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Abstract

In a uniform central graph (UCG) the set of eccentric vertices of a central vertex is the same for all
central vertices. This collection of eccentric vertices is the centered periphery. For a pair of graphs
(C,P ) the central-peripheral appendage number, Aucg(C,P ), is the minimum number vertices
needed to be adjoined to the graphs C and P in order to construct a uniform central graph H with
center V (C) and centered-periphery V (P ). We compute Aucg(C,P ) in terms of the radius and
diameter of P , and whether or not C is a complete graph. In the process we show Aucg(C,P ) ≤ 6
if diam(P ) > 2. We also provide structure theorems for UCGs in terms of the centered periphery.
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1. Introduction

An appendage number of a graph G is the minimum number of vertices to be added to G to ob-
tain a supergraph H of G so that H satisfies some prescribed properties. There is no restriction on
the number of edges. Appendage numbers are a measurement of how efficiently one can construct
a graph with desired properties. In this paper we study appendage numbers where the supergraph
is what is known as a uniform central graph.

Let G = (V (G), E(G)) be a simple graph. The eccentricity of a vertex v, denoted by eG(v),
is defined by max{d(u, v) : u ∈ V (G)} where d(u, v) is the distance between two vertices u and
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v. When the graph is clear from context we will just write eG(v) = e(v). A vertex x is called
an eccentric vertex of v if d(v, x) = e(v); and the set of all eccentric vertices of v is denoted
by EC(v). The radius of G, r(G) or r, is the minimum eccentricity of the vertices in G and the
diameter of G, diam(G), is the maximum eccentricity of the vertices in G.

A (u, v)-path is called a geodesic, when the length of the path is d(u, v). For a central vertex u,
a (u, v)-geodesic is called a radial path if the length of the path is r(G). For any nonempty subset
S of vertices in G, 〈S〉 represents the subgraph of G induced by S. For terminology not defined in
this paper, the reader is referred to [6].

Let Z(G) = {z ∈ V (G)|e(z) = r(G)} be the center of the graph G. We now introduce a new
term called the centered periphery.

Definition The centered periphery of G is

CP(G) =
⋃

z∈Z(G)

EC(z).

This is the set of vertices that are far from at least one vertex in the center. The periphery,
which is the set of maximally eccentric vertices, coincides with centered periphery for some
graphs. However, in many cases they differ. For instance, the graph in Figure 1 has periphery
{p0, p1, p2, p5, p6, p7} while the centered periphery is {p1, . . . , p6}.

•
c

• •
• •• •p0 p7
• •

p1 p2 p3 p4 p5 p6• • • • • •

Figure 1: Periphery 6= Centered Periphery

A graph G is called a uniform central graph, or UCG, if EC(c) is same for all central vertices
c of G, i.e. EC(c) = CP(G) for every vertex c in the center. The term was introduced in [3] where
it is shown that a radial path in a uniform central graph contains only one central vertex. However,
the structure of UCGs have not been extensively studied and there is no known classification of
UCGs.

So far all papers involving UCGs have only used centers to study UCGs and have not looked
at the centered periphery [2, 3, 4, 5]. However, it appears the structure of a UCG relies on both
the center and the centered periphery. In this paper we study an appendage number that relies
on both the center, and the centered periphery. In doing so we show how the structure of UCGs
relies on both substructures. With this in mind we consider a UCG G to consist of three types of
vertices, the center Z(G), the centered periphery CP(G), and the “intermediate” vertices defined
by I(G) = V (G)− (Z(G) ∪ CP(G)).

We now turn to appendage numbers. Buckley, Miller and Slater [1] studied the appendage
number of a graph G, where G is the center of its supergraph. These results have been extended to
UCGs. In [4] Gu determined the appendage number for G where G is the center and supergraph is
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a UCG. More recently S. Klavžar, K. Narayankar, and S. Lokesh [5] looked at appendage numbers
of G where the supergraph is a UCG and G is any subgraph.

In this paper we study the appendage number for a pair of given graphs (C,P ), where the
supergraph H is a uniform central graph satisfying 〈Z(H)〉 = C and 〈CP(H)〉 = P . We denote
the central-peripheral appendage number, Aucg(C,P ), as the minimum number of “intermediate”
vertices needed to construct such a uniform central graph H . Note, that by construction, C and
P will be disjoint in H . By convention Aucg(C,P ) = ∞ if there is no graph satisfying the above
conditions. We summarize our main results as follows.

