

Electronic Journal of Graph Theory and Applications

On strict-double-bound numbers of graphs and cut sets

Kazutaka Ikeda, Kenjiro Ogawa, Satoshi Tagusari, Shin-ichiro Tashiro, Morimasa Tsuchiya* Department of Mathematical Sciences, Tokai University, Hiratsuka 259-1292, Japan

kenjiro@obirin.ac.jp, tagusari@bunkyo.ac.jp, tashilost@yahoo.co.jp, morimasa@keyaki.cc.u-tokai.ac.jp

* corresponding author

Abstract

For a poset $P = (X, \leq_P)$, the *strict-double-bound graph* of P is the graph sDB(P) on V(sDB(P)) = X for which vertices u and v of sDB(P) are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_P u \leq_P y$ and $x \leq_P v \leq_P y$. The *strict-double-bound number* $\zeta(G)$ of a graph G is defined as $\min\{n; sDB(P) \cong G \cup \overline{K_n} \text{ for some poset } P\}$. We obtain an upper bound of strict-double-bound numbers of graphs with a cut-set generating a complete subgraph. We also estimate upper bounds of strict-double-bound numbers of chordal graphs.

Keywords: strict-double-bound graph, strict-double-bound number, cut-set, chordal graph Mathematics Subject Classification : 05C62, 05C76 DOI: 10.5614/ejgta.2021.9.2.16

1. Introduction

In this paper we consider finite graphs with no loops and no multiple edges, and finite posets. For a graph G and $S \subseteq V(G)$, $\langle S \rangle_V$ is the induced subgraph on S and $G - S = \langle V(G) - S \rangle_V$. The graph \overline{K}_n is a graph with n vertices and no edges.

A *clique* in a graph G is the vertex set of a maximal complete subgraph of G. A family $\mathcal{Q} = \{Q_1, Q_2, \ldots, Q_m\}$ is an *edge clique cover* of G if each Q_i is a clique of G and for each $uv \in E(G)$, there exists $Q_i \in \mathcal{Q}$ such that $u, v \in Q_i$.

Received: 23 February 2019, Revised: 22 March 2021, Accepted: 24 April 2021.

A partially ordered set (*poset*) $P = (X, \leq_P)$ consists of a non-empty set X and a binary relation \leq_P on X which satisfy reflexive law, anti-symmetric law and transitive law:

- 1. For all $u \in X$, $u \leq_P u$: reflexive law.
- 2. If $u \leq_P v$ and $v \leq_P u$, then u = v: anti-symmetric law.
- 3. If $u \leq_P v$ and $v \leq_P w$, then $u \leq_P w$: transitive law.

For $u, v \in P$, u and v are *comparable* if $u \leq_P v$ or $v \leq_P u$, and otherwise u and v are *incomparable*.

For a poset P, let Max(P) be the set of all maximal elements of P and Min(P) be the set of all minimal elements of P. For a poset P and an element $v \in V(P)$, $U_P(v) = \{u \in V(P); v \leq_P u\}$ and $L_P(v) = \{u \in V(P); u \leq_P v\}$. For a poset P and elements u and v of P, $u \parallel v$ denotes that u is incomparable with v in P.

McMorris and Zaslavsky [6] introduced concepts of some kinds of graphs on posets, that is, upper bound graphs, strict upper bound graphs, double bound graphs and strict-double-bound graphs. Langley et. al [4] and Scott [10] dealt with interval strict upper bound graphs and chordal strict upper bound graphs. Cheston and Jap [1] studied upper bound graphs from the viewpoint of algorithms.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset $P = (X, \leq_P)$, the *strict-double-bound graph* (sDB-graph) of P is the graph sDB(P) on V(sDB(P)) = X for which vertices u and v of sDB(P) are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_P u \leq_P y$ and $x \leq_P v \leq_P y$. We say that a graph G is a *strict-double-bound graph* if there exists a poset whose strict-double-bound graph is isomorphic to G. Note that maximal elements and minimal elements of a poset P are isolated vertices of sDB(P). So, a connected graph with at least two vertices is not a strict-double-bound graph. Scott [11] showed the following result.

