Electronic Journal of Graph Theory and Applications

Bounds on the $A B C$ spectral radius of a tree

Sasmita Barik, Sonu Rani
School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, 752050, India
sasmita@iitbbs.ac.in, sr18@iitbbs.ac.in

Abstract

Let G be a simple connected graph with vertex set $\{1,2, \ldots, n\}$ and d_{i} denote the degree of vertex i in G. The $A B C$ matrix of G, recently introduced by Estrada, is the square matrix whose $i j$ th entry is $\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}$; if i and j are adjacent, and zero; otherwise. The entries in $A B C$ matrix represent the probability of visiting a nearest neighbor edge from one side or the other of a given edge in a graph. In this article, we provide bounds on $A B C$ spectral radius of G in terms of the number of vertices in G. The trees with maximum and minimum $A B C$ spectral radius are characterized. Also, in the class of trees on n vertices, we obtain the trees having first four values of $A B C$ spectral radius and subsequently derive a better upper bound.

Keywords: tree, $A B C$ matrix, $A B C$ spectral radius, nonnegative matrix
Mathematics Subject Classification : 05C05, 05C35, 05C50, 92E10
DOI: 10.5614/ejgta.2020.8.2.18

1. Introduction

We consider simple, finite and connected graphs only. Let $G=(V(G), E(G))$ be a graph on vertex set $V(G)=\{1,2, \ldots, n\}$. For $i=1,2, \ldots, n$, let d_{i} be the degree of vertex i in G. The adjacency matrix of $G, A(G)$, is a real symmetric matrix of order n whose $i j$ th entry is 1 , if i and j are $\operatorname{adjacent}(i \sim j)$; and 0 otherwise. The spectrum of $G, \sigma(G)=\left\{\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right\}$, where $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \geq \lambda_{n}(G)$ is the multiset of eigenvalues of $A(G)$. The largest eigenvalue, $\lambda_{1}(G)$, is called the spectral radius of G and is studied extensively by many researchers (see for example in [4]). Recently, in [6], Estrada provided a probabilistic interpretation of the term $\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}$ and showed that it represents the probability of visiting a nearest neighbor edge from one

[^0]side or the other of a given edge in a graph. In context of molecular graphs, this interpretation can be related to the polarizing capacity of the bond considered. He introduced a matrix representation of these probabilities in the form of generalized $A B C$ matrix which is a square matrix of order n, defined as $\Omega_{\alpha}(G)=\left(w_{i j}^{\alpha}\right)_{n \times n}$, where
\[

w_{i j}^{\alpha}= $$
\begin{cases}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha}, & \text { if } i \sim j \\ 0, & \text { otherwise }\end{cases}
$$
\]

Following Chen [2], when $\alpha=1 / 2$, we will hereafter call it the $A B C$ matrix and denote it by $\Omega(G)$. The eigenvalues of $\Omega(G)$ are called as the $A B C$ eigenvalues of G. Note that $\Omega(G)$ is a real symmetric matrix with real eigenvalues. Let $\vartheta_{1}(G) \geq \vartheta_{2}(G) \geq \cdots \geq \vartheta_{n}(G)$ are the $A B C$ eigenvalues of G in nonincreasing order. The largest $A B C$ eigenvalue, $\vartheta_{1}(G)$, is known as $A B C$ spectral radius.

The $A B C$ matrix of G can be viewed as a certain type of weighted adjacency matrix of G and can be expressed as [6]

$$
\Omega(G)=\left(A D^{-1}+D^{-1} A-2 D^{-1} A D^{-1}\right)^{\circ \frac{1}{2}}
$$

where A is the adjacency matrix of G, D is the degree diagonal matrix of G, and \circ is the entrywise operation (also known as Hadamard or Schur-operation). Note that the matrices $A D^{-1}$ and $D^{-1} A$ are the transition probability matrices for random walkers on graph [18].

The atom-bond connectivity index (in short $A B C$ index) [7] of G is defined as

$$
A B C(G)=\sum_{[i, j] \in E(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}
$$

It is worthy to point out that the $A B C$ index is directly related to the $A B C$ matrix, namely, sum of all entries of $\Omega(G)$ is equal to $2 A B C(G)$. Also, when G is regular, the $A B C$ matrix is a constant multiple of the adjacency matrix, namely, $\Omega(G)=\frac{\sqrt{2(r-1)}}{r} A(G)$, where r is the regularity of graph G.