Theorem 6.1. Let C =< v > and P be any graph with r(P ) ≥ 2. Then Aucg(C,P ) = 0.

Theorem 6.2. When n ≥ 2 and a graph P

Aucg(Kn, P ) =

{
2 if diam(P ) ≥ 4 and r(P ) ≥ 3

3 if diam(P ) ≥ 3 and r(P ) = 2

Furthermore, for all t ∈ N there is a graph P with diam(P ) = r(P ) = 2 and Aucg(Kn, P ) ≥ t.

Theorem 6.3. For a graph P , if C is a graph with diam(C) > 1 then

Aucg(C,P ) =



4 if diam(P ) =∞
5 if 5 ≤ diam(P ) <∞
5 or 6 if diam(P ) = 4 and r(P ) = 4

6 if diam(P ) = 4 and r(P ) = 2

6 if diam(P ) = 3

Furthermore, for all t ∈ Z there is a graph P with diam(P ) = r(P ) = 2 and Aucg(C,P ) ≥ t.

These results show that it takes more vertices to construct UCGs with centered periphery that
have small radius and diameter. In fact, when diam(P ) = r(P ) = 2, depending on the structure of
P , one needs arbitrarily large number of intermediate vertices. This shows the importance of the
centered periphery in understanding UCGs.

We also draw attention to the fact that our results depend on whether or not C is a complete
graph, which matches the results of Gu [4]. In light of this we organize our paper in the following
way. Section 2 focuses on results that do not depend on the center. These results are then applied
to graphs with specific centers; complete graphs in Section 3 and all other graphs in Section 4 to
classify central-peripheral appendage numbers. The results in Sections 3 and 4 are given in terms
of sizes of various coverings of P . In Section 5 we compute the sizes of these coverings. Section 6
summarizes the previous work and proves Theorems 6.1, 6.2, and 6.3. Finally, in Section 7, using
different techniques than Gu [4], we obtain her results as a corollary of our results.

2. General Centers

This section develops results about the structure of a uniform central graph H in terms of
P = 〈CP(H)〉. We do this by studying coverings of the centered periphery.
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A covering of a graph G = (V,E) is a set V = {V1, . . . , Vk} where Vi ⊂ V with ∪Vi = V .
We say k is the size of the covering. A subcovering of a covering V is a subset of V that is also a
covering.

Throughout this paper we are interested in coverings satisfying various properties. The simplest
and most important of these conditions is condition A. Let P be a graph with covering P =
{P1, . . . , Pk}. We say the pair (P, P ) satisfies

Condition A if for each 1 ≤ i ≤ k, there is a vertex p /∈ Pi satisfying d(Pi, p) ≥ 2.

When there is no confusion to the graph P , we simply say P satisfies condition A.
Elements of a cover can overlap. It is useful to minimize this overlap in some sense.

Lemma 2.1. Let {P1, . . . , Pk} be a covering of P satisfying condition A. Then there is a subcov-
ering {P ′1, . . . , P ′η} satisfying condition A and for each i (1 ≤ i ≤ η)

P ′i 6⊂
⋃
j 6=i

P ′j .

That is, for each i there exists p̃i ∈ P ′i such that p̃i 6∈ P ′j for all j 6= i.

Proof. Suppose there exists an i satisfying

Pi ⊂
⋃
j 6=i

Pj.

Then {Pj : j 6= i} is a subcovering satisfying condition A.

The main idea of this paper is to take the question of determining Aucg(C,P ) and to transfer it
to questions about the size of coverings of P satisfying various conditions. This is possible because
for any UCG there exists a natural covering on P . It turns out this covering satisfies condition A.
These coverings are used to obtain lower and upper bounds on Aucg(C,P ). To do this we first
introduce some notation.