Theorem 1.1 (Scott [11]). Any graph that is the disjoint union of a non-trivial component and enough number of isolated vertices is a strict-double-bound graph.

Therefore, we introduced the strict-double-bound number of a graph in [8]. The *strict-double-bound number* $\zeta(G)$ of a graph G is defined as min{n; $sDB(P) \cong G \cup \overline{K}_n$ for some poset P}.

Scott [11] obtained the following result, using a concept of transitive double competition numbers.

Theorem 1.2 (Scott [11]). For a non-trivial connected graph G and a minimal edge clique cover \mathcal{Q} of G, $\left[2\sqrt{|\mathcal{Q}|}\right] \leq \zeta(G) \leq |\mathcal{Q}| + 1$.

In [7] we obtain the following result.

Proposition 1.1 (Ogawa et. al [7]). Let G be a connected graph with at least two vertices and P a poset with $sDB(P) \cong G \cup \overline{K}_{\zeta(G)}$. Then $|Max(P) \cup Min(P)| = \zeta(G)$.

By Theorem 1.2, we obtained that $\zeta(K_n) = 2$ for $n \ge 2$. We already obtained strict-doublebound numbers of $K_{1,n}$, P_n , C_n and W_n in [3] and [8]. We also gave an upper bound of strictdouble-bound numbers of non-trivial trees in [8]. The sum G + H of two graphs G and H is the graph with the vertex set $V(G + H) = V(G) \cup V(H)$ and the edge set $E(G + H) = E(G) \cup E(H) \cup \{uv ; u \in V(G), v \in V(H)\}$. In [3] we also obtained the following result on the sum operation.

Theorem 1.3 (Konishi et. al [3]). For a graph G with at least two vertices and no isolated vertices, $\zeta(K_n + G) = \zeta(G)$ for $n \ge 1$.

We consider another operation on graphs. The *union* $G \cup H$ of two graphs G and H is the graph with the vertex set $V(G \cup H) = V(G) \cup V(H)$ and the edge set $E(G \cup H) = E(G) \cup E(H)$. In this paper, we consider graphs with a cut-set generating a complete graph. Using concepts of cut-sets and union of graphs, we estimate a strict-double-bound number of a graph.

2. Cut-vertices and strict-double-bound numbers

In this section we consider connected graphs and cut-vertices. We obtain the following result. For a graph G, k(G) is the number of connected components. For a graph G, a vertex v of G is called a *cut-vertex* if k(G - v) > k(G).

Theorem 2.1. Let G be a connected graph with a cut-vertex s and G - s has two components G_1 and G_2 . For i = 1, 2, let $H_i = \langle V(G_i) \cup \{s\} \rangle_V$ and $P(H_i)$ be a poset such that $sDB(P(H_i)) \cong$ $H_i \cup \overline{K}_{\zeta(H_i)}$. Then $\zeta(G) \leq \zeta(H_1) + \zeta(H_2) - 1$.

Proof. For i = 1, 2, let α_i be a minimal element of $P(H_i)$ such that $\alpha_i \leq_{P(H_i)} s$. We construct a poset Q as follows:

- 1. $V(Q) = V(P(H_1)) \cup V(P(H_2)) \{\alpha_2\},\$
- 2. $x \leq_Q x$ for all $x \in V(Q)$,
- 3. for $x \in Min(P(H_1)) \cup (Min(P(H_2)) \{\alpha_2\})$ and $y \in V(Q)$, $x \leq_Q y$ if $x \leq_{P(H_i)} y$,
- 4. for $x \in V(Q)$ and $y \in Max(P(H_1)) \cup Max(P(H_2))$, $x \leq_Q y$ if $x \leq_{P(H_i)} y$,
- 5. for $x \in V(Q) (\operatorname{Max}(P(H_1)) \cup \operatorname{Min}(P(H_1)) \cup \operatorname{Max}(P(H_2)) \cup \operatorname{Min}(P(H_2)))$ and $\gamma \in \operatorname{Max}(P(H_2))$, $\alpha_1 \leq_Q x \leq_Q \gamma$ and $\alpha_1 \leq_Q \gamma$ if $\alpha_2 \leq_{P(H_2)} x \leq_{P(H_2)} \gamma$.

