Electronic Journal of Graph Theory and Applications

On strict-double-bound numbers of graphs and cut sets

Kazutaka Ikeda, Kenjiro Ogawa, Satoshi Tagusari, Shin-ichiro Tashiro, Morimasa Tsuchiya*
Department of Mathematical Sciences, Tokai University, Hiratsuka 259-1292, Japan
kenjiro@obirin.ac.jp, tagusari@bunkyo.ac.jp, tashilost@yahoo.co.jp, morimasa@keyaki.cc.u-tokai.ac.jp
* corresponding author

Abstract

For a poset $P=\left(X, \leq_{P}\right)$, the strict-double-bound graph of P is the graph $\mathrm{sDB}(P)$ on $V(\mathrm{sDB}(P))$ $=X$ for which vertices u and v of $\operatorname{sDB}(P)$ are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_{P} u \leq_{P} y$ and $x \leq_{P} v \leq_{P} y$. The strict-doublebound number $\zeta(G)$ of a graph G is defined as $\min \left\{n ; \operatorname{sDB}(P) \cong G \cup \bar{K}_{n}\right.$ for some poset $\left.P\right\}$. We obtain an upper bound of strict-double-bound numbers of graphs with a cut-set generating a complete subgraph. We also estimate upper bounds of strict-double-bound numbers of chordal graphs.


```
Keywords: strict-double-bound graph, strict-double-bound number, cut-set, chordal graph Mathematics Subject Classification : 05C62, 05C76
DOI: 10.5614/ejgta.2021.9.2.16
```


1. Introduction

In this paper we consider finite graphs with no loops and no multiple edges, and finite posets. For a graph G and $S \subseteq V(G),\langle S\rangle_{V}$ is the induced subgraph on S and $G-S=\langle V(G)-S\rangle_{V}$. The graph \bar{K}_{n} is a graph with n vertices and no edges.

A clique in a graph G is the vertex set of a maximal complete subgraph of G. A family $\mathcal{Q}=$ $\left\{Q_{1}, Q_{2}, \ldots, Q_{m}\right\}$ is an edge clique cover of G if each Q_{i} is a clique of G and for each $u v \in E(G)$, there exists $Q_{i} \in \mathcal{Q}$ such that $u, v \in Q_{i}$.

[^0]A partially ordered set (poset) $P=\left(X, \leq_{P}\right)$ consists of a non-empty set X and a binary relation \leq_{P} on X which satisfy reflexive law, anti-symmetric law and transitive law:

1. For all $u \in X, u \leq_{P} u$: reflexive law.
2. If $u \leq_{P} v$ and $v \leq_{P} u$, then $u=v$: anti-symmetric law.
3. If $u \leq_{P} v$ and $v \leq_{P} w$, then $u \leq_{P} w$: transitive law.

For $u, v \in P, u$ and v are comparable if $u \leq_{P} v$ or $v \leq_{P} u$, and otherwise u and v are incomparable.

For a poset P, let $\operatorname{Max}(P)$ be the set of all maximal elements of P and $\operatorname{Min}(P)$ be the set of all minimal elements of P. For a poset P and an element $v \in V(P), U_{P}(v)=\left\{u \in V(P) ; v \leq_{P} u\right\}$ and $L_{P}(v)=\left\{u \in V(P) ; u \leq_{P} v\right\}$. For a poset P and elements u and v of $P, u \| v$ denotes that u is incomparable with v in P.

