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Abstract

A graph G is said to be determined by its Laplacian spectrum (DLS) if every graph with the same
Laplacian spectrum is isomorphic to G. A graph which is a collection of hexagons (lengths of
these cycles can be different) all sharing precisely one vertex is called a spinner graph. A tree with
exactly one vertex of degree greater than 2 is called a starlike tree. If a spinner graph and a starlike
tree are joined by merging their vertices of degree greater than 2, then the resulting graph is called
a tarantula graph. It is known that spinner graphs and starlike trees are DLS. In this paper, we
prove that tarantula graphs are determined by their Laplacian spectrum.
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1. Introduction

As usual G = (V (G), E(G)) is a simple graph having n = n(G) vertices and m = m(G)
edges, with V (G) = {v1, v2, . . . , vn}. The complement ofG is denoted byG. The degree sequence
ofG, denoted by deg(G), is the sequence of vertex degrees ofG; in fact deg(G) = (d1, d2, . . . , dn)
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in which di = di(G) = dG(vi), for i = 1, . . . , n, is the degree of the vertex vi so that d1 ≥ d2 ≥
· · · ≥ dn. For i = 0, 1, 2, . . . , n− 1, let ni = ni(G) denote the number of vertices of degree i in G.

Let A(G) and D(G) = Diag(d1, d2, . . . , dn) denote the adjacency matrix and the diagonal
matrix of vertex degrees of G, respectively. The Laplacian matrix of G is defined as L(G) =
A(G) −D(G). The polynomial ϕL(G)(µ) = det(µIn − L(G)), where In is the identity matrix of
order n, is called the Laplacian characteristic polynomial of G. Any root of ϕL(G)(µ) is called a
Laplacian eigenvalue of G. The multi-set of Laplacian eigenvalue of G is called the Laplacian
spectrum or L-spectrum of G. Note that the eigenvalues of L(G) are all real non-negative, since it
is a symmetric, positive semidefinite matrix. We denote its eigenvalues in the non-increasing order
µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The Laplacian matrix of G is a major tool for enumerating spanning
trees ofG and has numerous applications [18, 37]. Two graphsG andH is saidL-cospectral if they
have the same L-spectrum, and a graph G is determined by its Laplacian spectrum, abbreviated by
DLS, if no other graphs are L-cospectral with G. Only a few graphs with very special structures
have been found to be determined by their spectra (DS, for short) (see [1]–[16], [19], [28]–[32],
[34], [35] and the references cited therein).

The coalescence of two graphs G1 and G2, with respect to u1 ∈ V (G1) and u2 ∈ V (G1),
is the graph obtained by identifying u1 and u2 in the disjoint union of G1 and G2. We denote
it by (G1 ◦ G2)(u1, u2). In the case when it dose not make deference which vertex in G1 and
G2 is identified to obtain a coalescence, we denote this graph by G1 ◦ G2. This operation is
extended, inductively, to any arbitrary number of graphs. For instance, the coalescence of cycles
Cn1 , . . . , Cnp (or Cn1 ◦ · · · ◦Cna) is called an a-rose graph. Specially, C6 ◦ · · · ◦ C6︸ ︷︷ ︸

a times

is a rose graph

which is called an spinner graph and is denoted by Ha.
An starlike tree is defined as a tree with a unique vertex v of degree greater than 2. We denote

by S(t1, . . . , tb) the starlike tree with maximum degree b such that

S(t1, . . . , tb)− v = Pt1 ∪ Pt2 ∪ · · · ∪ Ptb ,

where v is the vertex of degree b, and t1, t2, . . . , tb are any positive integers. We may describe an
starlike tree as a coalescence of Pt1+1, Pt2+1, . . . , Ptb+1. In fact, if vi is a specific pendant vertex of
Pti+1, for i = 1, . . . , b, then we have

S(t1, . . . , tb) = Pt1+1 ◦ Pt2+1 ◦ · · · ◦ Ptb+1(v1, v2, . . . , vb).