Note that $H_1 \cup H_2 = G$. We show that $sDB(Q) \cong G \cup \overline{K}_m$, where $m = \zeta(H_1) + \zeta(H_2) - 1$. We consider the following cases.

Case 1. $u, v \in V(P(H_i)) - (Max(P(H_i)) \cup Min(P(H_i)))$ and $uv \in E(H_i)$ (i = 1, 2)Then there exist $a \in Min(P(H_i))$ and $b \in Max(P(H_i)) \subseteq Max(Q)$ such that $a \leq_{P(H_i)} u \leq_{P(H_i)} b$ and $a \leq_{P(H_i)} v \leq_{P(H_i)} b$.

Subcase 1.1. $a \neq \alpha_2$

Then $a \in Min(Q)$. So $a \leq_Q u \leq_Q b$ and $a \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$. Subcase 1.2. $a = \alpha_2$

Then $\alpha_1 \leq_Q u \leq_Q b$ and $\alpha_1 \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$. Case 2. $u, v \in V(P(H_i)) - (Max(P(H_i)) \cup Min(P(H_i)))$ and $uv \notin E(H_i)$ (i = 1, 2)

If $L_{P(H_2)}(u) \cap L_{P(H_2)}(v) = \emptyset$ for $u, v \in V(P(H_2))$, then $\alpha_2 \notin L_{P(H_2)}(u) \cap L_{P(H_2)}(v)$ and $L_Q(u) \cap L_Q(v) = \emptyset$. Thus for $uv \notin E(H_i)$, $L_Q(u) \cap L_Q(v) = \emptyset$ or $U_Q(u) \cap U_Q(v) = \emptyset$. So $uv \notin E(sDB(Q))$.

Case 3. $u \in V(P(H_1)) - (Max(P(H_1)) \cup Min(P(H_1)))$ and $v \in V(P(H_2)) - (Max(P(H_2)) \cup Min(P(H_2)))$

Then $U_Q(u) \subseteq U_{P(H_1)}(u)$, $U_Q(v) \subseteq U_{P(H_2)}(v)$ and $U_{P(H_1)}(u) \cap U_{P(H_2)}(v) = \emptyset$. Thus $U_Q(u) \cap U_Q(v) = \emptyset$ and $uv \notin E(\mathrm{sDB}(Q))$.

Therefore $sDB(Q) \cong G \cup \overline{K}_m$, where $m = \zeta(H_1) + \zeta(H_2) - 1$.

3. Cut-sets and strict-double-bound numbers

In this section we consider connected graphs and cut-sets inducing complete subgraphs. For a graph G, a vertex subset S of V(G) is called a *cut-set* if k(G - S) > k(G). For a poset P and $S \subseteq V(P)$, $\operatorname{Max}(P; S) = (\bigcup_{v \in S} U_P(v)) \cap \operatorname{Max}(P)$, $\operatorname{Min}(P; S) = (\bigcup_{v \in S} L_P(v)) \cap \operatorname{Min}(P)$ and $\operatorname{NoMin}(P; S) = \{c \in \operatorname{Min}(P) ; c \parallel v \text{ for all } v \in S\}$. Then $\operatorname{NoMin}(P; S) = \operatorname{Min}(P) - \operatorname{Min}(P; S)$.

We obtain the following result.