McMorris and Zaslavsky [6] introduced concepts of some kinds of graphs on posets, that is, upper bound graphs, strict upper bound graphs, double bound graphs and strict-double-bound graphs. Langley et. al [4] and Scott [10] dealt with interval strict upper bound graphs and chordal strict upper bound graphs. Cheston and Jap [1] studied upper bound graphs from the viewpoint of algorithms.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset $P=$ $\left(X, \leq_{P}\right)$, the strict-double-bound graph (sDB-graph) of P is the graph $\mathrm{sDB}(P)$ on $V(\mathrm{sDB}(P))=$ X for which vertices u and v of $\operatorname{sDB}(P)$ are adjacent if and only if $u \neq v$ and there exist elements $x, y \in X$ distinct from u and v such that $x \leq_{P} u \leq_{P} y$ and $x \leq_{P} v \leq_{P} y$. We say that a graph G is a strict-double-bound graph if there exists a poset whose strict-double-bound graph is isomorphic to G. Note that maximal elements and minimal elements of a poset P are isolated vertices of $\operatorname{sDB}(P)$. So, a connected graph with at least two vertices is not a strict-double-bound graph. Scott [11] showed the following result.

Theorem 1.1 (Scott [11]). Any graph that is the disjoint union of a non-trivial component and enough number of isolated vertices is a strict-double-bound graph.

Therefore, we introduced the strict-double-bound number of a graph in [8]. The strict-doublebound number $\zeta(G)$ of a graph G is defined as $\min \left\{n ; \operatorname{sDB}(P) \cong G \cup \bar{K}_{n}\right.$ for some poset $\left.P\right\}$.

Scott [11] obtained the following result, using a concept of transitive double competition numbers.

Theorem 1.2 (Scott [11]). For a non-trivial connected graph G and a minimal edge clique cover \mathcal{Q} of $G,[2 \sqrt{|\mathcal{Q}|}] \leq \zeta(G) \leq|\mathcal{Q}|+1$.

In [7] we obtain the following result.
Proposition 1.1 (Ogawa et. al [7]). Let G be a connected graph with at least two vertices and P a poset with $\operatorname{sDB}(P) \cong G \cup \bar{K}_{\zeta(G)}$. Then $|\operatorname{Max}(P) \cup \operatorname{Min}(P)|=\zeta(G)$.

By Theorem 1.2, we obtained that $\zeta\left(K_{n}\right)=2$ for $n \geq 2$. We already obtained strict-doublebound numbers of $K_{1, n}, P_{n}, C_{n}$ and W_{n} in [3] and [8]. We also gave an upper bound of strict-double-bound numbers of non-trivial trees in [8].

The sum $G+H$ of two graphs G and H is the graph with the vertex set $V(G+H)=$ $V(G) \cup V(H)$ and the edge set $E(G+H)=E(G) \cup E(H) \cup\{u v ; u \in V(G), v \in V(H)\}$. In [3] we also obtained the following result on the sum operation.

Theorem 1.3 (Konishi et. al [3]). For a graph G with at least two vertices and no isolated vertices, $\zeta\left(K_{n}+G\right)=\zeta(G)$ for $n \geq 1$.

We consider another operation on graphs. The union $G \cup H$ of two graphs G and H is the graph with the vertex set $V(G \cup H)=V(G) \cup V(H)$ and the edge set $E(G \cup H)=E(G) \cup E(H)$. In this paper, we consider graphs with a cut-set generating a complete graph. Using concepts of cut-sets and union of graphs, we estimate a strict-double-bound number of a graph.

2. Cut-vertices and strict-double-bound numbers

In this section we consider connected graphs and cut-vertices. We obtain the following result. For a graph $G, k(G)$ is the number of connected components. For a graph G, a vertex v of G is called a cut-vertex if $k(G-v)>k(G)$.

Theorem 2.1. Let G be a connected graph with a cut-vertex s and $G-s$ has two components G_{1} and G_{2}. For $i=1,2$, let $H_{i}=\left\langle V\left(G_{i}\right) \cup\{s\}\right\rangle_{V}$ and $P\left(H_{i}\right)$ be a poset such that $\operatorname{sDB}\left(P\left(H_{i}\right)\right) \cong$ $H_{i} \cup \bar{K}_{\zeta\left(H_{i}\right)}$. Then $\zeta(G) \leq \zeta\left(H_{1}\right)+\zeta\left(H_{2}\right)-1$.