A tarantula graph, T(a, t1, . . . , tb), a, b ≥ 1 is a graph of order n = 5a + t1 + · · · + tb + 1,
which consists of a hexagons and b paths of lengths t1, t2, . . . , tb sharing a common vertex. Note
that T(a, t1, . . . , tb) = Ha ◦T (u, v), where u and v are, respectively, the unique vertices of Ha and
T = Tt1,t2,...,tb with the maximum degrees 2a and b, respectively, see Figure 1.

van Dam and Haemers [38] conjectured that almost all graphs are DLS. However, very few
graphs are known to have that property, and so discovering new classes of such graphs is an inter-
esting problem.

We are interested in DLS graphs being a coalescence of DLS graphs. Note that the coalescence
of two DLS graphs is not, necessarily DLS, see Figure 2. All paths, cycles, starlike trees, triangle
free 2-graph are DLS [26, 36, 41, 38]. In [24] it was shown that apart from two exceptional cases
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Figure 1. A tarantula graph T(a, t1, . . . , tb)

of order 6 and 7, all roses are DLS. In [15] it was shown that T(2, 1, . . . , 1) is DLS. In [40] it was
shown that T(3, t1) is DLS. In [35] it was shown that T(3, t1, . . . , tb) is DLS.
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eFigure 1. The rose graph R(3, 4) and th other graph with Lapla-

cian spectrum {0, 3−
√
5, 2, 3, 3, 3 +

√
5}.

Figure 2. Tow non-isomorphic graphs with the same Laplacian spectrum
{
0, 3−

√
5, 2, 3, 3, 3 +

√
5
}

, [39, 24]

The following theorem is our main result.

Theorem 1.1. All tarantula graphs and their complements are DLS.

The rest of this article is organized as follows: Section 2 contains preliminary results on the
Laplacian spectrum of a graph, while Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

In this section, we recall some previously established results being used to prove Theorem 1.1.
Note that the trace of a matrix M is denoted by tr(M).

Lemma 2.1. Let M and N be two matrices of size n. Then the following are equivalent:

(i) M and N are cospectral;
(ii) M and N have the same characteristic polynomial;

(iii) tr (M i) = tr (N i) for i = 1, 2, . . . , n.

Lemma 2.2 ([27, 34, 38, 42]). Let G be graph of size m with the Laplacian eigenvalues µ1 ≥
µ2 ≥ · · · ≥ µn = 0. Then the following hold:
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1. the number of vertices of G is equal to n;
2. 2m =

∑n
i=1 µi;

3. the number of spanning trees of G is equal to
∏n−1

i=1 µi;
4. the number of components of G is equal to the multiplicity of µn = 0;

5. tr(L(G)2) =
n∑

i=1

µi
2 = 2m+

∑
v∈V (G) d

2
G(v).

The next lemma relates the Laplacian spectrum of a graph and its complements.

Lemma 2.3 ([20]). Let µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and µ1 ≥ µ2 ≥ · · · ≥ µn = 0 be the Laplacian
spectrum of G and G, respectively. Then µi = n− µn−i for i = 1, 2, . . . , n− 1.

As a consequence of Lemma 2.3, we have the following fact:

Corollary 2.1. The complement of a DLS graph is also DLS.

Proof. Let G be a DLS graph and let H be a graph L-cospectral with G. Then it follows from
Lemma 2.7 that H is L-cospectral with G. Therefore, H ∼= G, since G is DLS. Consequently,
H ∼= G, as desired.

We denote by NG(C3) andWG(i), the number triangles of G, and the number of closed walks
of length i in G, respectively.

The next lemma enables us to compute the number of closed walks of lengths 2, 3, and 4 in G:

Lemma 2.4 ([14, 42]). Let G be a graph with m edges. Then the following hold:

1. WG(2) = 2m;

2. WG(3) = tr(A3(G)) = 6NG(C3);

3. WG(4) = 2m+ 4NG(P3) + 8NG(C4).

Lemma 2.5 ([33]). Let G be a graph with n vertices and m edges, and let ϕ(G) =
n∑

i=1

liµ
i be the

Laplacian characteristic polynomial of G. Then

(i) l0 = 1, l1 = −2m, l2 = 2m2 −m− 1
2

n∑
i=1

d2i (G);

(ii) l3 =
1

3

(
−4m3 + 6m2 + 3m

n∑
i=1

d2i (G)−
n∑

i=1

d3i (G)− 3
n∑

i=1

d2i (G) + 6NG(C3)

)
.

