t ) ≥ 1.

To prove the other direction, consider an exact 2-coloring of K(r)
n . We claim there exists red and

blue hyperedges with non-empty overlap. Otherwise, suppose that e1
⋂
e2 = ∅ with e1 colored

red and e2 colored blue, where e1, e2 are hyperedges in K
(r)
n . Any hyperedge that includes vertices

from both e1 and e2 must be colored red or blue, creating a nontrivial overlap between a red
hyperedge and a blue hyperedge. It remains to be shown that for any 1 ≤ t ≤ r − 2, there exists a
rainbow path P

(r)
2,t if and only if there exists a rainbow path P

(r)
2,t+1.

(=⇒) Assume there exists a t-tight rainbow path of length 2 with blue hyperedge e1 and red
hyperedge e2. Without loss of generality, suppose that

e1 = y1y2 · · · yr−tx1x2 · · ·xt and e2 = x1x2 · · ·xtz1z2 · · · zr−t

(see the first image in Figure 3). If no (t+ 1)-tight rainbow path of length 2 exists, then the hyper-
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x
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x

3

t
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Figure 3. Increasing tightnesses for rainbow paths of length 2.
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edge e3 = yr−tx1x2 · · ·xtz1z2 · · · zr−t−1 must be blue and the hyperedge e4 = y2y3 · · · yr−tx2x3 · · ·
xtz1zr−t must be red (see the second image in Figure 3). However, e3 and e4 now form a (t + 1)-
tight rainbow path of length 2.
(⇐=) Assume there exists a (t+ 1)-tight rainbow path of length 2 with blue hyperedge e1 and red
hyperedge e2. Without loss of generality, suppose that

e1 = y1y2 · · · yr−t−1x1x2 · · ·xt+1 and e2 = x1x2 · · ·xt+1z1z2 · · · zr−t−1

(see the first image in Figure 4). Note that since n ≥ 2r − t, there exists some vertex w that is

.........
y
1

y
r-t-1

x1 x 2 x xt t+1

z z
1 r-t-1

w

.........
y
1

y
r-t-1

x1 x 2 x xt t+1

z z
1 r-t-1

w

Figure 4. Decreasing tightnesses for rainbow paths of length 2.

not contained in e1 or e2. If no t-tight rainbow path of length 2 exists, then the hyperedge e3 =
wx2x3 · · ·xt+1z1z2 · · · zr−t−1 must be blue and the hyperedge e4 = xy1y2 · · · yr−t−1x1x2 · · ·xt

must be red (see the second image in Figure 4). However, e3 and e4 now form a t-tight rainbow
path of length 2.
Hence, at most 1 color can be used without creating a rainbow path of any given tightness, con-
cluding the proof.

One particularly useful trick to working with anti-Ramsey numbers of hypergraphs is to con-
struct a natural bijection between exact k-colorings of K

(r)
n and exact k-colorings of K

(n−r)
n .

Specifically, let
c : E(K(r)

n ) −→ {1, 2, . . . , k}
be an exact k-coloring with n − r ≥ 2. Then c induces an exact k-coloring I(c) on K

(n−r)
n by

taking
I(c)(xr+1xr+2 · · ·xn) := c(x1x2 · · ·xr),

where the vertex sets of K(r)
n and K

(n−r)
n are both identified with {x1, x2, . . . , xn}. We call I(c)

the induced coloring of c and observe that

I : Ck(K(r)
n ) −→ Ck(K(n−r)

n )
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is a bijection.

Theorem 2.2. For all n > m > r ≥ 2, arn(K
(r)
m ) = arn(S

(n−r)
n,n−m).

Proof. Let c : E(K
(r)
n ) −→ {1, 2, . . . , k} be an exact k-coloring of K(r)

n and let I(c) be its induced
coloring on K

(n−r)
n . Equivalently, c is the induced coloring of I(c). We must argue that c contains

a rainbow K
(r)
m if and only if I(c) contains a rainbow S

(n−r)
n,n−m. The hyperedges of a complete r-

uniform hypergraph with vertex set U := {x1, x2, . . . , xm} receive distinct colors under c if and
only if the hyperedges containing all of the vertices in V (K

(r)
n ) − U , and a subset of m − r of

the vertices in U receive distinct colors under I(c). Thus, every exact k-coloring of K(r)
n contains

a rainbow K
(r)
m if and only if every exact k-coloring of K(n−r)

n contains a rainbow S
(n−r)
n,n−m (for

example, see Figure 5).

Figure 5. An exact coloring c of K(4)
7 contains a rainbow K

(4)
5 if and only if its induced coloring I(c) of K(3)

7 contains
a rainbow S

(3)
7,2 .