Theorem 3.1. Let G be a connected graph with a cut-set S, where the induced subgraph $\langle S \rangle_V$ is a complete subgraph and G - S has components G_1, G_2, \ldots, G_k . For $i = 1, 2, \ldots, k$, let H_i $= \langle V(G_i) \cup S \rangle_V$ and $P(H_i)$ be a poset such that $sDB(P(H_i)) \cong H_i \cup \overline{K}_{\zeta(H_i)}$. Then $\zeta(G) \leq \sum_{i=1}^k |Max(P(H_i))| + max\{|Min(P(H_i); S)|; i = 1, 2, \ldots, k\} + max\{|NoMin(P(H_i); S)|; i = 1, 2, \ldots, k\}.$

Proof. For i = 1, 2, ..., k, let $Min(P(H_i); S) = \{\alpha_{i,1}, \alpha_{i,2}, ..., \alpha_{i,p_i}\}$ and $NoMin(P(H_i); S) = \{\beta_{i,1}, \beta_{i,2}, ..., \beta_{i,q_i}\}$. We assume that for i = 1, 2, ..., k, $|Min(P(H_1); S)| \ge |Min(P(H_i); S)|$ and $|NoMin(P(H_t); S)| \ge |NoMin(P(H_i); S)|$. We construct a poset Q as follows:

1.
$$V(Q) = \bigcup_{i=1}^{k} V(P(H_i)) - \bigcup_{i \neq 1} \operatorname{Min}(P(H_i); S) - \bigcup_{i \neq t} \operatorname{NoMin}(P(H_i); S)$$
$$= (\bigcup_{i=1}^{k} (\operatorname{Max}(P(H_i)) \cup V(H_i))) \cup \operatorname{Min}(P(H_1); S) \cup \operatorname{NoMin}(P(H_t); S)$$

- 2. $x \leq_Q x$ for all $x \in V(Q)$,
- 3. for $x \in Min(P(H_1); S) \cup NoMin(P(H_t); S)$ and $y \in V(Q)$, $x \leq_Q y$ if $x \leq_{P(H_i)} y$,
- 4. for $x \in V(Q)$ and $y \in \bigcup_{i=1}^k \operatorname{Max}(P(H_i)), x \leq_Q y$ if $x \leq_{P(H_i)} y$,
- 5. for i = 1, 2, ..., k, if $w \in V(P(H_i)) (\operatorname{Max}(P(H_i)) \cup \operatorname{Min}(P(H_i)))$, $\alpha_{i,j} \in \operatorname{Min}(P(H_i); S)$, $\gamma \in \operatorname{Max}(P(H_i))$ and $\alpha_{i,j} \leq_{P(H_i)} w \leq_{P(H_i)} \gamma$, then $\alpha_{1,j} \leq_Q w \leq_Q \gamma$ and $\alpha_{1,j} \leq_Q \gamma$,
- 6. for i = 1, 2, ..., k, if $w \in V(P(H_i)) (Max(P(H_i)) \cup Min(P(H_i)))$, $\beta_{i,j} \in NoMin(P(H_i); S)$, $\gamma \in Max(P(H_i))$ and $\beta_{i,j} \leq_{P(H_i)} w \leq_{P(H_i)} \gamma$, then $\beta_{t,j} \leq_Q w \leq_Q \gamma$ and $\beta_{t,j} \leq_Q \gamma$.

Note that $H_1 \cup H_2 \cup \ldots \cup H_k = G$. We show that $sDB(Q) \cong G \cup \overline{K}_m$, where $m = (\sum_{i=1}^k |\operatorname{Max}(P(H_i))|) + |\operatorname{Min}(P(H_1); S)| + |\operatorname{NoMin}(P(H_t); S)|$. We consider the following cases.

Case 1. $u, v \in V(P(H_1)) - (Max(P(H_1)) \cup Min(P(H_1)))$ and $uv \in E(H_1)$ Then there exist $a \in Min(P(H_1))$ and $b \in Max(P(H_1)) \subseteq Max(Q)$ such that $a \leq_{P(H_1)} u \leq_{P(H_1)} b$ and $a \leq_{P(H_1)} v \leq_{P(H_1)} b$. Subcase 1.1. $a \in Min(P(H_1); S)$

Then $a \in Min(Q)$. So $a \leq_Q u \leq_Q b$ and $a \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$.