Proof. For $i=1,2$, let α_{i} be a minimal element of $P\left(H_{i}\right)$ such that $\alpha_{i} \leq_{P\left(H_{i}\right)}$. We construct a poset Q as follows:

1. $V(Q)=V\left(P\left(H_{1}\right)\right) \cup V\left(P\left(H_{2}\right)\right)-\left\{\alpha_{2}\right\}$,
2. $x \leq_{Q} x$ for all $x \in V(Q)$,
3. for $x \in \operatorname{Min}\left(P\left(H_{1}\right)\right) \cup\left(\operatorname{Min}\left(P\left(H_{2}\right)\right)-\left\{\alpha_{2}\right\}\right)$ and $y \in V(Q), x \leq_{Q} y$ if $x \leq_{P\left(H_{i}\right)} y$,
4. for $x \in V(Q)$ and $y \in \operatorname{Max}\left(P\left(H_{1}\right)\right) \cup \operatorname{Max}\left(P\left(H_{2}\right)\right), x \leq_{Q} y$ if $x \leq_{P\left(H_{i}\right)} y$,
5. for $x \in V(Q)-\left(\operatorname{Max}\left(P\left(H_{1}\right)\right) \cup \operatorname{Min}\left(P\left(H_{1}\right)\right) \cup \operatorname{Max}\left(P\left(H_{2}\right)\right) \cup \operatorname{Min}\left(P\left(H_{2}\right)\right)\right)$ and $\gamma \in$ $\operatorname{Max}\left(P\left(H_{2}\right)\right), \alpha_{1} \leq_{Q} x \leq_{Q} \gamma$ and $\alpha_{1} \leq_{Q} \gamma$ if $\alpha_{2} \leq_{P\left(H_{2}\right)} x \leq_{P\left(H_{2}\right)} \gamma$.
Note that $H_{1} \cup H_{2}=G$. We show that $\operatorname{sDB}(Q) \cong G \cup \bar{K}_{m}$, where $m=\zeta\left(H_{1}\right)+\zeta\left(H_{2}\right)-1$. We consider the following cases.

Case 1. $u, v \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right)$ and $u v \in E\left(H_{i}\right)(i=1,2)$
Then there exist $a \in \operatorname{Min}\left(P\left(H_{i}\right)\right)$ and $b \in \operatorname{Max}\left(P\left(H_{i}\right)\right) \subseteq \operatorname{Max}(Q)$ such that $a \leq_{P\left(H_{i}\right)} u \leq_{P\left(H_{i}\right)} b$ and $a \leq_{P\left(H_{i}\right)} v \leq_{P\left(H_{i}\right)} b$.

Subcase 1.1. $a \neq \alpha_{2}$
Then $a \in \operatorname{Min}(Q)$. So $a \leq_{Q} u \leq_{Q} b$ and $a \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Subcase 1.2. $a=\alpha_{2}$
Then $\alpha_{1} \leq_{Q} u \leq_{Q} b$ and $\alpha_{1} \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$. Case 2. $u, v \in V\left(P\left(H_{i}\right)\right)-$ $\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right)$ and $u v \notin E\left(H_{i}\right)(i=1,2)$

If $L_{P\left(H_{2}\right)}(u) \cap L_{P\left(H_{2}\right)}(v)=\emptyset$ for $u, v \in V\left(P\left(H_{2}\right)\right)$, then $\alpha_{2} \notin L_{P\left(H_{2}\right)}(u) \cap L_{P\left(H_{2}\right)}(v)$ and $L_{Q}(u) \cap L_{Q}(v)=\emptyset$. Thus for $u v \notin E\left(H_{i}\right), L_{Q}(u) \cap L_{Q}(v)=\emptyset$ or $U_{Q}(u) \cap U_{Q}(v)=\emptyset$. So $u v \notin E(\mathrm{sDB}(Q))$.