The $A B C$ index is a valuable predictive index in the study of the heat of formation in alkanes [7]. Gutman et al. [14] proved that the $A B C$ index reproduces the heat of formation with an accuracy comparable to that of high-level ab initio and $\operatorname{DFT}(M P 2, B 3 L Y P)$ quantum chemical calculations. For more work on $A B C$ index, one can see $[3,5,8,9,10,11,12,13,17,19$, 20]. Here, we consider the problem of studying the eigenvalues of $\Omega(G)$. Apart from the various applications of $A B C$ matrix, our motivation came from some results on the $A B C$ eigenvalues of G discussed in [2]. Chen [2] has supplied a bound on $A B C$ spectral radius, namely, for a graph of order $n \geq 3$ with no isolated vertices, $\vartheta_{1}(G) \geq \sqrt{\frac{2}{n}\left(n-2 R_{-1}(G)\right)}$, where $R_{-1}(G)=\sum_{[i, j]} \frac{1}{d_{i} d_{j}}$ is the general Randić index of graph G. Estrada [6] proved that for any graph G on n vetrices,

$$
\frac{2}{n} \sum_{i=1}^{n} \Omega(i) \leq \vartheta_{1}(G) \leq \max _{i} \Omega(i)
$$

where $\Omega(i)$ is the i th row sum of $\Omega(G)$.
In [2], the author posed the problem: For a given class of graphs, characterize the graphs with minimum or maximum $A B C$ spectral radius $\vartheta_{1}(G)$. In this article, we consider the class of trees on n vertices and characterize the trees with the maximum and minimum $A B C$ spectral radius. We are able to provide the lower and upper bounds on $\vartheta_{1}(G)$ in terms of number of vertices in G. By successively removing a tree at each step from our consideration, we are able to obtain the trees with first four largest values of the $A B C$ spectral radius, in the class of trees on n vertices. Subsequently, we are able to provide a better upper bound on the $A B C$ spectral radius of trees.

2. Main results

Let A and B be two square matrices of same size. We say, A dominates B, write it as $A \geq B$ or $B \leq A$ if $A-B$ is a nonnegative matrix. If G is a connected graph then $\Omega(G)$ is an irreducible matrix. If A and B are two nonnegative irreducible matrices such that $A \geq B$, then by a well known result of Perron Frobenius, it follows that $\lambda_{1}(A) \geq \lambda_{1}(B)$. For a reference, see [16]. Next is a well known result concerning the characteristic polynomial of a matrix, which we shall use frequently without any mention.

Theorem 2.1. [16] Let P be a square matrix of order n. Then the characteristic polynomial of P is

$$
x^{n}-E_{1} x^{n-1}+E_{2} x^{n-2}+\cdots+(-1)^{n} E_{n},
$$

where E_{k} denotes the sum of principal minors of P of size k for $1 \leq k \leq n$.
Note that the entries in $\Omega(G)$ are of the form $\sqrt{\frac{x+y-2}{x y}}$, where $x, y \in\{1,2, \ldots, n\}$. The following result will be helpful which describes some properties of the function $f(x, y)=\frac{x+y-2}{x y}$.

Lemma 2.1. Let $n \geq 3$ and $f(x, y)=\frac{x+y-2}{x y}$, where $x, y \in\{1,2, \ldots, n\}$ and $(x, y) \neq(1,1)$. Then

$$
\frac{1}{n} \leq f(x, y) \leq 1-\frac{1}{n}
$$

and equality holds in the upper bound if and only if $(x, y)=(1, n)$ or $(n, 1)$.
Proof. Since $(x, y) \neq(1,1)$, at least one of x, y, say x, is greater than one. Then

$$
f(x, y)=\frac{1}{x}+\frac{1}{y}-\frac{2}{x y}=\frac{1}{x}+\frac{1}{y}\left(1-\frac{2}{x}\right) \geq \frac{1}{x} \geq \frac{1}{n} .
$$