Subcase 1.2. $a \in \text{NoMin}(P(H_1); S)$ Then $a = \beta_{1,j}$. So $\beta_{t,j} \leq_Q u \leq_Q b$ and $\beta_{t,j} \leq_Q v \leq_Q b$. And $uv \in E(\text{sDB}(Q))$.

Case 2. $u, v \in V(P(H_t)) - (Max(P(H_t)) \cup Min(P(H_t)))$ and $uv \in E(H_t)$ Then there exist $a \in Min(P(H_t))$ and $b \in Max(P(H_t)) \subseteq Max(Q)$ such that $a \leq_{P(H_t)} u \leq_{P(H_t)} b$ and $a \leq_{P(H_t)} v \leq_{P(H_t)} b$.

Subcase 2.1. $a \in Min(P(H_t); S)$

Then $a = \alpha_{t,j}$. So $\alpha_{1,j} \leq_Q u \leq_Q b$ and $\alpha_{1,j} \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$. Subcase 2.2. $a \in NoMin(P(H_t); S)$

Then $a \in Min(Q)$. So $a \leq_Q u \leq_Q b$ and $a \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$.

Case 3. $u, v \in V(P(H_i)) - (Max(P(H_i)) \cup Min(P(H_i))), uv \in E(H_i) \text{ and } i \neq 1, t$ Then there exist $a \in Min(P(H_i))$ and $b \in Max(P(H_i)) \subseteq Max(Q)$ such that $a \leq_{P(H_i)} u \leq_{P(H_i)} b$

and $a \leq_{P(H_i)} v \leq_{P(H_i)} b$.

Subcase 3.1. $a \in Min(P(H_i); S)$

Then $a = \alpha_{i,j}$. So $\alpha_{1,j} \leq_Q u \leq_Q b$ and $\alpha_{1,j} \leq_Q v \leq_Q b$. And $uv \in E(sDB(Q))$. Subcase 3.2. $a \in NoMin(P(H_i); S)$

Then $a = \beta_{i,j}$. So $\beta_{t,j} \leq_Q u \leq_Q b$ and $\beta_{t,j} \leq_Q v \leq_Q b$. And $uv \in E(\text{sDB}(Q))$.

Case 4. $u, v \in V(P(H_i)) - (Max(P(H_i)) \cup Min(P(H_i)))$ and $uv \notin E(H_i)$ Then $L_{P(H_i)}(u) \cap Min(P(H_i)) = \{\alpha_{i,l_1}, \alpha_{i,l_2}, \dots, \alpha_{i,l_s}\} \cup \{\beta_{i,f_1}, \beta_{i,f_2}, \dots, \beta_{i,f_d}\}$ and $L_{P(H_i)}(v) \cap Min(P(H_i)) = \{\alpha_{i,g_1}, \alpha_{i,g_2}, \dots, \alpha_{i,g_o}\} \cup \{\beta_{i,h_1}, \beta_{i,h_2}, \dots, \beta_{i,h_r}\}$. Thus $L_Q(u) = \{\alpha_{1,l_1}, \alpha_{1,l_2}, \dots, \alpha_{1,l_s}\} \cup \{\beta_{t,f_1}, \beta_{t,f_2}, \dots, \beta_{t,f_d}\}$ and $L_Q(v) = \{\alpha_{1,g_1}, \alpha_{1,g_2}, \dots, \alpha_{1,g_o}\} \cup \{\beta_{t,h_1}, \beta_{t,h_2}, \dots, \beta_{t,h_r}\}$. Since $uv \notin E(H_i), L_{P(H_i)}(u) \cap L_{P(H_i)}(v) = \emptyset$ or $U_{P(H_i)}(u) \cap U_{P(H_i)}(v) = \emptyset$. So $L_Q(u) \cap L_Q(v) = \emptyset$ or $U_Q(u) \cap U_Q(v) = \emptyset$. Thus $uv \notin E(sDB(Q))$.