For a uniform central graph H we define a stratification of V (H) in terms of the distance from
the center. Let

Dm = {u ∈ V (G) : d(u,Z(H)) = m}

for 0 ≤ m ≤ r = r(H). Then D0 = Z(H) and Dr = CP(H). For an enumeration D1 =
{x1, . . . , xk}, let Li be the set of all radial paths from C to P containing xi

Lemma 2.2. Let H be a uniform central graph with 〈CP(H)〉 = P . Then the graph H induces a
covering on P satisfying condition A.

Proof. Let H be a uniform central graph with 〈CP(H)〉 = P . Furthermore, let C = 〈Z(H)〉 and
D1 = {x1, . . . , xk} for some k. Let Pi = V (P ) ∩ V (Li). Then {P1, . . . , Pk} is a covering of P
since each radial path from C to P contains a vertex in D1.

Assume {P1, . . . , Pk} does not satisfy the condition A. Then there is an i satisfying that for
every vertex p 6∈ Pi there is a p′ ∈ Pi with d(p, p′) ≤ 1. This shows xi ∈ V (C), a contradiction.
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Since xi ∈ D1, there is a central vertex c with d(xi, c) = 1. For each vertex v of H not in P ,
d(c, v) ≤ r(H) − 1 and hence d(xi, v) ≤ r(H). If p is a vertex in Pi, d(xi, p) = r(G) − 1 from
the construction of Pi.

If p is a vertex in P but not in Pi, then there is a vertex p′ ∈ Pi with d(p, p′) = 1 and so

d(xi, p) ≤ d(xi, p
′) + d(p′, p) = (r(H)− 1) + 1 = r(H)

and so xi ∈ V (C), a contradiction.

Corollary 2.1. If H is a UCG with P = 〈CP(H)〉, then r(P ) > 1.

Proof. If r(P ) = 1, then there is q ∈ V (P ) with eP (q) = 1. Let P = {P1, . . . , Pk} be the
induced cover of P . Without loss of generality we may assume q ∈ P1. Then for all p ∈ V (P ),
d(p, P1) ≤ 1 and condition A is not met. Hence by Lemma 2.2 P is not a centered periphery for
any UCG.

Corollary 2.2. If P is a graph with r(P ) ≤ 1, then Aucg(C,P ) =∞ for all graphs C.

For H , a UCG with C = 〈Z(H)〉 and P = 〈CP(H)〉, we use the induced covering from
Lemma 2.2 to gain a better understanding of the structure of I(H).

Let D1 = {x1, . . . , xk} and {P1, . . . , Pk} be the induced covering of P defined as in Lemma
2.2. Without loss of generality assume {P1, . . . , Pk′} with k′ ≤ k, is subcovering with non-empty
elements. Also let P = {P1, . . . , Pk′′} and {p̃1, . . . , p̃k′′}, with k′′ ≤ k′, be as in Lemma 2.1. For
1 ≤ m ≤ r(H)− 1 we define the following subsets of Dm.

D′m = Dm ∩
k′⋃
i=1

V (Li) and D′′m(P ) = Dm ∩
k′′⋃
i=1

V (Li).

Dm and D′m are well-defined with respect to H , however D′′m(P ) depends on a choice of subcover.
When this choice is clear from context, we simply use D′′m.

The following proposition describes the structure of I(H) that is the key to the rest of this
paper.

Proposition 2.1. Let H be a UCG with C = 〈Z(H)〉, P = 〈CP(H)〉, P = {P1, . . . , Pk′′} and
{p̃1, . . . , p̃k′′} as in Lemma 2.1 with respect to the induced covering from Lemma 2.2. Then any
(xi, p̃i)-geodesic and (xj, p̃j)-geodesic are disjoint if i 6= j.

Proof. For Li a (xi, p̃i)-geodesic and Lj a (xj, p̃j)-geodesic with i 6= j, assume there exists a
y ∈ V (Li) ∩ V (Lj). Let L′i be the subpath of Li from xi to y and L′j the subpath of Lj from y to
p̃j . The concatenation of L′i and L′j yields a (xi, p̃j)-geodesic and so p̃j ∈ Pi, a contradiction.

Corollary 2.3. With the assumptions of Proposition 2.1, |D′′1 | ≤ |D′′m| for 1 ≤ m ≤ r(H)− 1.