Also, if $x=1$, then

$$
f(x, y)=1-\frac{1}{y} \leq 1-\frac{1}{n}
$$

with equality if and only if $y=n$. Otherwise $x \geq 2$ and

$$
f(x, y)=\frac{1}{x}\left(1+\frac{x-2}{y}\right) \leq \frac{1}{x}\left(1+\frac{x-2}{1}\right)=1-\frac{1}{x} \leq 1-\frac{1}{n}
$$

with equality if and only if $y=1$ and $x=n$. Hence the result.
The class of trees on n vertices is denoted by \mathcal{T}_{n}. By P_{n}, S_{n}, and K_{n}, we denote the path graph, star graph, and complete graph on n vertices, respectively. The trees $S_{n}^{2}, S_{n}^{3}, S_{n}^{4}, S_{n}^{5}, S_{n}^{6}$, wherever mentioned, are meant for graphs as given in Figure 1.

Figure 1. The trees $S_{n}^{2}, S_{n}^{3}, S_{n}^{4}, S_{n}^{5}, S_{n}^{6}$
Let us recall the following classical result concerning bounds on the spectral radius of trees.
Lemma 2.2. Let T be a tree in \mathcal{T}_{n}. Then $2 \cos \frac{\pi}{n+1} \leq \lambda_{1}(T) \leq \sqrt{n-1}$ and the equality occurs in upper bound if and only if $T=S_{n}$.

Hofmeister[15] has refined the above result and obtained the following.
Lemma 2.3. [15] Let T be a tree in $\mathcal{T}_{n} \backslash\left\{S_{n}, S_{n}^{2}\right\}$ and $n \geq 4$. Then

$$
\lambda_{1}(T) \leq \sqrt{\frac{1}{2}\left(n-1+\sqrt{n^{2}-10 n+33}\right)}
$$

and the equality holds if and only if $T=S_{n}^{4}$.
Lemma 2.4. [1] Let T be a tree in $\mathcal{T}_{n} \backslash\left\{S_{n}, S_{n}^{2}, S_{n}^{3}, S_{n}^{4}, S_{n}^{5}\right\}$ and $n \geq 11$. Then $\lambda_{1}(T) \leq$ $\sqrt{\frac{1}{2}\left(n-1+\sqrt{n^{2}-14 n+61}\right)}$ and the equality holds if and only if $T=S_{n}^{6}$.

Our results are on the $A B C$ spectral radius of trees. Removing one tree from our consideration at each step, we have obtained bounds on the $A B C$ spectral radius of trees on n vertices. The following result is a simple observation which provides the unique trees in \mathcal{T}_{n} with the maximum and minimum $A B C$ spectral radius.

Proposition 2.1. Let T be a tree on $n \geq 3$ vertices. Then

$$
\frac{2}{\sqrt{n-1}} \cos \frac{\pi}{n+1} \leq \vartheta_{1}(T) \leq \sqrt{n-2}
$$

and the equality holds in upper bound if and only if $T=S_{n}$.

Proof. By Lemma 2.1, it follows that an entry in $A B C$ matrix of T is bounded below by $\frac{1}{\sqrt{n-1}}$ and is bounded above by $\sqrt{\frac{n-2}{n-1}}$. Moreover the $(i j)$-th entry is equal to $\sqrt{\frac{n-2}{n-1}}$ if and only if $(i, j)=(1, n-1)$ or $(n-1,1)$. This implies that $\frac{1}{\sqrt{n-1}} A(T) \leq \Omega(T) \leq \sqrt{\frac{n-2}{n-1}} A(T)$ and the equality occurs in upper bound if and only if $T=S_{n}$. Since both the matrices $\Omega(T)$ and $A(T)$ are nonnegative irreducible, we have $\frac{1}{\sqrt{n-1}} \lambda_{1}(T) \leq \vartheta_{1}(T) \leq \sqrt{\frac{n-2}{n-1}} \lambda_{1}(T)$. Now using Lemma 2.2,

$$
\frac{2}{\sqrt{n-1}} \cos \frac{\pi}{n+1} \leq \vartheta_{1}(T) \leq \sqrt{n-2}
$$

and the equality occurs in upper bound if and only if $T=S_{n}$. Hence the result.
Theorem 2.2. Let $n \geq 9$ and $T \in \mathcal{T}_{n} \backslash\left\{S_{n}\right\}$. Then