Case 3. $u \in V\left(P\left(H_{1}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{1}\right)\right) \cup \operatorname{Min}\left(P\left(H_{1}\right)\right)\right)$ and $v \in V\left(P\left(H_{2}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{2}\right)\right) \cup\right.$ $\left.\operatorname{Min}\left(P\left(H_{2}\right)\right)\right)$
Then $U_{Q}(u) \subseteq U_{P\left(H_{1}\right)}(u), U_{Q}(v) \subseteq U_{P\left(H_{2}\right)}(v)$ and $U_{P\left(H_{1}\right)}(u) \cap U_{P\left(H_{2}\right)}(v)=\emptyset$. Thus $U_{Q}(u) \cap$ $U_{Q}(v)=\emptyset$ and $u v \notin E(\operatorname{sDB}(Q))$.

Therefore $\operatorname{sDB}(Q) \cong G \cup \bar{K}_{m}$, where $m=\zeta\left(H_{1}\right)+\zeta\left(H_{2}\right)-1$.

3. Cut-sets and strict-double-bound numbers

In this section we consider connected graphs and cut-sets inducing complete subgraphs. For a graph G, a vertex subset S of $V(G)$ is called a cut-set if $k(G-S)>k(G)$. For a poset P and $S \subseteq V(P), \operatorname{Max}(P ; S)=\left(\bigcup_{v \in S} U_{P}(v)\right) \cap \operatorname{Max}(P), \operatorname{Min}(P ; S)=\left(\bigcup_{v \in S} L_{P}(v)\right) \cap \operatorname{Min}(P)$ and $\operatorname{NoMin}(P ; S)=\{c \in \operatorname{Min}(P) ; c \| v$ for all $v \in S\}$. Then $\operatorname{NoMin}(P ; S)=\operatorname{Min}(P)-$ $\operatorname{Min}(P ; S)$.

We obtain the following result.
Theorem 3.1. Let G be a connected graph with a cut-set S, where the induced subgraph $\langle S\rangle_{V}$ is a complete subgraph and $G-S$ has components $G_{1}, G_{2}, \ldots, G_{k}$. For $i=1,2, \ldots$, k, let H_{i} $=\left\langle V\left(G_{i}\right) \cup S\right\rangle_{V}$ and $P\left(H_{i}\right)$ be a poset such that $\operatorname{sDB}\left(P\left(H_{i}\right)\right) \cong H_{i} \cup \bar{K}_{\zeta\left(H_{i}\right)}$. Then $\zeta(G) \leq$ $\sum_{i=1}^{k}\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|+\max \left\{\left|\operatorname{Min}\left(P\left(H_{i}\right) ; S\right)\right| ; i=1,2, \ldots, k\right\}+\max \left\{\left|\operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)\right| ;\right.$ $i=1,2, \ldots, k\}$.

Proof. For $i=1,2, \ldots, k$, let $\operatorname{Min}\left(P\left(H_{i}\right) ; S\right)=\left\{\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, p_{i}}\right\}$ and $\operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)=$ $\left\{\beta_{i, 1}, \beta_{i, 2}, \ldots, \beta_{i, q_{i}}\right\}$. We assume that for $i=1,2, \ldots, k,\left|\operatorname{Min}\left(P\left(H_{1}\right) ; S\right)\right| \geq\left|\operatorname{Min}\left(P\left(H_{i}\right) ; S\right)\right|$ and $\left|\operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right)\right| \geq\left|\operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)\right|$. We construct a poset Q as follows:

1. $V(Q)=\bigcup_{i=1}^{k} V\left(P\left(H_{i}\right)\right)-\bigcup_{i \neq 1} \operatorname{Min}\left(P\left(H_{i}\right) ; S\right)-\bigcup_{i \neq t} \operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)$

$$
=\left(\bigcup_{i=1}^{k}\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup V\left(H_{i}\right)\right)\right) \cup \operatorname{Min}\left(P\left(H_{1}\right) ; S\right) \cup \operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right),
$$