Proof. For each 1 ≤ i ≤ k′′ there exists Li, a (xi, p̃i)-geodesic. Let L = {L1, . . . , Lk′′} and
Fm = V (L) ∩D′′m. By Proposition 2.1 |F1| = |Fm|. Then by the construction of Fm

|D′′1 | = |F1| = |Fm| ≤ |D′′m|.
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We often work with UCGs with few intermediate vertices. For such UCGs we can say more
about their structure.

Lemma 2.3. Let H be a UCG with P = 〈CP(H)〉 and r = r(H). Furthermore, let P =
{P1, . . . , Pk′′} be a subcovering of the induced covering and {p̃1, . . . , p̃k′′} an associated set of
vertices as in Lemma 2.1. If |D′′1 | = |D′′r−1| then for each Pi ∈ P there is a unique yi ∈ D′′r−1 such
that yi is adjacent to every vertex in Pi. Furthermore, if i 6= j, then yi 6= yj .

Proof. Let D′′1 = {x1, . . . , xk′′}. For each i, let Li be an (xi, p̃i)-geodesic and let yi be the vertex
on Li adjacent to p̃i. Then yi ∈ D′′r−1. By Proposition 2.1 yi 6= yj when i 6= j. Furthermore
D′′r−1 = {y1, . . . , yk′′}. We claim yi is adjacent to every vertex in Pi.

For a vertex p ∈ Pi there is a c ∈ Z(H) and a (c, p)-radial path L that contains xi. Let y be the
vertex on L adjacent to p. Since y ∈ D′′r−1, y = yj for some 1 ≤ j ≤ k′′. Since yj is adjacent to
p̃j , there is a (xi, p̃j)-geodesic of length r − 1. Therefore, p̃j ∈ Pi which means j = i, y = yi and
yi is adjacent to p.

Lemma 2.4. Let H be a UCG with C = 〈Z(H)〉 and P = 〈CP(H)〉 and assume the induced
covering P = {P1, . . . , Pk} satisfies the conditions of the subcovering in Lemma 2.1. That is
D1 = D′′1 . Then each vertex in C is adjacent to each vertex in D1.

Proof. Let D1 = {x1, . . . , xk} and {p̃1, . . . , p̃k} be an associated set of vertices to P as in Lemma
2.1. For each vertex c in the center and each p̃i, there is a (c, p̃i)-radial path. By construction of P
and definition of p̃i, each (c, p̃i)-radial path must contain xi. Therefore, c and xi are adjacent.

For a graph P , let covA(P ) be the smallest size of a covering of P satisfying condition A. From
the definition of condition A, it follows that covA(P ) ≥ 2 for any graph P with r(P ) > 1. The
following result is critical in obtaining lower bounds on Aucg(C,P ).

Proposition 2.2. If H is a uniform central graph with C = 〈Z(H)〉, 〈CP(H)〉 = P , r = r(H)
and κ = covA(P ), then |I(H)| ≥ κ(r − 1).

Proof. Let {P1, . . . , Pk′′} be a subcover of the induced cover on P from H from Lemmas 2.2 and
2.1. By definition of κ and corollary 2.3 it follows that

κ ≤ k′′ = |D′′1 | ≤ |D′′m| ≤ |Dm|.

Since

I(H) =
r−1⋃
m=1

Dm

the result follows.

Proposition 2.2 is used to obtain bounds on the radius of a UCG.

Corollary 2.4. If H is a uniform central graph with 〈CP(H)〉 = P , κ = covA(P ) and |I(H)| ≤
sκ+ t where s, t ∈ N and t < κ, then r(H) ≤ s+ 1.
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Proof. Observing (s + 1)κ > sκ + t the result follows from the contrapositive of Proposition
2.2.

We now construct a graph with center C and centered periphery P . Let C and P be graphs,
and ρ ∈ N. Suppose P = {P1, . . . , Pk} is a covering of P . Define a graph G = G(C,P, P , ρ) as
follows:

V (G) = V (C) ∪ V (P ) ∪ {xi,j : 0 ≤ i ≤ k, 1 ≤ j ≤ ρ}

and ab is an edge in G if and only if one of the following occurs

1. ab is an edge of C.

2. ab is an edge of P .

3. a is a vertex of C and b = xi,1 for some i with 0 ≤ i ≤ k.

