Electronic Journal of Graph Theory and Applications

16-vertex graphs with automorphism groups A_{4} and A_{5} from the icosahedron

Peteris Daugulis
Institute of Life Sciences and Technologies, Daugavpils University,
Parades 1, Daugavpils, Latvia
peteris.daugulis@du.lv

Abstract

The article deals with the problem of finding vertex-minimal graphs with a given automorphism group. We exhibit two undirected 16-vertex graphs having automorphism groups A_{4} and A_{5}. It improves Babai's bound for A_{4} and the graphical regular representation bound for A_{5}. The graphs are constructed using projectivisation of the vertex-face graph of the icosahedron.

Keywords: graph, icosahedron, hemi-icosahedron, automorphism group, alternating group
Mathematics Subject Classification : 05C25, 05E18, 05C35.

This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given automorphism group and minimal number of vertices. Denote by $\mu(G)$ the minimal number of vertices of undirected graphs having automorphism group isomorphic to $G, \mu(G)=\min _{\Gamma: \operatorname{Aut}(\Gamma) \simeq G}|V(\Gamma)|$. It is known [1] that $\mu(G) \leq 2|G|$, for any finite group G which is not cyclic of order 3, 4 or 5 . See Babai [2] for an exposition of this area. There are groups which admit a graphical regular representation, for such groups $\mu(G) \leq|G|$. For some recent work see [4].

For alternating groups $A_{n} \mu\left(A_{n}\right)$ is known for $n \geq 13$, see Liebeck [6]. If $n \equiv 0 \operatorname{or} 1(\bmod 4)$, then $\mu\left(A_{n}\right)=2^{n}-n-2$. Additionally, for $n \geq 5 A_{n}$ admits a graphical regular representation, see [8]. Thus for A_{5} the best published estimate until now seemed to be $\mu\left(A_{5}\right) \leq 60$.

In this paper we exhibit graphs $\Gamma_{i}=\left(V, E_{i}\right), i \in\{4,5\}$, such that $|V|=16$ and $\operatorname{Aut}\left(\Gamma_{i}\right) \simeq A_{i}$.
Γ_{4} (also denoted Ξ_{I}) improves Babai's bound for $A_{4} . \Gamma_{5}$ (also denoted Π_{I}) has fewer vertices than the graphical regular representation of $A_{5} . \Gamma_{5}$ is listed in [3] together with the order of its automorphism group. The new graphs are based on projectivisation of the vertex-face incidence relation of the regular icosahedron.

We use standard notation for undirected graphs, see Diestel [5]. A bipartite graph Γ with vertex partition sets V_{1} and V_{2} is denoted as $\Gamma=\left(V_{1}, V_{2}, E\right)$. Given a polyhedron P, we denote its vertex, edge and face sets as $V=V(P), E=E(P)$ and $F=F(P)$, respectively. We can think of P as the triple (V, E, F). If S is a subset of \mathbb{R}^{3} not containing the origin, then its image under the projectivisation map to $P\left(\mathbb{R}^{3}\right)$ is denoted by $\pi(S)$ or $[S],[S]=\bigcup_{x \in S}[x]$.

1. Main results

In this section we define objects used for our construction - projective vertex-face graphs. We prove that the automorphism group of the projective vertex-face graph of the regular icosahedron is A_{5}. We further show that after adding three extra edges we get a graph with the automorphism group A_{4}.

1.1. Vertex-face graphs of polyhedra

Definition 1.1. Let $P=(V, E, F)$ be a polyhedron. An undirected bipartite graph $\Gamma_{P}=(V, F, I)$ is the vertex-face graph of P if $v \sim f$ iff $v \in V, f \in F$ and $v \in f$. In other words, Γ_{P} corresponds to the vertex-face incidence relation in $V \times F$.
Definition 1.2. Let $S=(V, E, F)$ be a centrally symmetric polyhedron. Let S be positioned in \mathbb{R}^{3} so that its center is at $(0,0,0)$. We call the undirected bipartite graph $\Pi_{S}=\left([V],[F], I_{p}\right)$ projective vertex-face graph if for any $v_{p} \in[V], f_{p} \in[F]$ we have $v_{p} \sim f_{p}$ iff $v \in f$ for some $v \in \pi^{-1}\left(v_{p}\right)$ and $f \in \pi^{-1}\left(f_{p}\right)$.