2. $x \leq_{Q} x$ for all $x \in V(Q)$,
3. for $x \in \operatorname{Min}\left(P\left(H_{1}\right) ; S\right) \cup \operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right)$ and $y \in V(Q), x \leq_{Q} y$ if $x \leq_{P\left(H_{i}\right)} y$,
4. for $x \in V(Q)$ and $y \in \bigcup_{i=1}^{k} \operatorname{Max}\left(P\left(H_{i}\right)\right), x \leq_{Q} y$ if $x \leq_{P\left(H_{i}\right)} y$,
5. for $i=1,2, \ldots, k$, if $w \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right), \alpha_{i, j} \in \operatorname{Min}\left(P\left(H_{i}\right) ; S\right)$, $\gamma \in \operatorname{Max}\left(P\left(H_{i}\right)\right)$ and $\alpha_{i, j} \leq_{P\left(H_{i}\right)} w \leq_{P\left(H_{i}\right)} \gamma$, then $\alpha_{1, j} \leq_{Q} w \leq_{Q} \gamma$ and $\alpha_{1, j} \leq_{Q} \gamma$,
6. for $i=1,2, \ldots, k$, if $w \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right), \beta_{i, j} \in \operatorname{NoMin}\left(P\left(H_{i}\right)\right.$; $S), \gamma \in \operatorname{Max}\left(P\left(H_{i}\right)\right)$ and $\beta_{i, j} \leq_{P\left(H_{i}\right)} w \leq_{P\left(H_{i}\right)} \gamma$, then $\beta_{t, j} \leq_{Q} w \leq_{Q} \gamma$ and $\beta_{t, j} \leq_{Q} \gamma$.
Note that $H_{1} \cup H_{2} \cup \ldots \cup H_{k}=G$. We show that $\operatorname{sDB}(Q) \cong G \cup \bar{K}_{m}$, where $m=\left(\sum_{i=1}^{k}\right.$ $\left.\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|\right)+\left|\operatorname{Min}\left(P\left(H_{1}\right) ; S\right)\right|+\left|\operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right)\right|$. We consider the following cases.

Case 1. $u, v \in V\left(P\left(H_{1}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{1}\right)\right) \cup \operatorname{Min}\left(P\left(H_{1}\right)\right)\right)$ and $u v \in E\left(H_{1}\right)$
Then there exist $a \in \operatorname{Min}\left(P\left(H_{1}\right)\right)$ and $b \in \operatorname{Max}\left(P\left(H_{1}\right)\right) \subseteq \operatorname{Max}(Q)$ such that $a \leq_{P\left(H_{1}\right)} u \leq_{P\left(H_{1}\right)}$ b and $a \leq_{P\left(H_{1}\right)} v \leq_{P\left(H_{1}\right)} b$.

Subcase 1.1. $a \in \operatorname{Min}\left(P\left(H_{1}\right) ; S\right)$
Then $a \in \operatorname{Min}(Q)$. So $a \leq_{Q} u \leq_{Q} b$ and $a \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Subcase 1.2. $a \in \operatorname{NoMin}\left(P\left(H_{1}\right) ; S\right)$ Then $a=\beta_{1, j}$. So $\beta_{t, j} \leq_{Q} u \leq_{Q} b$ and $\beta_{t, j} \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.

Case 2. $u, v \in V\left(P\left(H_{t}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{t}\right)\right) \cup \operatorname{Min}\left(P\left(H_{t}\right)\right)\right)$ and $u v \in E\left(H_{t}\right)$
Then there exist $a \in \operatorname{Min}\left(P\left(H_{t}\right)\right)$ and $b \in \operatorname{Max}\left(P\left(H_{t}\right)\right) \subseteq \operatorname{Max}(Q)$ such that $a \leq_{P\left(H_{t}\right)} u \leq_{P\left(H_{t}\right)} b$ and $a \leq_{P\left(H_{t}\right)} v \leq_{P\left(H_{t}\right)} b$.