4. a ∈ Pi and b = xi,ρ for some i with 1 ≤ i ≤ k.

5. a = xi,j and b = xi,j+1 for i and j with 0 ≤ i ≤ k, 1 ≤ j ≤ ρ− 1

C

• • · · · •• x1,1 x2,1 xk,1x0,1
• • · · · •• x1,2 x2,2 xk,2x0,2
• • · · · •• x1,ρ x2,ρ xk,ρx0,ρ

P

P1 P2 Pk· · ·

︷ ︷

Figure 2: G = G(C,P, P , ρ)

Proposition 2.3. For two given graphs C and P , let P = {P1, . . . , Pk} be a covering of P satisfy-
ing condition A, and ρ ≥ min{diam(C), 2}. Then G = G(C,P, P , ρ) is a UCG with radius ρ+ 1,
〈Z(G)〉 = C and 〈CP(G)〉 = P .

Proof. From the construction of G, we can show the following:

i) For all j = 1, . . . , ρ and any vertex p in P , d(x0,j, p) ≥ ρ + 2, and so e(x0,j) ≥ ρ + 2 and
e(p) ≥ ρ+ 2.

ii) For all i and j with 1 ≤ i ≤ k and 2 ≤ j ≤ ρ, d(xi,j, x0,ρ) ≥ ρ+ 2, and so e(xi,j) ≥ ρ+ 2.
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iii) Since the covering P satisfies condition A, for each i with 1 ≤ i ≤ k there exists a vertex p in
Pj for some j 6= i satisfying dP (Pi, p) ≥ 2. Thus d(xi,1, p) ≥ ρ+ 2 and e(xi,1) ≥ ρ+ 2.

iv) For a vertex c in C, d(c, xi,j) ≤ ρ, d(c, p) = ρ + 1 for all p in P , and d(c, c′) ≤ 2 for any
vertex c′ in C. This implies e(c) = ρ+ 1 and EC(c) = V (P ).

Therefore, G = G(C,P, P , ρ) is a UCG with radius ρ+ 1, 〈Z(G)〉 = C and 〈CP(G)〉 = P .

We end this section with a result about conditions when a spanning subgraph of a UCG is still
a UCG.

Lemma 2.5. Let H be a UCG with V (C) = Z(H) and let G be a spanning subgraph of H . Then
G is a UCG with V (C) = Z(G) and CP(G) = CP(H) if for all c ∈ V (C) and x ∈ V (G),
dG(c, x) = dH(c, x).

Proof. Since E(G) ⊂ E(H), the eccentricity of a vertex v in G is greater than or equal to the
eccentricity of v in H . The assumption that dG(c, x) = dH(c, x) for all c ∈ V (C) and x ∈ V (G)
implies Z(G) = V (C) and EC(c) in G is CP(H). Hence, G is a UCG with V (C) = Z(G) and
CP(G) = CP(H).

3. When C = Kn with n ≥ 2

In this section we compute appendage numbers when the center C is a complete graphKn with
n ≥ 2 in terms of the size of a smallest covering for the centered periphery.

We introduce a new condition on coverings. Let P be a graph with covering P = {P1, . . . , Pk}.
We say (P, P ) satisfies

Condition B if for every 1 ≤ i ≤ k and for each p ∈ Pi either

1. there is a vertex p′ 6∈ Pi with d(p, p′) ≥ 3, or

2. there is a j 6= i satisfying d(p, Pj) ≥ 2.

Once again, we say the covering P satisfies condition B when there is no confusion about P .
Also define covAB(P ) to be the smallest size of a covering of P satisfying both condition A and
condition B.

Before determining appendage numbers it is necessary to prove the existence of coverings
satisfying conditions A and B.

Lemma 3.1. Let P be a graph with r(P ) ≥ 2. Then there exists a covering of P satisfying
conditions A and B.

Proof. Let V (P ) = {p1, . . . , pk}. Then P = {{p1}, . . . , {pk}} is a covering of P and P satisfies
conditions A and B because r(P ) ≥ 2.

We now find the appendage numbers in terms of κ = covA(P ).
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Proposition 3.1. κ ≤ Aucg(Kn, P ) ≤ κ+ 1 where κ = covA(P ).