1.2. Projective vertex-face graph of the icosahedron and A_{5}

Let $I=(V, E, F)$ be the regular icosahedron. Define $\Gamma_{5}=\Pi_{I}$, it is shown in Fig.1, an adjacency matrix of Π_{I} is given in Appendix A. Π_{I} can be interpreted in terms of the hemi-icosahedron, see [7].

Fig.1. - Π_{I}.

Proposition 1.1. Let I be the regular icosahedron. Then $\operatorname{Aut}\left(\Pi_{I}\right) \simeq A_{5}$.
Proof. We prove that $\operatorname{Rot}(I) \simeq \operatorname{Aut}\left(\Pi_{I}\right)$ in two steps. First we show that there is a subgroup in $\operatorname{Aut}\left(\Pi_{I}\right)$ isomorphic to $\operatorname{Rot}(I)$ - the group of rotational symmetries of I, rotations of \mathbb{R}^{3} preserving V and E. It is known that $\operatorname{Rot}(I) \simeq A_{5}$. There is an injective group morphism $f: \operatorname{Rot}(I) \xrightarrow{f_{7}}$ $\operatorname{Aut}\left(\Gamma_{I}\right) \xrightarrow{f_{2}} \operatorname{Aut}\left(\Pi_{I}\right) . f_{1}: \operatorname{Rot}(I) \rightarrow \operatorname{Aut}\left(\Gamma_{I}\right)$ maps every $\rho \in \operatorname{Rot}(I)$ to $f_{1}(\rho) \in \operatorname{Aut}\left(\Gamma_{I}\right)$ which is the permutation of $V \cup F$ induced by $\rho: f_{1}(\rho)(x)=\rho(x)$ for any $x \in V \cup F$. Rotations of I preserve the vertex-face incidence relation and f_{1} is a group morphism. $f_{2}: \operatorname{Aut}\left(\Gamma_{I}\right) \rightarrow$ $\operatorname{Aut}\left(\Pi_{I}\right)$ maps every $\varphi \in \operatorname{Aut}\left(\Gamma_{I}\right)$ to $\varphi_{P} \in \operatorname{Aut}\left(\Pi_{I}\right)$ defined by the rule $\varphi_{P}([x])=[\varphi(x)]$ for any $x \in V\left(\Gamma_{I}\right)$. Projectivization and composition commute therefore f_{2} is a group morphism. f is injective since there is no nontrivial rotation of I sending each vertex to another vertex in the same projective class.

In the second step we prove that $\left|A u t\left(\Pi_{I}\right)\right| \leq 60$ by a counting argument. Every vertex $v \in[V]$ is contained in a subgraph $\sigma(v)$ shown in Fig.2.

Fig.2. $-\sigma(v)$.
All Π_{I}-vertices in $[V]$ have degree 5 , all Π_{I}-vertices in $[F]$ have degree 3. It follows that $[V]$ and $[F]$ both are unions of $\operatorname{Aut}\left(\Pi_{I}\right)$-orbits. v can be mapped by a Π_{I}-automorphism in at most 6 possible ways. After fixing the image of v it follows by $\operatorname{Aut}\left(\Pi_{I}\right)$-invariance of $[V]$ that the subgraph $\sigma(v)$ can be mapped in at most 10 ways. Any permutation of $[V]$ by an automorphism determines a unique permutation of $[F]$. Thus $\left|\operatorname{Aut}\left(\Pi_{I}\right)\right| \leq 60$. We have proved that $\operatorname{Aut}\left(\Pi_{I}\right)=$ $f(\operatorname{Rot}(I)) \simeq A_{5}$.

Remark 1.1. A graph isomorphic to Π_{I} is listed without discussion of its construction and automorphism group in [3] as ET16.5.

1.3. A modification of the projective vertex-face graph of the icosahedron and A_{4}

Since A_{5} has subgroups isomorphic to A_{4}, we can try to modify Π_{I} so that the automorphism group of the modified graph is isomorphic to A_{4}. We find generators for a subgroup $H \leq \operatorname{Rot}(I)$, such that $H \simeq A_{4}$, and add three extra edges to Π_{I} which are permuted only by elements of H.

Denote by I_{1} the polyhedral (1-skeleton) graph of I, $\operatorname{Aut}\left(I_{1}\right) \simeq \operatorname{Sym}(I) \simeq A_{5} \times \mathbb{Z}_{2}$.
Proposition 1.2. Choose a 6 -subset of vertices $W=\{O, A, B, C, D, E\} \subseteq V(I)$ such that $I_{1}[W]$ is isomorphic to the 5-wheel, see Fig.3.