Subcase 2.1. $a \in \operatorname{Min}\left(P\left(H_{t}\right) ; S\right)$
Then $a=\alpha_{t, j}$. So $\alpha_{1, j} \leq_{Q} u \leq_{Q} b$ and $\alpha_{1, j} \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Subcase 2.2. $a \in \operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right)$
Then $a \in \operatorname{Min}(Q)$. So $a \leq_{Q} u \leq_{Q} b$ and $a \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Case 3. $u, v \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right), u v \in E\left(H_{i}\right)$ and $i \neq 1, t$
Then there exist $a \in \operatorname{Min}\left(P\left(H_{i}\right)\right)$ and $b \in \operatorname{Max}\left(P\left(H_{i}\right)\right) \subseteq \operatorname{Max}(Q)$ such that $a \leq_{P\left(H_{i}\right)} u \leq_{P\left(H_{i}\right)} b$ and $a \leq_{P\left(H_{i}\right)} v \leq_{P\left(H_{i}\right)} b$.

Subcase 3.1. $a \in \operatorname{Min}\left(P\left(H_{i}\right) ; S\right)$
Then $a=\alpha_{i, j}$. So $\alpha_{1, j} \leq_{Q} u \leq_{Q} b$ and $\alpha_{1, j} \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Subcase 3.2. $a \in \operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)$
Then $a=\beta_{i, j}$. So $\beta_{t, j} \leq_{Q} u \leq_{Q} b$ and $\beta_{t, j} \leq_{Q} v \leq_{Q} b$. And $u v \in E(\operatorname{sDB}(Q))$.
Case 4. $u, v \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right)\right)$ and $u v \notin E\left(H_{i}\right)$
Then $L_{P\left(H_{i}\right)}(u) \cap \operatorname{Min}\left(P\left(H_{i}\right)\right)=\left\{\alpha_{i, l_{1}}, \alpha_{i, l_{2}}, \ldots, \alpha_{i, l_{s}}\right\} \cup\left\{\beta_{i, f_{1}}, \beta_{i, f_{2}}, \ldots, \beta_{i, f_{d}}\right\}$ and $L_{P\left(H_{i}\right)}(v) \cap$ $\operatorname{Min}\left(P\left(H_{i}\right)\right)=\left\{\alpha_{i, g_{1}}, \alpha_{i, g_{2}}, \ldots, \alpha_{i, g_{o}}\right\} \cup\left\{\beta_{i, h_{1}}, \beta_{i, h_{2}}, \ldots, \beta_{i, h_{r}}\right\}$. Thus $L_{Q}(u)=\left\{\alpha_{1, l_{1}}, \alpha_{1, l_{2}}, \ldots, \alpha_{1, l_{s}}\right\}$ $\cup\left\{\beta_{t, f_{1}}, \beta_{t, f_{2}}, \ldots, \beta_{t, f_{d}}\right\}$ and $L_{Q}(v)=\left\{\alpha_{1, g_{1}}, \alpha_{1, g_{2}}, \ldots, \alpha_{1, g_{o}}\right\} \cup\left\{\beta_{t, h_{1}}, \beta_{t, h_{2}}, \ldots, \beta_{t, h_{r}}\right\}$. Since $u v \notin E\left(H_{i}\right), L_{P\left(H_{i}\right)}(u) \cap L_{P\left(H_{i}\right)}(v)=\emptyset$ or $U_{P\left(H_{i}\right)}(u) \cap U_{P\left(H_{i}\right)}(v)=\emptyset$. So $L_{Q}(u) \cap L_{Q}(v)=\emptyset$ or $U_{Q}(u) \cap U_{Q}(v)=\emptyset$. Thus $u v \notin E(\operatorname{sDB}(Q))$.

Case 5. $u \in V\left(P\left(H_{i}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{i}\right)\right) \cup \operatorname{Min}\left(P\left(H_{i}\right)\right) \cup S\right), v \in V\left(P\left(H_{j}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{j}\right)\right) \cup\right.$ $\left.\operatorname{Min}\left(P\left(H_{j}\right)\right) \cup S\right)$ and $i \neq j$
Then $U_{Q}(u) \subseteq U_{P\left(H_{i}\right)}(u), U_{Q}(v) \subseteq U_{P\left(H_{j}\right)}(v)$ and $U_{P\left(H_{i}\right)}(u) \cap U_{P\left(H_{j}\right)}(v)=\emptyset$. Thus $U_{Q}(u) \cap$ $U_{Q}(v)=\emptyset$ and $u v \notin E(\mathrm{sDB}(Q))$.