It follows from Lemma 2.1 that L-cospectral graphs share the same characteristic polynomial.
Hence the corresponding coefficients are also equal. Thus, the following lemma follows from the
Lemma 2.5 and Lemma 2.4:

Lemma 2.6 ([26]). If G and H are two L-cospectral graphs, then

tr(A3(G))−
n∑

i=1

(d3i (G)− 2)3 = tr(A3(H))−
n∑

i=1

(d3i (H)− 2)3.
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The following fact is a direct consequence of Lemma 2.4 and Lemma 2.6.

Corollary 2.2. LetG andH beL-cospectral graphs such that deg(G) = deg(H). ThenNG(C3) =
NH(C3).

Lemma 2.7 ([23]). Let G be a non-empty graph with n vertices. Then

µ1(G) ≥ d1(G) + 1. (1)

Furthermore, if G is connected, then the equality in (1) holds if and only if d1(G) = n− 1.

A graph G is called regular if d1(G) = · · · = dn(G). A bipartite graph is called semi-regular
if the degrees of vertices in each part, are constant.

For an arbitrary vertex u of G, we set θG(u) =
∑

v∈NG(u)

dG(v)

dG(u)
, where NG(u) denotes the set of

neighbors of u in G.

Lemma 2.8 ([25, 27]). Let G be a connected graph. Then

µ1(G) ≤ max
u∈V (G)

dG(u) + θG(u),

with equality if and only if G is a regular or a semi-regular bipartite graph.

Lemma 2.9 ([14, 25]). If G is a non-empty graph, then µ1(G) ≤ d1(G) + d2(G); and if G is
connected, then µ2(G) ≥ d2(G).

Lemma 2.10 ([20]). Let µ1 ≥ µ2 ≥ · · · ≥ µn be the eigenvalues of a symmetric n× n matrix M ,
and let λ1 ≥ λ2 ≥ · · · ≥ λn−1 be the eigenvalues of a principal sub-matrix of M of size n − 1.
Then µ1 ≥ λ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn−1 ≥ µn.

Lemma 2.11 ([21]). Let G be a graph and {u1, u2, . . . , uk, w1, w2, . . . , wp} ⊆ V (G) such that

NG(u1) = NG(u2) = · · · = NG(uk) = {w1, w2, . . . , wp} .

Let G∗ be the graph obtained from G by adding q (1 ≤ q ≤
(
k
2

)
) edges among {u1, u2, . . . , uk}.

Then the eigenvalues of L(G∗) are as follows: those eigenvalues of L(G) being equal to p are
incremented by λi(G∗[X]), i = 1, 2, . . . , k−1, and the remaining eigenvalues are the same, where
X = {u1, u2, . . . , uk}.

Lemma 2.12 ([22]). No two non-isomorphic starlike trees are L-cospectral.

Note that in the proof of Lemma 2.12, the following observation was proved:

Lemma 2.13. If S1 = S(l1, . . . , lt) and S2 = S(j1, . . . , jt) are two non-isomorphic starlike trees,
then µ1(S1) 6= µ1(S2), where l1 ≥ l2 ≥ · · · ≥ lt ≥ 1 and j1 ≥ j2 ≥ · · · ≥ jt ≥ 1.
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3. Proof of Theorem 1.1

In this section, it is proved that all tarantula graphs are DLS.
By an straightforward calculation we obtain the following fact:

Lemma 3.1. Let G = T(a, t1, . . . , tb) be a tarantula graph. Then

(i) n(G) = 5a+ 1 +
∑b

i=1 ti, m(G) = n(G) + a− 1;

(ii) deg(G) = (2a+ b, 2, . . . , 2︸ ︷︷ ︸
n(G)−(b+1) times

, 1, . . . , 1︸ ︷︷ ︸
b times

).

Lemma 3.2. If H is a graph L-cospectral with G = T(a, t1, . . . , tb), then

(i) 2a+ b+ 1 ≤ µ1(H) ≤ 2a+ b+ 2,

(ii) µ2(H) < 4.