Case 5. $u \in V(P(H_i)) - (\operatorname{Max}(P(H_i)) \cup \operatorname{Min}(P(H_i)) \cup S), v \in V(P(H_j)) - (\operatorname{Max}(P(H_j)) \cup \operatorname{Min}(P(H_j)) \cup S)$ and $i \neq j$ Then $U_Q(u) \subseteq U_{P(H_i)}(u), U_Q(v) \subseteq U_{P(H_j)}(v)$ and $U_{P(H_i)}(u) \cap U_{P(H_j)}(v) = \emptyset$. Thus $U_Q(u) \cap U_Q(v) = \emptyset$ and $uv \notin E(\operatorname{sDB}(Q))$.

$$Q(v) = \emptyset$$
 and $uv \notin E(sL)$

Case 6. $u, v \in S$ Since $S \subseteq V(P(H_1)) - (Max(P(H_1)) \cup Min(P(H_1)))$ and $uv \in E(H_1)$, $uv \in E(sDB(Q))$ by Case 1.

Thus $sDB(Q) \cong G \cup \overline{K}_m$, where $m = \sum_{i=1}^k |Max(P(H_i))| + |Min(P(H_1); S)| + |NoMin(P(H_t); S)|$. $P(H_t); S)|$. Therefore $\zeta(G) \leq \sum_{i=1}^k |Max(P(H_i))| + |Min(P(H_1); S)| + |NoMin(P(H_t); S)|$ $= \sum_{i=1}^k |Max(P(H_i))| + \max_{i=1,2,\dots,k} |Min(P(H_i); S)| + \max_{i=1,2,\dots,k} |NoMin(P(H_i); S)|$.

4. Chordal graphs

A graph is called a *chordal graph* if every cycle of length greater than 3 has a chord. We already know the following result in [2].

Theorem 4.1. For a graph G, G is a chordal graph if and only if every minimal cut-set induces a complete subgraph of G.

Since a minimal cut-set of a chordal graph generates a complete subgraph, we have the following result on chordal graphs by Theorem 3.1.

Proposition 4.1. Let G be a connected chordal graph.

(1) If G is a complete graph, then $\zeta(G) = 2$. (2) If G is a non-complete graph, then $\zeta(G) \leq \sum_{i=1}^{k} |\operatorname{Max}(P(H_i))| + \max\{ |\operatorname{Min}(P(H_i); S)|; i = 1, 2, ..., k\} + \max\{ |\operatorname{NoMin}(P(H_i); S)|; i = 1, 2, ..., k\}$, where $S \subseteq V(G)$ is a minimal cut-set, G_1, G_2, \ldots, G_k are components of G - S, $H_i = \langle V(G_i) \cup S \rangle_V$ for $i = 1, 2, \ldots, k$ and $P(H_i)$ is a poset such that $\mathrm{sDB}(P(H_i)) \cong H_i \cup \overline{K}_{\zeta(H_i)}$ for $i = 1, 2, \ldots, k$.

5. k-trees

In this section we consider k-trees. A k-tree is a chordal graph that can be constructed from a complete graph K_k by a sequence of vertex additions in which the neighborhood of each new vertex is a complete subgraph with k vertices of the current graph. Further k-trees other than complete graphs are called *non-clique k-trees*. And k-trees are connected graphs. In [5] and [9] Lin et. al reported some properties of k-trees.

Let $G(K_k; v_1, v_2, \ldots, v_m)$ be a k-tree with the vertex additions sequence v_1, v_2, \ldots, v_m . Let P_Z be a poset with $V(P_Z) = \{z_1, u_0, u_1, \ldots, u_k, z_2\}, z_1 \leq_{P_Z} u_j \leq_{P_Z} z_2, z_1 \leq_{P_Z} z_2, z_1 \leq_{P_Z} z_1, u_j \leq_{P_Z} u_j \text{ and } z_2 \leq_{P_Z} z_2 \text{ for } j = 0, 1, \ldots, k$. Then $sDB(P_Z) \cong K_{k+1} \cup \overline{K}_2$. We obtain the following result by Theorem 3.1.