Case 6. $u, v \in S$
Since $S \subseteq V\left(P\left(H_{1}\right)\right)-\left(\operatorname{Max}\left(P\left(H_{1}\right)\right) \cup \operatorname{Min}\left(P\left(H_{1}\right)\right)\right)$ and $u v \in E\left(H_{1}\right)$, uv $\in E(\mathrm{sDB}(Q))$ by Case 1.

Thus $\operatorname{sDB}(Q) \cong G \cup \bar{K}_{m}$, where $m=\sum_{i=1}^{k}\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|+\left|\operatorname{Min}\left(P\left(H_{1}\right) ; S\right)\right|+\mid \operatorname{NoMin}($ $\left.P\left(H_{t}\right) ; S\right) \mid$. Therefore $\zeta(G) \leq \sum_{i=1}^{k}\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|+\left|\operatorname{Min}\left(P\left(H_{1}\right) ; S\right)\right|+\left|\operatorname{NoMin}\left(P\left(H_{t}\right) ; S\right)\right|$ $=\sum_{i=1}^{k}\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|+\max _{i=1,2, \ldots, k}\left|\operatorname{Min}\left(P\left(H_{i}\right) ; S\right)\right|+\max _{i=1,2, \ldots, k}\left|\operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)\right|$.

4. Chordal graphs

A graph is called a chordal graph if every cycle of length greater than 3 has a chord. We already know the following result in [2].

Theorem 4.1. For a graph G, G is a chordal graph if and only if every minimal cut-set induces a complete subgraph of G.

Since a minimal cut-set of a chordal graph generates a complete subgraph, we have the following result on chordal graphs by Theorem 3.1.

Proposition 4.1. Let G be a connected chordal graph.
(1) If G is a complete graph, then $\zeta(G)=2$.
(2) If G is a non-complete graph, then $\zeta(G) \leq \sum_{i=1}^{k}\left|\operatorname{Max}\left(P\left(H_{i}\right)\right)\right|+\max \left\{\left|\operatorname{Min}\left(P\left(H_{i}\right) ; S\right)\right| ; i=\right.$ $1,2, \ldots, k\}+\max \left\{\left|\operatorname{NoMin}\left(P\left(H_{i}\right) ; S\right)\right| ; i=1,2, \ldots, k\right\}$, where $S \subseteq V(G)$ is a minimal cut-set, $G_{1}, G_{2} \ldots, G_{k}$ are components of $G-S, H_{i}=\left\langle V\left(G_{i}\right) \cup S\right\rangle_{V}$ for $i=1,2, \ldots, k$ and $P\left(H_{i}\right)$ is a poset such that $\operatorname{sDB}\left(P\left(H_{i}\right)\right) \cong H_{i} \cup \bar{K}_{\zeta\left(H_{i}\right)}$ for $i=1,2, \ldots, k$.

5. k-trees

In this section we consider k-trees. A k-tree is a chordal graph that can be constructed from a complete graph K_{k} by a sequence of vertex additions in which the neighborhood of each new vertex is a complete subgraph with k vertices of the current graph. Further k-trees other than complete graphs are called non-clique k-trees. And k-trees are connected graphs. In [5] and [9] Lin et. al reported some properties of k-trees.

Let $G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m}\right)$ be a k-tree with the vertex additions sequence $v_{1}, v_{2}, \ldots, v_{m}$. Let P_{Z} be a poset with $V\left(P_{Z}\right)=\left\{z_{1}, u_{0}, u_{1}, \ldots, u_{k}, z_{2}\right\}, z_{1} \leq_{P_{Z}} u_{j} \leq_{P_{Z}} z_{2}, z_{1} \leq_{P_{Z}} z_{2}, z_{1} \leq_{P_{Z}} z_{1}$, $u_{j} \leq_{P_{Z}} u_{j}$ and $z_{2} \leq_{P_{Z}} z_{2}$ for $j=0,1, \ldots, k$. Then $\operatorname{sDB}\left(P_{Z}\right) \cong K_{k+1} \cup \bar{K}_{2}$. We obtain the following result by Theorem 3.1.