Fig.3. $-I_{1}[W]$.
Define an undirected graph $\Gamma_{4}=\Xi_{I}=\left([V] \cup[F], I_{p} \cup J\right)$ by adding three edges to Π_{I} : $J=\{[A] \sim[C],[B] \sim[O],[D] \sim[E]\}$, see Fig.4, Fig. 5 and Appendix B. Then Aut $\left(\Xi_{I}\right) \simeq A_{4}$.

Fig.4. - the extra edges.

Fig.5. $-\Xi_{I}$.
Proof. Consider the subgroup $H=\langle a, b\rangle \leq \operatorname{Rot}(I)$ generated by two rotations: a - a rotation of order 2 around the line passing through the center of the edge $O B$ and the center of I, b - a rotation of order 3 around the line passing through the center of the face $O C D$ and the center of I. We prove that $H \simeq A_{4}$ and $f(H)=\operatorname{Aut}\left(\Xi_{I}\right)$ where f is as in Proposition 1.1.

To prove that $H \simeq A_{4}$ we investigate subgroups of A_{5} generated by two elements of order 2 and 3. If $H^{\prime}=\left\langle a^{\prime}, b^{\prime}\right\rangle \leq A_{5}, \operatorname{ord}\left(a^{\prime}\right)=2$, $\operatorname{ord} d\left(b^{\prime}\right)=3$, then there are 3 possibilities for the isomorphism type of the functional graph ("cycle type") of the pair $\left(a^{\prime}, b^{\prime}\right):\left(a_{1}, b_{1}\right)=((12)(34),(345))$, $\left(a_{2}, b_{2}\right)=((12)(34),(134))$ or $\left(a_{3}, b_{3}\right)=((12)(34),(135))$. It can be checked that $\left\langle a_{1}, b_{1}\right\rangle \simeq \Sigma_{3}$, $\left\langle a_{2}, b_{2}\right\rangle \simeq A_{4},\left\langle a_{3}, b_{3}\right\rangle \simeq A_{5}$. Additionally, $\operatorname{ord}\left(a_{1} b_{1}\right)=2, \operatorname{ord}\left(a_{2} b_{2}\right)=3, \operatorname{ord}\left(a_{3} b_{3}\right)=5$. Now, in our case $\operatorname{ord}(a b)=3$, thus $H=\langle a, b\rangle \simeq\left\langle a_{2}, b_{2}\right\rangle \simeq A_{4}$.

Next we prove that $\operatorname{Aut}\left(\Xi_{I}\right)=f(H)$. Note that O, A, B, C, D, E in Fig. 3 and Fig. 4 represent [V].

First we prove that $f(H) \leq \operatorname{Aut}\left(\Xi_{I}\right)$. Ξ_{I} differs from Π_{I} by three extra edges. Elements of $f(H)$ permute Π_{I}-edges so we only need to check that they permute the new edges. The restrictions
of $f(a)$ and $f(b)$ to $[V]$ are, respectively, $([O][B])$ and $([O][C][D])([A][E][B])$ (in cycle notation). It follows that $f(b)$ cyclically permutes the three extra edges and $f(a)$ fixes them.

To prove that $\operatorname{Aut}\left(\Xi_{I}\right) \leq f(H)$ we observe that only $[F]$-type vertices have degree 3 in both Π_{I} and Ξ_{I}, only V-type vertices have degree 5 in Π_{I}. Thus any $\operatorname{Aut}\left(\Xi_{I}\right)$-element as a permutation of $[V] \cup[F]$ belongs to $\operatorname{Aut}\left(\Pi_{I}\right)$ and thus is the f-image of a $\operatorname{Rot}(I)$-element. We show that for any rotation $r^{\prime} \in \operatorname{Rot}(I) \backslash H, f\left(r^{\prime}\right)$ does not permute the three extra edges and thus $f\left(r^{\prime}\right) \notin \operatorname{Aut}\left(\Xi_{I}\right)$. We have that $\operatorname{Rot}(I)=\langle a, b, c\rangle$ where c is any rotation of order 5 . Since $|\operatorname{Rot}(I): H|=5$ it follows that any element of $\operatorname{Rot}(I)$ is in form $c^{n} h$ where $h \in\langle a, b\rangle=H$. Let c be the rotation around the line passing through the center of I and O corresponding to the vertex permutation $(A B C D E)$. The edge $[O] \sim[B]$ is the only extra edge having $[O]$ as a vertex, all edges from $[O]$ are rotationally permuted by $f\left(c^{n}\right)$, see Fig.4. It follows that nontrivial elements $f\left(c^{n}\right)$ do not permute the three extra edges in Ξ_{I}.