Proof. By Lemma 3.1 there is a covering of P satisfying condition A, so let P = {P1, . . . , Pκ} be
a smallest covering of P satisfying condition A. By Proposition 2.3, the graph G = G(Kn, P, P , 1)
is a UCG with radius 2 and |I(G)| = κ + 1, and thus Aucg(Kn, P ) ≤ κ + 1. The lower bound
follows from Proposition 2.2.

Theorem 3.1. Let κ = covA(P ). Then Aucg(Kn, P ) = κ if and only if covAB(P ) = κ.

Proof. Suppose covAB(P ) = κ and let P = {P1, . . . , Pκ} be a smallest covering of P with respect
to conditions A and B. Also, let G = G(Kn, P, P , 1) − {x0,1}. Since P satisfies condition B, one
can verify that for G, e(p) ≥ 3 for all p ∈ V (P ). Using a similar argument to Proposition 2.3 we
can show G is a UCG with r(G) = 2, 〈CP(G)〉 = P , 〈Z(G)〉 = Kn and |I(G)| = κ.

Now assume Aucg(Kn, P ) = κ. Let H be a UCG with P = 〈CP(H)〉, 〈Z(H)〉 = Kn and
|I(H)| = κ. From corollary 2.4, r(H) = 2. Let {P1, . . . , Pk} be the induced covering of P as in
Lemma 2.2. We know

κ ≤ k = |D1| = |I(H)| = κ

and so k = κ. Let D1 = {x1, . . . , xk}, where xi is associated to Pi.
Suppose p is a vertex in Pi. Since e(p) ≥ 3 there is an x ∈ V (H) with dH(p, x) ≥ 3. Note,

x 6∈ Pi because all vertices in Pi are adjacent to xi. If x ∈ Pj for some j 6= i, then condition B(1)
is satisfied by definition. Finally, if x = xj ∈ D1 for some j 6= i, then dP (p, Pj) ≥ 2 and so P
satisfies condition B(2).

In Section 5 we determine when covA(P ) = covAB(P ).

4. When C 6= Kn

For this section assume that C is not a complete graph and so diam(C) ≥ 2. The results in this
section mirror those of when C = Kn, however conditions on the coverings of P , as well as the
proofs, are more technical.

Proposition 4.1. For a given pair of graphs (C,P ) , 2κ ≤ Aucg(C,P ) ≤ 2κ + 2 where κ =
covA(P ).

Proof. For a given pair of graphsC and P , supposeH is a UCG with 〈Z(H)〉 = C and 〈CP(H)〉 =
P . Then r(H) ≥ diam(C)+1 ≥ 3. From corollary 2.2 we obtain a lower boundAucg(C,P ) ≥ 2κ.

For the upper bound considerG = G(C,P, P , 2) where P is a smallest covering of P satisfying
condition A. By Proposition 2.3,G is a UCG with |I(G)| = 2κ+2 and soAucg(C,P ) ≤ 2κ+2.

In the proof of Proposition 4.1 we use the fact that G(C,P, P , 2) is a UCG so long as P satisfies
condition A. We now consider a modification of this graph, and determine conditions that this new
graph is a UCG.

Let P = {P1, . . . , Pk} be a covering of P and let

G = G(C,P, P , 2)− {x0,1, x0,2}.
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By construction, d(c, p) = 3 for all c ∈ V (C), p ∈ V (P ), and d(c, x) ≤ 2 for x ∈ V (G)− V (P ).
So G is a UCG with center C and centered periphery P if and only if for all u ∈ V (G) − V (C),
e(u) ≥ 4.

Consider the case u = xi,1. IfG is a UCG, P must satisfy condition A. This implies e(xi,1) ≥ 4
for all 1 ≤ i ≤ k.

Next, consider the case u = xi,2 for some 1 ≤ i ≤ k. Since e(u) ≥ 4 there exists a v ∈ V (G)
such that d(u, v) ≥ 4. Because v 6∈ V (C) and d(u, xj,1) ≤ 3, either v ∈ V (P ) or v = xj,2 for
some j 6= i. If v ∈ V (P ) then v 6∈ Pi and d(v, Pi) ≥ 3. If v = xj,2, then d(Pi, Pj) ≥ 2.