$$
\vartheta_{1}(T) \leq \sqrt{\frac{n^{2}-5 n+7+\sqrt{(n-2)^{2}+(n-3)^{4}}}{2(n-2)}}
$$

and the equality holds if and only if $T=S_{n}^{2}$.
Proof. With a suitable permutation of vertices, the $A B C$ matrix of S_{n}^{2} can be written as

$$
\Omega\left(S_{n}^{2}\right)=\left[\begin{array}{cccccc}
0 & \frac{1}{\sqrt{2}} & 0 & \sqrt{\frac{n-3}{n-2}} & \cdots & \sqrt{\frac{n-3}{n-2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & \cdots & 0 \\
\sqrt{\frac{n-3}{n-2}} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & & & & & \\
\sqrt{\frac{n-3}{n-2}} & 0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Note that a nonzero principal minor in $\Omega\left(S_{n}^{2}\right)$ is of size at most 4 and the sum of principal minors of size 2 and 4 are $-\left(1+\frac{(n-3)^{2}}{n-2}\right)$ and $\frac{(n-3)^{2}}{2(n-2)}$, respectively. Moreover, rest of the principal minors in $\Omega\left(S_{n}^{2}\right)$ are zero. Thus, the $A B C$ characteristic polynomial of S_{n}^{2} is

$$
x^{n-4}\left(x^{4}-\left(1+\frac{(n-3)^{2}}{n-2}\right) x^{2}+\frac{(n-3)^{2}}{2(n-2)}\right) .
$$

This implies that $\vartheta_{1}\left(S_{n}^{2}\right)=\sqrt{\frac{n^{2}-5 n+7+\sqrt{(n-2)^{2}+(n-3)^{4}}}{2(n-2)}}$. Observe that if $T \neq S_{n}, S_{n}^{2}$, then maximum possible value of any entry in $\Omega(T)$ is $\sqrt{\frac{n-4}{n-3}}$, which implies

$$
\Omega(T) \leq \sqrt{\frac{n-4}{n-3}} A(T)
$$

Further, since both of $\Omega(T)$ and $A(T)$ are nonnegative irreducible matrices, we have $\vartheta_{1}(T) \leq$ $\sqrt{\frac{n-4}{n-3}} \lambda_{1}(T)$, where $T \neq S_{n}, S_{n}^{2}$. Then using Lemma 2.3,

$$
\vartheta_{1}(T) \leq \sqrt{\frac{n-4}{n-3}} \sqrt{\frac{n-1+\sqrt{n^{2}-10 n+33}}{2}}
$$

Now we claim that

$$
\sqrt{\frac{n-4}{n-3}} \sqrt{\frac{n-1+\sqrt{n^{2}-10 n+33}}{2}}<\sqrt{\frac{n^{2}-5 n+7+\sqrt{(n-2)^{2}+(n-3)^{4}}}{2(n-2)}}
$$

Squaring both sides and simplifying, we get

$$
(n-4)(n-2)\left(n-1+\sqrt{n^{2}-10 n+33}\right)<(n-3)\left(n^{2}-5 n+7+\sqrt{(n-2)^{2}+(n-3)^{4}}\right)
$$

that is,

$$
n^{2}-8 n+13+(n-2)(n-4) \sqrt{n^{2}-10 n+33}<(n-3) \sqrt{(n-2)^{2}+(n-3)^{4}} .
$$

For $n \geq 9, n^{2}-10 n+33<(n-4)^{2}$ and $(n-3)^{4}<(n-2)^{2}+(n-3)^{4}$. Therefore it is sufficient to show that

$$
n^{2}-8 n+13+(n-2)(n-4)^{2}<(n-3)^{3}
$$

Equivalently, $n^{3}-9 n^{2}+24 n-19<n^{3}-9 n^{2}+27 n-27$, which is true. Hence, the result.
Theorem 2.3. Let $n \geq 11$ and $T \in \mathcal{T}_{n} \backslash\left\{S_{n}, S_{n}^{2}, S_{n}^{3}, S_{n}^{5}\right\}$. Then

$$
\vartheta_{1}(T) \leq \sqrt{\frac{3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}}{6(n-3)}}
$$