Proof. (i) By Lemma 2.7, µ1(G) ≥ 2a + b + 1, and by Lemma 2.8, µ1(G) ≤ 2a + b + 2. This
implies that 2a+ b+ 1 ≤ µ1(H) = µ1(G) ≤ 2a+ b+ 2.

(ii) Let v be the vertex with maximum degree of G, and let Mv be the (n − 1) × (n − 1)
principal sub-matrix of L(G) formed by deleting the row and column corresponding to v. Since
Mv contains negative entries, we consider |Mv| which is obtained by taking the absolute value of
the entries of Mv. Now Mv is reducible, but it has a+b irreducible sub-matrices that correspond to
the components of G− v. On the other hand, each of these components has spectral radius strictly
less than 4, so one can conclude that the largest eigenvalue of |Mv| is less than 4, and so is that of
Mv. By Lemma 2.10, µ2(G) < 4 and so µ2(H) < 4, as desired.

Theorem 3.1. If H is a graph being L-cospectral with G = T(a, t1, . . . , tb), then they have the
same degree sequence, i. e., deg(H) = deg(G), and NH(C3) = 0.

Proof. By Lemma 3.2(ii), µ2(H) < 4, and thus it follows from Lemma 2.9 that d2(H) ≤ 3. Since
H and G are L-cospectral, by Lemma 2.6, H is also connected, and has the same order, size, and
sum of the squares of its degrees as G. Therefore, by Lemma 2.6, we have

d1(H)∑
i=1

ni = n(G), (2)

d1(H)∑
i=1

ini = 2m(G), (3)

d1(H)∑
i=1

i2ni = n1(G) + 4n2(G) + d21(G), (4)

Recall that by Lemma 3.1,
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n(G) = 5a+ 1 +
b∑

i=1

ti, m(G) = n(G) + a− 1,

n1(G) = b, n2(G) = n(G)− (b+ 1),

and d1(G) = 2a+ b. By adding (2), (3), and (4) with coefficients 2,−3, 1, respectively, we get:

d1(H)∑
i=1

(i2 − 3i+ 2)ni(G) = 4a2 + 4ab− 6a+ (b− 1)(b− 2). (5)

By Lemma 3.1,
∑n

i=1 (di(G)− 2)3 = ((2a+ b− 2)3 − b). Hence, it follows from Lemma 2.6
that

NH(C3) =

n∑
i=1

(di(H)− 2)3 − ((2a+ b− 2)3 − b)

6
. (6)

By Lemma 3.2, 2a+b+1 ≤ µ1(H) ≤ 2a+b+2. It follows from Lemma 2.7 that d1(H)+1 ≤
µ1(H) = µ1(G) ≤ 2a+ b+ 2, and so d1(H) ≤ 2a+ b+ 1. Moreover, it follows from Lemma 3.2
and Lemma 2.9 that

2a+ b+ 1 ≤ µ1(G) = µ1(H) ≤ d1(H) + d2(H) ≤ d1(H) + 3,

which implies that d1(H) ≥ 2a+ b− 2. As a result, 2a+ b− 2 ≤ d1(H) ≤ 2a+ b+ 1. We claim
that d1(H) = 2a+ b. To prove our claim, we consider the following cases:

Case 1. d1(H) = 2a+ b+ 1
Clearly, n2a+b+1 = 1, since d1(H) = 2a+ b+ 1 > 3 ≥ d2(H). From (5), we deduce that

((2a+ b+ 1)2 − 3(2a+ b+ 1) + 2) + 2n3 = 4a2 + 4ab− 6a+ (b− 1)(b− 2). (7)

As a result, n3 = −2a− b+ 1 < 0, which is impossible.
Case 2. d1(H) = 2a+ b

If b = 0, then for a = 1 we have H = C6 and in this case, the problem is clear, since cycles
are DLS.
For a ≥ 2 and b = 0, we have