Finally, consider the case u ∈ Pi for some i. If G is a UCG, then e(u) ≥ 4, and so there is
a v ∈ V (G) such that d(u, v) ≥ 4. Since v 6∈ V (C) and v 6∈ Pi because d(p, p′) ≤ 2 for all
p, p′ ∈ Pi, it follows that either v = xj,1, v = xj,2 or v ∈ Pj for some j 6= i. If v = xj,1 then
d(u, Pj) ≥ 2 for j 6= i. If v = xj,2 then d(u, Pj) ≥ 3. Finally, if v ∈ Pj for some j 6= i, then for
all p ∈ Pj

4 ≤ d(u, v) ≤ d(u, p) + d(p, v) ≤ d(u, p) + 2.

We conclude d(u, Pj) ≥ 2. This analysis gives rise to two new conditions on P .
Let P = {P1, . . . , Pk} be a covering of a graph P . If for all 1 ≤ i ≤ k we say (P, P ) satisfies

Condition A′ if either

1. there is a p 6∈ Pi satisfying d(Pi, p) ≥ 3, or

2. there is a j 6= i satisfying d(Pi, Pj) ≥ 2.

Condition B′ if for each p ∈ Pi there is a j 6= i satisfying d(p, Pj) ≥ 2.

Condition A′ arises from e(xi,2) ≥ 4 and condition B′ from e(p) > 4, for p ∈ V (P ). Note
condition A′ implies condition A, and condition B′ implies condition B. We often abuse notation
and say the covering P satisfies a specified condition.

Let covA′(P ) be the smallest size of the covering of P satisfying condition A′ and covA′B′(P )
the smallest size of the covering of P satisfying conditions A′ and B′.

The arguments used to determine conditions A′ and B′ are bi-directional. This implies the
following proposition.

Proposition 4.2. Let C and P be graphs, P a covering of P , andG = G(C,P, P , 2)−{x0,1, x0,2}.
Then G is a UCG with center C and centered periphery P if and only if P satisfies conditions A′

and B′.

We are now ready to relate appendage numbers to coverings.

Proposition 4.3. Let κ = covA(P ). For a graph P with r(P ) > 1, covA′B′(P ) = κ if and only if
Aucg(C,P ) = 2κ.

Proof. First, assume covA′B′(P ) = κ. Let P = {P1, . . . , Pκ} be a covering of P satisfying
conditions A′ and B′. Then by Proposition 4.2 the graph

G = G(C,P, P , 2)− {x0,1, x0,2}
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is a UCG and |I(G)| = 2κ and so Aucg(C,P ) ≤ 2κ. However, by Proposition 4.1, Aucg(C,P ) ≥
2κ and the result follows.

Next, assume Aucg(C,P ) = 2κ. Let H be a UCG with P = 〈CP(H)〉, C = 〈Z(H)〉 and
|I(H)| = 2κ. Note that r(H) = 3 by corollary 2.4.

Let {P1, . . . , Pk} be the induced covering of P as in Lemma 2.2. There exists a subcover
P = {P1, . . . , Pk′′} and an associated set of vertices {p̃1, . . . , p̃k′′} as in Lemma 2.1. Assume
D′′1 = {x1, . . . , xk′′}, and by corollary 2.3 |D′′2 | ≥ k′′. Because κ = covA(P ) and P satisfies
condition A, we know

2κ ≤ 2k′′ ≤ |D′′1 |+ |D′′2 | ≤ |I(H)| = 2κ,

and so k′′ = |D′′1 | = |D′′2 | = κ. This implies D1 = D′′1 , D2 = D′′2 and κ = k′′ = k.
We now show H contains a spanning subgraph isomorphic to

G = G(C,P, P , 2)− {x0,1, x0,2}.

First, for each p̃i defined above and each central vertex c there is a (c, p̃i)-radial path. By con-
struction of p̃i this path must contain xi, and thus xi is adjacent to every c in the center by Lemma
2.4.