and the equality holds if and only if $T=S_{n}^{4}$.
Proof. With a suitable permutation of vertices, the $A B C$ matrix of S_{n}^{4} can be written as $\Omega\left(S_{n}^{4}\right)=$ $W+W^{T}$ where $W=\left[w_{i j}\right]$ is a matrix with only nonzero entries $w_{12}=\sqrt{\frac{n-2}{3(n-3)}}, w_{15}=w_{16}=$ $\cdots=w_{1 n}=\sqrt{\frac{n-4}{n-3}}$ and $w_{23}=w_{24}=\sqrt{\frac{2}{3}}$. Note that the sum of principal minors of size 2 and 4 in $\Omega\left(S_{n}^{4}\right)$ are $-\left(\frac{3 n^{2}-19 n+34}{3(n-3)}\right)$ and $\frac{4(n-4)^{2}}{3(n-3)}$, respectively and rest of the principal minors are zero. Thus the $A B C$ characteristic polynomial of S_{n}^{4} is

$$
x^{n-4}\left(x^{4}-\left(\frac{3 n^{2}-19 n+34}{3(n-3)}\right) x^{2}+\frac{4(n-4)^{2}}{3(n-3)}\right) .
$$

This implies that $\vartheta_{1}\left(S_{n}^{4}\right)=\sqrt{\frac{3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}}{6(n-3)}}$.

Observe that if $T \neq S_{n}, S_{n}^{2}, S_{n}^{3}, S_{n}^{4}, S_{n}^{5}$, then maximum possible value of any entry in $\Omega(T)$ is $\sqrt{\frac{n-5}{n-4}}$ which means $\Omega(T) \leq \sqrt{\frac{n-5}{n-4}} A(T)$. Further since both of $\Omega(T)$ and $A(T)$ are nonnegative irreducible matrices, we obtain $\vartheta_{1}(T) \leq \sqrt{\frac{n-5}{n-4}} \lambda_{1}(T)$. Using Lemma 2.4,

$$
\vartheta_{1}(T) \leq \sqrt{\frac{n-5}{n-4}} \sqrt{\frac{1}{2}\left(n-1+\sqrt{n^{2}-14 n+61}\right)} .
$$

Next, we claim that

$$
\sqrt{\frac{n-5}{n-4}} \sqrt{\frac{\left(n-1+\sqrt{n^{2}-14 n+61}\right)}{2}}<\vartheta_{1}\left(S_{n}^{4}\right)
$$

Squaring both sides, we get

$$
\frac{n-5}{2(n-4)}\left(n-1+\sqrt{n^{2}-14 n+61}\right)<\frac{3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}}{6(n-3)} \text {. That is, we need }
$$ to show that $f(n)<g(n)$, where

$$
\begin{aligned}
& f(n)=3(n-3)(n-5)\left(n-1+\sqrt{n^{2}-14 n+61}\right) \text { and } \\
& g(n)=(n-4)\left(3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}\right) . \text { For } n=
\end{aligned}
$$ $11,12,13,14,15$, the inequality can be verified manually. Suppose $n \geq 16$. Then $n^{2}-14 n+61<$ $\left(n-\frac{19}{3}\right)^{2}$ which implies that

$$
\begin{equation*}
f(n)<3(n-3)(n-5)\left(n-1+n-\frac{19}{3}\right)=6 n^{3}-70 n^{2}+266 n-330 \tag{1}
\end{equation*}
$$

Also, $\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}$

$$
=\left(3 n^{2}-27 n+\frac{182}{3}\right)^{2}+64 n-\frac{1984}{9}>\left(3 n^{2}-27 n+\frac{182}{3}\right)^{2} .
$$

Therefore,

$$
\begin{aligned}
g(n) & =(n-4)\left(3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}\right) \\
& >(n-4)\left(3 n^{2}-19 n+34+3 n^{2}-27 n+\frac{182}{3}\right) \\
& =(n-4)\left(6 n^{2}-46 n+\frac{284}{3}\right)=6 n^{3}-70 n^{2}+\frac{836}{3} n-\frac{1136}{3}
\end{aligned}
$$

That is,

$$
\begin{equation*}
g(n)>6 n^{3}-70 n^{2}+\frac{836}{3} n-\frac{1136}{3} . \tag{2}
\end{equation*}
$$

From equation (1) and (2), we obtain $f(n)-g(n)<-\frac{38}{3} n+\frac{146}{3}<0$. Hence, our claim is justified.