4a2 − 6a+ 2 + 2n3 = 4a2 − 6a+ 2, (8)

which implies that n3 = 0. It follows from (2) and (3) that n1 = 0 and n2 = n−1. Therefore,
the degrees of H are the same as those of G and also d1(H) = 2a > 3 ≥ d2(H).
If a = b = 1, then d1(H) = 3. By (5), n3 = 1. If a 6= 1 or b 6= 1, then d1(H) = 2a + b >
3 ≥ d2(H). As a result, for any natural numbers a, b we have n2a+b = 1. Consequently, by
(5) we have

((2a+ b)2 − 3(2a+ b) + 2) + 2n3 = 4a2 + 4ab− 6a+ b2 − 3b+ 2, (9)

from which we have n3 = 0. Combining (3) and (4), we obtain that n1 = b and n2 =
n−(b+1). Therefore, deg(H) = deg(G). Hence, by Corollary 2.2,NH(C3) = NG(C3) = 0.
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Case 3. d1(H) = 2a+ b− 1

3.1. n2a+b−1 = 1.
In this case we have

((2a+ b− 1)2 − 3(2a+ b− 1) + 2) + 2n3 = 4a2 + 4ab− 6a+ (b− 1)(b− 2), (10)

Hence, n3 = 2a + b − 2. It follows from (3) and (4) that n1 = 2a + 2b − 3 and
n2 = n− 4a− 3b+ 4. Now, from (6) it is easy to see that

NH(C3) =
(2− b)(b− 3) + (−4a2 − 4ab+ 10a)

2
.

Let us prove that NH(C3) < 0. To do so, assume that g(a, b) = −2a(2a+ 2b− 5) and
f(b) = (2 − b)(b − 3). It is easy to see that l(b) ≥ 0 if is either 2 or 3 and l(b) < 0

otherwise. Therefore, for b ≥ 3, NH(C3) =
f(b) + g(a, b)

2
< 0, which is impossible.

Consequently, there are two subcases to be considered:
3.1.1. If b = 2, NH(C3) = −2a2 + a < 0, which is impossible.

3.1.2. If b = 1,NH(C3) = −2a2+3a−1. For a ≥ 2,NH(C3) < 0, which is impossible.
For a = 1, n2a+b−1 = n2 = 1 and so by (5) we obtain that 2 = 0, which is
impossible.

3.2 n2a+b−1 ≥ 2.
In this case we have

2a+ b− 1 = d1(H) = d2(H) ≤ 3,

and so

(a, b) ∈
{
(1, 0), (1, 1), (1, 2)

}
.

Consider the following subcases:
3.2.1. (a, b) = (1, 2). In this case, d1(H) = d2(H) = 3. Hence, by (5) n3 = 3.

Combining (3) and (4), we find that the roots are n1 = 3 and n2 = n − 6. It
follows from (6) that NH(C3) = −1, a contradiction.

3.2.2. (a, b) = (1, 1). In this case, d1(H) = d2(H) = 2. As before, we will have a
contradiction.

3.2.3. (a, b) = (1, 0). In this case, 1 = d1(H) = d2(H), and hence H = K2. But,
(a, b) = (1, 0) means that n(H) = n ≥ 4, a contradiction.

Case 4. d1(H) = 2a+ b− 2

4.1. n2a+b−2 = 1.
In this case,

2a+ b− 2 = d1(H) > 3 ≥ d2(H).

From (5), and by an straightforward calculation, we obtain that:

((2a+ b− 2)2 − 3(2a+ b− 2) + 2) + 2n3 = 4a2 + 4ab− 6a+ (b− 1)(b− 2). (11)
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As a result, n3 = 4a+ 2b− 5. It follows from (3) and (4) that n2 = n− 8a− 5b+ 11
and n1 = 4a+ 3b− 7. Furthermore, by (6)NH(C3) = −4a(a+ b− 3)− (b− 3)2. We
put

g(a, b) = −6a(a+ b− 3), and f(q) = −(b− 3)2.

If b ≥ 2, then f(b) + g(a, b) < 0 and so NH(C3) < 0, a contradiction. So we need to
consider the following cases:

4.1.1. b = 1. For a ≥ 2, NH(C3) < 0, which is impossible. If a = 1, then d1(H) = 1 >
3, which is impossible.