Applying Theorem 2.2 to known anti-Ramsey numbers on graphs, we can obtain select results
on hypergraphs. Erdős, Simonovits, and Sós [4] proved that

arn(K3) = n− 1, for all n ≥ 4,

from which it follows that

arn(S
(n−2)
n,n−3) = n− 1, for all n ≥ 4.

Jiang [6] proved that

arn(K1,4) = n+ 1 and arn(K4) =

⌊
n2

4

⌋
+ 1, for all n ≥ 5,
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from which Theorem 2.2 implies that

ar5(K
(3)
4 ) = 6 and arn(S

(n−2)
n,n−4) =

⌊
n2

4

⌋
+ 1, for all n ≥ 5.

The same principal of using induced colorings leads us to the following theorem involving
complete hypergraphs.

Theorem 2.3. If r ≥ 2, then

arr+2(K
(r)
r+1) ≥

(r + 2)(r − 1)

2
+

⌊
r + 2

3

⌋
.

Proof. Using the concepts introduced in Theorem 2.2, the bijection

I : C(K(r)
r+2) −→ C(Kr+2)

sends a rainbow K
(r)
r+1 to a rainbow K1,r+1. One way to maximize the number of colors used in

a rainbow K1,r+1-free coloring of Kr+2 is to color edges by maximizing the number of disjoint
small cycles, which are each given distinct colors. By the Division Algorithm, there exists unique
q, t ∈ Z such that

r + 2 = 3q + t, where 0 ≤ t ≤ 2.

When t = 0, we can partition the vertices in Kr+2 into q K3-subgraphs, with each K3 receiving
its own color. The remaining edges each get their own color, producing a K1,r+1-free coloring of
Kr+2 using a total of

q +

(
r + 2
2

)
− 3q

colors. When t = 1, we partition the vertices into q − 1 K3-subgraphs and a single cycle C4 of
length four. Giving each cycle and all remaining edges distinct colors gives a total of

q +

(
r + 2
2

)
− (3q + 1)

colors. When t = 2, we partition the vertices into q − 1 K3-subgraphs and a single cycle C5 of
length five. Following the same color scheme as before, we obtain a total of

q +

(
r + 2
2

)
− (3q + 2)

colors. In all three cases, we have produced a coloring of Kr+2 that lacks a rainbow K1,r+1 using

q +

(
r + 2
2

)
− (r + 2)

colors. Observing that q = b r+2
3
c completes the proof of the theorem.
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3. The Anti-Ramsey Number for K
(3)
4 − e

Denote by K
(3)
4 − e the complete 3-uniform hypergraph of order 4 with a single hyperedge

removed. An exact k-coloring of K(3)
n , with k ≥ 3 and n ≥ 4, contains a rainbow K

(3)
4 − e if and

only if it contains a K
(3)
4 spanned by hyperedges using at least 3 colors. It follows that

ar4(K
(3)
4 − e) = 2.

Beginning with an exact 2-colored K
(3)
4 having vertex set {x1, x2, x3, x4}, one can construct an

exact k-colored K
(3)
k+2 that lacks a rainbow K

(3)
4 − e by assigning color s (with s = 3, 4, . . . , k) to

all hyperedges of the form xixjxs+2 whenever i < s+ 2 and j < s+ 2. It follows that

arn(K
(3)
4 − e) ≥ n− 2. (1)

The following theorem proves that this bound is exact when n = 5.

Theorem 3.1. ar5(K
(3)
4 − e) = 3.

Proof. It remains to be shown that every exact 4-coloring of K
(3)
5 (using say, red, blue, green,

and purple) contains a K
(3)
4 spanned by hyperedges using at least 3 colors. We will prove this by

contradiction. Consider a 4-coloring of K(3)
5 that lacks a K

(3)
4 spanned by hyperedgers using at

least 3 colors. By Theorem 2.1, there exists a 2-colored P
(3)
2,2 . Without loss of generality, suppose

that this path is given by x1x2x3x4 with x1x2x3 red and x2x3x4 blue. Since no 3-colored K
(3)
4 s

exist, the subhypergraph induced by S := {x1, x2, x3, x4} is a red/blue K
(3)
4 . Without loss of

generality, assume that it has at least as many red hyperedges as it has blue hyperedges. The
remaining six hyperedges in the K(3)

5 all contain x5 and at least one of them is green and another is
purple. If any green hyperedge has a vertex from S in common with a purple hyperedge, then a 3-
colored K

(3)
4 is produced. This forces there to only be a single green hyperedge and a single purple

hyperedge whose intersection in S is empty. One of these hyperedges must include two vertices
from {x2, x3, x4}. Suppose it is the green hyperedge, which is given by x2x3x5. Then x1x4x5 is
purple and at least one of x1x2x4 and x1x3x4 is red. Suppose the former case. At this point, we
have Figure 6. Observe that the subhypergraph induced by {x1, x2, x4, x5} is red/purple and the
subhypergraph induced by {x2, x3, x4, x5} is blue/green. This gives us a contradiction since no
coloring of the hyperedge x2x4x5 satisfies these conditions. It follows that every exact 4-coloring
of K(3)

5 contains a K
(3)
4 spanned by hyperedges using at least 3 colors.