The following two lemmas are needed to obtain the third and fourth tree in \mathcal{T}_{n}.

Lemma 2.5. Let $n \geq 10$, then

$$
\vartheta_{1}\left(S_{n}^{3}\right)=\sqrt{\frac{2 n^{2}-13 n+23+\sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)}}{4(n-3)}}
$$

and $\vartheta_{1}\left(S_{n}^{3}\right)>\vartheta_{1}\left(S_{n}^{4}\right)$.
Proof. With a suitable permutation of vertices, the $A B C$ matrix of S_{n}^{3} can be written as

$$
\Omega\left(S_{n}^{3}\right)=\left[\begin{array}{ccccccc}
0 & \frac{1}{\sqrt{2}} & 0 & 0 & \sqrt{\frac{n-4}{n-3}} & \cdots & \sqrt{\frac{n-4}{n-3}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & \cdots & 0 \\
\sqrt{\frac{n-4}{n-3}} & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & & & & & & \\
\sqrt{\frac{n-4}{n-3}} & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Note that the sum of principal minors of size 2 and 4 in $\Omega\left(S_{n}^{3}\right)$ is $-\frac{(n-4)^{2}}{n-3}-\frac{3}{2}=\frac{2 n^{2}-13 n+23}{-2(n-3)}$ and $\frac{(n-4)^{2}}{n-3}+\frac{1}{4}=\frac{4 n^{2}-31 n+61}{4(n-3)}$, respectively, and rest of the principal minors are zero. Therefore, the $A B C$ characteristic polynomial of S_{n}^{3} is

$$
x^{n-4}\left(x^{4}-\left(\frac{2 n^{2}-13 n+23}{2(n-3)}\right) x^{2}+\frac{4 n^{2}-31 n+61}{4(n-3)}\right) .
$$

This implies that $\vartheta_{1}\left(S_{n}^{3}\right)=\sqrt{\frac{2 n^{2}-13 n+23+\sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)}}{4(n-3)}}$.
We claim that $\vartheta_{1}\left(S_{n}^{3}\right)>\vartheta_{1}\left(S_{n}^{4}\right)$, where the expression for $\vartheta_{1}\left(S_{n}^{4}\right)$ is given in Theorem 2.3. Squaring both sides and then cross-multiplying, we get

$$
\begin{aligned}
& 3\left(2 n^{2}-13 n+23+\sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)}\right) \\
& >2\left(3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}\right)
\end{aligned}
$$

which means

$$
\begin{aligned}
& 3 \sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)} \\
& >n-1+2 \sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}} .
\end{aligned}
$$

It can be seen that

$$
\begin{aligned}
& \left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2} \\
& =\left(3 n^{2}-27 n+65\right)^{2}-\left(26 n^{2}-298 n+765\right)<\left(3 n^{2}-27 n+65\right)^{2}
\end{aligned}
$$

Therefore, it suffices to show that

$$
3 \sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)}>n-1+2\left(3 n^{2}-27 n+65\right)
$$

Again squaring both sides and simplifying, we have $24 n^{3}-460 n^{2}+2748 n-5292>0$, which is true for $n \geq 10$. Hence, the result.

Lemma 2.6. Let $n \geq 7$, then

$$
\vartheta_{1}\left(S_{n}^{5}\right)=\sqrt{\frac{2 n^{2}-15 n+31+\sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)}}{4(n-3)}}
$$

and $\vartheta_{1}\left(S_{n}^{5}\right)<\vartheta_{1}\left(S_{n}^{4}\right)$.
Proof. With a suitable permutation of vertices, the $A B C$ matrix of S_{n}^{5} can be written as