4.1.2. b = 0. Then f(0) + g(a, 0) < 0 and so NH(C3) < 0, a contradiction.
4.2. n2a+b−2 ≥ 2.

In this case,
d1(H) = d2(H) = 2a+ b− 2 ≤ 3.

Hence

(a, b) ∈
{
(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (3, 1)

}
.

We have the following subcases:
4.2.1. (b, a) = (0, 1). As a result d1(H) = d2(H) = 0, a contradiction, since H is

connected.

4.2.2. (b, a) = (0, 2). So d1(H) = d2(H) = 2 and so the degree sequence of H consists
of either 1 or 2, which means that H is either a path or a cycle. Consequently, by
(5) we get 0 = 6, which is impossible.

4.2.3. (b, a) = (1, 1). Obviously, n = n(H) ≥ 6. Moreover, 1 = d1(H) = d2(H), which
implies thatH = K2, sinceH is a connected graph. This is clearly a contradiction.

4.2.4. (b, a) = (1, 2). Therefore, 3 = d1(H) = d2(H). It follows from (2), (3) and
(5) that n1 = 4, n3 = 6 and n2 = n − 10. Finally, it follows from (6) that
NH(C3) = −4, which is impossible.

4.2.5. (b, a) = (2, 1). Therefore, 2 = d1(H) = d2(H), a contradiction.

4.2.6. (b, a) = (3, 1). As a result, 3 = d1(H) = d2(H). By (2), (3) and (4), we obtain
that n1 = n3 = 6 and n2 = n− 12, which is impossible by (6).

Let x and y be, respectively, the unique vertices of G1 = Ck1 ◦ · · · ◦Cka and G2 = S(l1, . . . , lb)
with maximum degree; Consider G = G1 ◦G2(x, y) with maximum degree v. For each 1 ≤ i ≤ a,
let ei be an arbitrary edge of Cki being adjacent to v. Then G − {e1, . . . , ea} is an starlike tree
which is denoted by SG.

We are now ready to finalize the proof of Theorem 1.1. Let G = T(a, t1, t2, . . . , tb) be a
tarantula graph having a hexagons and b paths of lengths ti, i = 1, 2, . . . , b. Assume that H is a
graph L-cospectral with G. It follows from Theorem 3.1 that deg(H) = deg(G) andNH(C3) = 0.
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Moreover, sine G is connected, it follows from Lemma 2.2 that H is also connected. Let v be the
unique vertex of degree 2a+ b in H . Then, H − v has maximum degree at most 2. We claim that
H − v does not contain any cycles; otherwise, the connectedness of H implies that it must have
another vertex of degree greater than 2, which is impossible. Consequently, H−v must be a forest
each component of which is a path. Now due to the fact

dH(v) = 2a+ b, NH(C3) = 0, n1 = b, deg(H) = (2a+ b, 2, . . . , 2︸ ︷︷ ︸
n(G)−(b+1) times

, 1, . . . , 1︸ ︷︷ ︸
b times

),

we conclude that there exist natural numbers k1, . . . , ka ≥ 2 such that

H ∼= (Ck1 ◦ Ck2 ◦ · · · ◦ Cka) ◦ S(t1, . . . , tb)(x, y),

where x and y are, respectively, the unique vertices of Ck1 ◦ · · · ◦ Cka and S(t1, . . . , tb) with
maximum degree; Consider starlike trees SG and SH . It follows from Lemma 2.11 that µ1(SG) =
µ1(G) and µ1(SH) = µ1(H), from which we have µ1(SG) = µ1(SH) since µ1(H) = µ1(G). Thus
by Lemma 2.13, we have G ∼= H , which as direct consequence of Corollary 2.1, we have G ∼= H ,
as desired.

4. Conclusion

Let G be a tarantula graph. In this article, we show that tarantula graphs are determined by
their Laplacian Spectrum (DLS) trough the fact that a graph which is L-cospectral with a tarantula
graph is a triangle-free graph with the same vertex degree sequence as G.

Let us put forward the following questions for further research in the future:

Question 1. Are tarantula graphs determined by their adjacency spectrum (DAS)?

Question 2. Are tarantula graphs determined by their signless Laplacian spectrum (DQS)?
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