Theorem 3.2. For all n ≥ 5,

arn(K
(3)
4 − e) ≤


1
4
n(n− 2)− 1, if n is even

1
4
(n− 1)2 − 1, if n is odd.

Proof. We proceed by weak induction on n, with Theorem 3.1 providing the base case when n = 5.
Let

p =


1
4
n(n− 2)− 1, if n is even

1
4
(n− 1)2 − 1, if n is odd.
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x
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324

Figure 6. A subhypergraph contained in an exact 4-coloring of K(3)
5 that lacks a K(3)

4 spanned by hyperedges using at
least 3 colors.

Suppose the theorem is true for n− 1 and consider an exact p-coloring of K(r)
n . Label the vertices

of this complete hypergraph by x1, x2, . . . , xn. If no rainbow K
(3)
4 − e is contained in this color-

ing, then by the inductive hypothesis, the subhypergraph induced by {x1, x2, . . . , xn−1} contains
hyperedges spanned by at most q colors, where

q =


1
4
(n− 2)2 − 1, if n is even

1
4
(n− 1)(n− 3)− 1, if n is odd.

The remaining hyperedges are those that contain xn and exactly two vertices from {x1, x2, . . . , xn−1}.
If n is even, then n−1 is odd, and adding in n

2
additional colors forces two such hyperedges to have

some vertex in common from {x1, x2, . . . , xn−1}. Without loss of generality, suppose that x1x2xn

and x2x3xn have two of the additional colors. Then the subhypergraph induced by {x1, x2, x3, xn}
contains a rainbow K

(3)
4 − e, and this resulted from having at least

1

4
(n− 2)2 − 1 +

n

2
=

1

4
n(n− 2)

colors. Similarly, If n is odd, then n−1 is even, and adding in n+1
2

additional colors forces two such
hyperedges to have some vertex in common from {x1, x2, . . . , xn−1}, forming a rainbow K

(3)
4 − e.
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The subhypergraph induced by {x1, x2, x3, xn} contains a rainbow K
(3)
4 −e, and this resulted from

having at least
1

4
(n− 1)(n− 3)− 1 +

n+ 1

2
=

1

4
(n− 1)2

colors. The resulting upper bounds follow for arn(K
(3)
4 − e).

For ar6(K
(3)
4 −e), we can slightly improve upon the lower bound that is given by (1). Consider

the exact 5-coloring of K(3)
6 that is given by the 4 hyperedges shown Figure 7, with all remaining

hyperedges colored orange. In this construction, the removal of any two vertices removes 3 colors,

Figure 7. An exact 5-coloring of K(3)
6 (all hyperedges not pictured are assigned the fifth color) that lacks a rainbow

K
(3)
4 − e.

resulting in a 2-colored K
(3)
4 . Hence,

ar6(K
(3)
4 − e) ≥ 5.

Combining this lower bound with Theorem 3.2 results in the following corollary.

Corollary 3.1. ar6(K
(3)
4 − e) = 5.
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4. Concluding Comments

We conclude by stating a few directions for future inquiry.

1. We have not discussed it here, but anti-Ramsey numbers are intrinsically connected with
Turán numbers. While little is known about hypergraph Turán numbers, known results may
offer some additional information about their anti-Ramsey counterparts (e.g., see [4] and
[7]).

2. Using the ideas introduced in the proof of Theorem 2.2, what other hypergraphs are pre-
served under induced exact colorings? Through examples, we have found that certain cycles
correspond with other cycles or matchings under I.

3. Finally, what results do induced colorings offer for the determination of traditional Ram-
sey numbers for hypergraphs (e.g., see [2])? Analogous to Theorem 2.2, a k-coloring c of
K

(r)
n contains a monochromatic K

(r)
m if and only if the induced coloring I(c) contains a

monochromatic S
(n−r)
n,n−m.
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[4] P. Erdős, M. Simonovits and V. Sós, Anti-Ramsey theorems, Colloquia Mathematica Soci-
etatis Janos Bolyai 10 (1973), 633–643.

[5] S. Gilboa, and Y. Roditty, Anti-Ramsey numbers of graphs with small connected components,
Graphs Combin. 32 (2016), 649–662.

[6] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002), 303–
308.
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