$$
\Omega\left(S_{n}^{5}\right)=\left[\begin{array}{cccccccc}
0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & \sqrt{\frac{n-4}{n-3}} & \cdots & \sqrt{\frac{n-4}{n-3}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & \cdots & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & \cdots & 0 \\
\sqrt{\frac{n-4}{n-3}} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & & & & & & & \\
\sqrt{\frac{n-4}{n-3}} & 0 & 0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Note that the sum of principal minors of size $2,4,6$ in $\Omega\left(S_{n}^{5}\right)$ is $-2-\frac{(n-4)(n-5)}{n-3}, \frac{3}{4}+\frac{(n-4)(n-5)}{n-3}$ and $-\frac{(n-4)(n-5)}{4(n-3)}$, respectively. The rest of principal minors are zero. Therefore, the $A B C$ characteristic polynomial of S_{n}^{5} is

$$
x^{n-6}\left(x^{6}-\left(2+\frac{(n-4)(n-5)}{n-3}\right) x^{4}+\left(\frac{3}{4}+\frac{(n-4)(n-5)}{n-3}\right) x^{2}-\frac{(n-4)(n-5)}{4(n-3)}\right) .
$$

Thus, $\vartheta_{1}\left(S_{n}^{5}\right)$ is the square-root of the largest root of following polynomial

$$
\begin{aligned}
f(x) & =x^{3}-\left(2+\frac{(n-4)(n-5)}{n-3}\right) x^{2}+\left(\frac{3}{4}+\frac{(n-4)(n-5)}{n-3}\right) x-\frac{(n-4)(n-5)}{4(n-3)} \\
& =\frac{(2 x-1)\left(2(n-3) x^{2}-\left(2 n^{2}-15 n+31\right) x+\left(n^{2}-9 n+20\right)\right)}{4(n-3)} .
\end{aligned}
$$

Now, $f(x)=0$ if and only if $x=\frac{1}{2}$ or $\frac{2 n^{2}-15 n+31 \pm \sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)}}{4(n-3)}$. Since

$$
\frac{1}{2}<\frac{2 n^{2}-15 n+31+\sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)}}{4(n-3)}
$$

it follows that

$$
\vartheta_{1}\left(S_{n}^{5}\right)=\sqrt{\frac{2 n^{2}-15 n+31+\sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)}}{4(n-3)}} .
$$

Now to show that $\vartheta_{1}\left(S_{n}^{5}\right)<\vartheta_{1}\left(S_{n}^{4}\right)$, it suffices to show

$$
\begin{aligned}
& 3\left(2 n^{2}-15 n+31+\sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)}\right) \\
& \quad<2\left(3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}\right)
\end{aligned}
$$

Equivalently, it suffices to show that

$$
\begin{align*}
& 3 \sqrt{\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)} \tag{3}\\
& <7 n+5+2 \sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}
\end{align*}
$$

It can be easily verified that for $n \geq 7$,

$$
\left(2 n^{2}-15 n+31\right)^{2}-8(n-3)\left(n^{2}-9 n+20\right)<\left(2 n^{2}-16 n+38\right)^{2}
$$

and

$$
\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}>\left(3 n^{2}-27 n+60\right)^{2} .
$$

Therefore, the left side of (3) is less than $3\left(2 n^{2}-16 n+38\right)$ and the right side of (3) is greater than $7 n+5+2\left(3 n^{2}-27 n+60\right)$. Further,

$$
3\left(2 n^{2}-16 n+38\right)<7 n+5+2\left(3 n^{2}-27 n+60\right)
$$

is true for $n \geq 7$, which proves the inequality (3). Hence, the result.
The following two theorems provide us the trees with the third and fourth largest $A B C$ spectral radius. The results are immediate from Theorem 2.3, Lemma 2.5 and Lemma 2.6.

Theorem 2.4. Let $n \geq 11$ and $T \in \mathcal{T}_{n} \backslash\left\{S_{n}, S_{n}^{2}\right\}$. Then

$$
\vartheta_{1}(T) \leq \sqrt{\frac{2 n^{2}-13 n+23+\sqrt{\left(2 n^{2}-13 n+23\right)^{2}-4(n-3)\left(4 n^{2}-31 n+61\right)}}{4(n-3)}}
$$

and the equality holds if and only if $T=S_{n}^{3}$.
Theorem 2.5. Let $n \geq 11$ and $T \in \mathcal{T}_{n} \backslash\left\{S_{n}, S_{n}^{2}, S_{n}^{3}\right\}$. Then

$$
\vartheta_{1}(T) \leq \sqrt{\frac{3 n^{2}-19 n+34+\sqrt{\left(3 n^{2}-19 n+34\right)^{2}-48(n-3)(n-4)^{2}}}{6(n-3)}},
$$

and the equality holds if and only if $T=S_{n}^{4}$.