Proposition 5.1. Let $G(K_k; v_1, v_2, \dots, v_m)$ be a k-tree with the vertex addition sequence v_1, v_2, \dots, v_m . Then $\zeta(G(K_k; v_1, v_2, \dots, v_m)) \le m + 1$.

Proof. The proof is by induction on the length of a vertex addition sequence. Since $G(K_k; v_1) \cong K_{k+1}$, $\zeta(G(K_k; v_1)) = \zeta(K_{k+1}) = 2 \le 1+1$. By induction hypothesis, $\zeta(G(K_k; v_1, v_2, \ldots, v_{m-1})) \le m$. Let P be a poset such that $sDB(P) \cong G(K_k; v_1, v_2, \ldots, v_{m-1}) \cup \overline{K}_n$, where $n = \zeta(G(K_k; v_1, v_2, \ldots, v_{m-1})) \le m$. Let S be the neighborhood of v_m of $G(K_k; v_1, v_2, \ldots, v_m)$. Then S is a cut-set of $G(K_k; v_1, v_2, \ldots, v_m)$ and generates a complete subgraph with k vertices. Using the proof methods of Theorem 3.1, we can construct a poset Q from P and P_Z such that $sDB(Q) \cong G(K_k; v_1, v_2, \ldots, v_m) \cup \overline{K}_l$. Since $sDB(P_Z) \cong K_{k+1} \cup \overline{K}_2$, $NoMin(P_Z; S) = \emptyset$, $Min(P_Z; S) = \{z_1\}$ and $Max(P_Z) = \{z_2\}$, $l = \zeta(G(K_k; v_1, v_2, \ldots, v_{m-1})) + 1 \le m + 1$.

References

- [1] G.A. Cheston and T.S. Jap, A survey of the algorithmic properties of simplicial, upper bound and middle graphs, *J. Graph Algorithms Appl.* **10** (2006), 159–190.
- [2] M.C. Golumbic, *Algorithmic Graph Theory and Perfect Graphs*, Academic Press, New York, 1980
- [3] S. Konishi, K. Ogawa, S. Tagusari, and M. Tsuchiya, Note on strict-double-bound numbers of paths, cycles, and wheels, *J. Combin. Math. Combin. Comput.* **83** (2012), 205–210.

- [4] L. Langley, S.K. Merz, J.R. Lundgren, and C.W. Rasmussen, Posets with interval or chordal strict upper and lower bound graphs, *Congr. Numer.* **125** (1997), 153–160.
- [5] I.-J. Lin, T.A. McKee, and D.B. West, The leafage of a chordal graph, *Discuss. Math. Graph Theory* **18** (1998), 23–48.
- [6] F.R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, *J. Comb. Inf. Syst. Sci.* **7** (1982), 134–138.
- [7] K. Ogawa, K. Shiraki, S. Tagusari, and M. Tsuchiya, On strict-double-bound numbers of complete pseudo-regular trees, *Far East Journal of Applied Mathematics* **93** (2015), 1–19.
- [8] K. Ogawa, S. Tagusari, and M. Tsuchiya, Note on strict-double-bound graphs and numbers, *AKCE Int. J. Graphs Comb.* **11** (2014),127–132.
- [9] D.J. Rose, Triangulated graphs and the elimination process, *Journal of Mathematical Analysis and Applications* **32** (1970), 597–609.
- [10] D.D. Scott, Posets with interval upper bound graphs, Order 3 (1986), 269–281.
- [11] D.D. Scott, The competition-common enemy graph of a digraph, *Discrete Appl. Math.* 17 (1987), 269–280.