Remark 1.2. If D is the dodecahedron then $\Pi_{D} \simeq \Pi_{I} \simeq A_{5}$.

2. Appendices

A - An adjacency matrix of Π_{I}

Remark 2.1. In the standard ordering vertices $\{1, \ldots, 10\}$ correspond to $[F]$ and vertices $\{11, . ., 16\}$ correspond to $[V]$.
$\left[\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}\hline & & & & & & & & & & 1 & 1 & 1 & & & \\ \hline & & & & & & & & & & 1 & 1 & & & 1 & \\ \hline & & & & & & & & & & 1 & & 1 & 1 & & \\ \hline & & & & & & & & & & 1 & & & 1 & & 1 \\ \hline & & & & & & & & & & 1 & & & & 1 & 1 \\ \hline & & & & & & & & & & & 1 & 1 & & & 1 \\ \hline & & & & & & & & & & & 1 & & 1 & 1 & \\ \hline & & & & & & & & & & & 1 & & 1 & & 1 \\ \hline & & & & & & & & & & & & 1 & 1 & 1 & \\ \hline 1 & 1 & 1 & 1 & 1 & & & & & & & & & 1 & & 1\end{array}\right)$
B - An adjacency matrix of Ξ_{I}
$\left[\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}\hline & & & & & & & & & & 1 & 1 & 1 & & & \\ \hline & & & & & & & & & & 1 & 1 & & & 1 & \\ \hline & & & & & & & & & & 1 & & 1 & 1 & & \\ \hline & & & & & & & & & & 1 & & & 1 & & 1 \\ \hline & & & & & & & & & & 1 & & & & 1 & 1 \\ \hline & & & & & & & & & & & 1 & 1 & & & 1 \\ \hline & & & & & & & & & & & 1 & & 1 & 1 & \\ \hline & & & & & & & & & & & 1 & & 1 & & 1 \\ \hline & & & & & & & & & & & & 1 & 1 & 1 & \\ \hline & & & & & & & & & & & & 1 & & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & & & & & & & & & \mathbf{1} & & \\ \hline 1 & 1 & & & & 1 & 1 & 1 & & & & & & & \mathbf{1} & \\ \hline 1 & & 1 & & & 1 & & & 1 & 1 & & & & & & \mathbf{1} \\ \hline & & 1 & 1 & & & 1 & 1 & 1 & & \mathbf{1} & & & & & \\ \hline & 1 & & & 1 & & 1 & & 1 & 1 & & \mathbf{1} & & & & \\ \hline & & & 1 & 1 & 1 & & 1 & & 1 & & & \mathbf{1} & & & \\ \hline\end{array}\right.$

References

[1] L. Babai, On the minimum order of graphs with given group, Canad. Math. Bull. 17 (1974), 467-470.
[2] L. Babai, Automorphism groups, isomorphism, reconstruction, In Graham, Ronald L.; Grotschel, Martin; Lovasz, Laszlo, Handbook of Combinatorics I, North-Holland (1995), 1447-1540.
[3] M. Conder, Complete list of all connected edge-transitive bipartite graphs on up to 63 vertices, retrieved February 13, 2019, from https://www.math.auckland.ac.nz/ conder/ AllSmallETBgraphs-upto63-full.txt.
[4] P. Daugulis, A note on another construction of graphs with $4 \mathrm{n}+6$ vertices and cyclic automorphism group of order 4n Archivum Mathematicum 53 (1) (2017), 13-18.
[5] R. Diestel, Graph Theory. Graduate Texts in Mathematics, Vol. 173 (2010), Springer-Verlag, Heidelberg.
[6] M. Liebeck, On graphs whose full automorphism group is an alternating group or a finite classical group, Proc. London Math. Soc. 3 (47) (1983), 337-362.
[7] P. McMullen and E. Schulte, 6C. Projective Regular Polytopes. Abstract Regular Polytopes (1st ed.) Cambridge University Press (2002), pp. 162-165, ISBN 0-521-81496-0.
[8] M. E. Watkins, Graphical regular representations of alternating, symmetric, and miscellaneous small groups, Aequationes Mathematicae 11 (1) (1974), 40-50.