Conclusion

We prove that for any tree on n vertices, $2 \cos \frac{\pi}{n+1} \leq \vartheta_{1}(T) \leq \sqrt{n-2}$. Then refining this upper bound on $\vartheta_{1}(T)$ at each step, we have obtained that $S_{n}, S_{n}^{2}, S_{n}^{3}, S_{n}^{4}$ are the trees with first four values of $\vartheta_{1}(T)$ in \mathcal{T}_{n}. As expected, we notice that ordering of trees according the $A B C$ spectral radius is different than the ordering of trees according the spectral radius as given in Hofmeister [15].

It is easy to see that, when G is a regular graph of regularity $r, \Omega(G)=\frac{\sqrt{2(r-1)}}{r} A(G)$. So, in some sense spectrum of both the matrices contain the same information about the graph. For example, the graph with largest spectral radius is $n-1$ regular graph K_{n} which is also the graph with largest $\vartheta_{1}(G)$. However, in case of nonregular graphs, $\Omega(G)$ would contain more information than $A(G)$. It seems that $A B C$ spectrum may lead to some new and nontrivial results on graph structure.

Acknowledgments

The second author acknowledges the financial support from CSIR, Government of India.

References

[1] A. Chang and Q. Huang, Ordering trees by their largest eigenvalues, Linear Algebra Appl. 370 (2003), 175-184.
[2] X. Chen, On ABC eigenvalues and ABC energy, Linear Algebra Appl. 544 (2018), 141-157.
[3] J. Chen, J. Liu, and X. Guo, Some upper bounds for the atom-bond connectivity index of graphs, Appl. Math. Lett., 25 (2012), 1077-1081.
[4] D. Cvetković and P. Rowlinson, The largest eigenvalue of a graph: A survey, Linear Multilinear Algebra, 544 (1990), 141-157.
[5] K.C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math., 158 (2010), 11811188.
[6] E. Estrada, The ABC matrix, J. Math. Chem., 55 (2017), 1021-1033.
[7] E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian J. Chem., 37(A) (1998), 849-855.
[8] G.H. Fath-Tabar, B. Vaez-Zadeh, A.R. Ashrafi, and A. Graovac, Some inequalities for the atom-bond connectivity index of graph operations, Discrete Appl. Math., 159 (2011), 13231330.
[9] B. Furtula, A. Graovac, and D. Vukičević, Atom-bond connectivity index of trees, Discrete Appl. Math., 157 (2009), 2828-2835.
[10] B. Furtula, I. Gutman, and M. Ivanović, D. Vukičević, Computer search for trees with minimal ABC index, Appl. Math. Comput., 219 (2012), 768-772.
[11] L. Gan, H. Hou, and B. Liu, Some results on atom-bond connectivity index of graphs, MATCH Commun. Math. Comput. Chem., 66 (2011), 669-680.
[12] I. Gutman and B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 68 (2012), 131-136.
[13] I. Gutman, B. Furtula, and M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 67 (2012), 467-482.
[14] I. Gutman, J. Tošović, S. Radenković, and S. Marković, On atom-bond connectivity index and its chemical applicability, Indian J. Chem., 51(A) (2012), 690-694.
[15] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl., 260 (1997), 43-59.
[16] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Uni. Press, New York, (2013).
[17] W. Lin, X. Lin, T. Gao, and X. Wu, Proving a conjecture of Gutman concerning trees with minimal ABC index, MATCH Commun. Math. Comput. Chem., 69 (2013) 549-557.
[18] L. Lovász, Random walks on graphs: A Survey, Combinatorics Paul Erdös is Eighty, 2 (1993) 1-46.
[19] R. Xing, B. Zhou, and Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math., 158 (2010), 1536-1545.
[20] R. Xing, B. Zhou, and F. Dong, On atom-bond connectivity index of connected graphs, Discrete Appl. Math., 159 (2011) 1617-1630.

[^0]: Received: 24 February 2019, Revised: 14 September 2020, Accepted: 6 October 2020.