Proposition 5.1. Let $G\left(K_{k} ; v_{1}, v_{2}, \cdots, v_{m}\right)$ be a k-tree with the vertex addition sequence v_{1}, v_{2}, \cdots, v_{m}. Then $\zeta\left(G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m}\right)\right) \leq m+1$.

Proof. The proof is by induction on the length of a vertex addition sequence. Since $G\left(K_{k} ; v_{1}\right) \cong$ $K_{k+1}, \zeta\left(G\left(K_{k} ; v_{1}\right)\right)=\zeta\left(K_{k+1}\right)=2 \leq 1+1$. By induction hypothesis, $\zeta\left(G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m-1}\right)\right)$ $\leq m$. Let P be a poset such that $\operatorname{sDB}(P) \cong G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m-1}\right) \cup \bar{K}_{n}$, where $n=\zeta\left(G\left(K_{k}\right.\right.$; $\left.\left.v_{1}, v_{2}, \ldots, v_{m-1}\right)\right) \leq m$. Let S be the neighborhood of v_{m} of $G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m}\right)$. Then S is a cut-set of $G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m}\right)$ and generates a complete subgraph with k vertices. Using the proof methods of Theorem 3.1, we can construct a poset Q from P and P_{Z} such that $\mathrm{sDB}(Q) \cong$ $G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m}\right) \cup \bar{K}_{l}$. Since $\operatorname{sDB}\left(P_{Z}\right) \cong K_{k+1} \cup \bar{K}_{2}, \operatorname{NoMin}\left(P_{Z} ; S\right)=\emptyset, \operatorname{Min}\left(P_{Z} ; S\right)=$ $\left\{z_{1}\right\}$ and $\operatorname{Max}\left(P_{Z}\right)=\left\{z_{2}\right\}, l=\zeta\left(G\left(K_{k} ; v_{1}, v_{2}, \ldots, v_{m-1}\right)\right)+1 \leq m+1$.

References

[1] G.A. Cheston and T.S. Jap, A survey of the algorithmic properties of simplicial, upper bound and middle graphs, J. Graph Algorithms Appl. 10 (2006), 159-190.
[2] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980
[3] S. Konishi, K. Ogawa, S. Tagusari, and M. Tsuchiya, Note on strict-double-bound numbers of paths, cycles, and wheels, J. Combin. Math. Combin. Comput. 83 (2012), 205-210.
[4] L. Langley, S.K. Merz, J.R. Lundgren, and C.W. Rasmussen, Posets with interval or chordal strict upper and lower bound graphs, Congr. Numer. 125 (1997), 153-160.
[5] I.-J. Lin, T.A. McKee, and D.B. West, The leafage of a chordal graph, Discuss. Math. Graph Theory 18 (1998), 23-48.
[6] F.R. McMorris and T. Zaslavsky, Bound graphs of a partially ordered set, J. Comb. Inf. Syst. Sci. 7 (1982), 134-138.
[7] K. Ogawa, K. Shiraki, S. Tagusari, and M. Tsuchiya, On strict-double-bound numbers of complete pseudo-regular trees, Far East Journal of Applied Mathematics 93 (2015), 1-19.
[8] K. Ogawa, S. Tagusari, and M. Tsuchiya, Note on strict-double-bound graphs and numbers, AKCE Int. J. Graphs Comb. 11 (2014),127-132.
[9] D.J. Rose, Triangulated graphs and the elimination process, Journal of Mathematical Analysis and Applications 32 (1970), 597-609.
[10] D.D. Scott, Posets with interval upper bound graphs, Order 3 (1986), 269-281.
[11] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987), 269-280.

[^0]: Received: 23 February 2019, Revised: 22 March 2021, Accepted: 24 April 2021.