By Lemma 2.1 there is an enumeration of D2 = {y1, . . . , yk} so that yi is adjacent to both xi
and each vertex in Pi. Therefore, G = G(C,P, P , 2) − {x0,1, x0,2} is isomorphic to a spanning
subgraph of H . By Lemma 2.5, G is a UCG and by Proposition 4.2, P satisfies conditions A′ and
B′.

We now move on to understand when Aucg(C,P ) = 2κ + 1. Let H be a UCG such that
〈Z(H)〉 = C, 〈CP(H)〉 = P and |I(H)| = 2κ + 1. By Proposition 4.3, κ 6= covA′B′(P ).
Also, by corollary 2.4 r(H) = 3, and hence |D1| + |D2| = 2κ + 1. Let {P1, . . . , Pk} be the
induced covering of P through D1 = {x1, . . . , xk} as in Lemma 2.2. Without loss of generality let
P = {P1, . . . , Pk′′}, with k′′ ≤ k, be a subcover with an associated set of vertices {p̃1, . . . , p̃k′′} as
in Lemma 2.1. Then

2κ ≤ 2k′′ ≤ |D′′1 |+ |D′′2 | ≤ |I(H)| = 2κ+ 1

and hence κ = k′′.
Since

κ = |D′′1 | ≤ |D1| and κ = |D′′1 | ≤ |D′′2 | ≤ |D2|,

either |D1| = κ+ 1 or |D2| = κ+ 1.
We first address when |D1| = κ+ 1 and |D2| = κ.

Proposition 4.4. Assume Aucg(C,P ) = 2κ + 1, and let H be a UCG such that 〈Z(H)〉 = C,
〈CP(H)〉 = P , and |I(H)| = 2κ + 1 where κ = covA(P ). Furthermore, assume |D1| = κ + 1.
Then covA′(P ) = κ.
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Proof. By corollary 2.3 it follows that

κ = |D′′1 | ≤ |D′′2 | ≤ |D2| = κ.

Therefore D2 = D′′2 and |D′′1 | = κ. Since k = |D1| = κ+ 1, xk ∈ D1 but xk 6∈ D′′1 .
Next, we prove xk 6∈ D′1 by showing if xk ∈ D′1, then P satisfies both conditions A′ and B′.

Hence Aucg(C,P ) = 2κ by Proposition 4.3.
Assume xk ∈ D′1, that is D1 = D′1. Because |D2| = |D′′2 | = κ = |D′′1 | we may assume

D2 = {y1, . . . , yκ} such that each yi is adjacent to xi and all vertices of Pi by Lemma 2.3. To
understand the structure of Pk, define the indexing set

I = {i : xk is adjacent to yi for some yi ∈ D2}.

From the definition of D′1 and I ,
Pk =

⋃
i∈I

Pi.

For each j 6∈ I every radial path to p̃j must contain xj . Hence, each central vertex c ∈ V (C) is
adjacent to xj ∈ D1 for j 6∈ I . A similar argument shows that for each c ∈ V (C) and each i ∈ I ,
c is adjacent to either xk or xi.

We now show P satisfies conditions A′ and B′.
First, assume condition B′ fails. Then there exists an ι and a vertex p ∈ Pι such that dP (p, Pj) ≤

1 for all j 6= ι. Therefore, there is a pj ∈ Pj such that d(p, pj) ≤ 1, and so the following hold:

i) d(p, xj) ≤ d(p, pj) + d(pj, xj) ≤ 3.

ii) d(p, yj) ≤ d(p, pj) + d(pj, yj) ≤ 2.

iii) d(p, p′) ≤ d(p, pj) + d(pj, p
′) ≤ 3 for all p′ ∈ Pj .

iv) d(p, xι) = 2.

v) d(p, yι) = 1.

vi) d(c, p) = 3 for c ∈ V (C).

If ι ∈ I , then d(p, xk) = 2. If ι 6∈ I , then for a j ∈ I

d(p, xk) ≤ d(p, pj) + d(pj, xk) ≤ 3

since d(pj, xk) = 2. Therefore e(p) = 3, a contradiction, and so P satisifies condition B′.
Next, assume condition A′ fails. Then there exists an ι such that dP (Pι, p′) ≤ 2 for all p′ ∈

V (P )− Pι and dP (Pι, Pj) ≤ 1 for all j 6= ι. Then d(yι, p) ≤ 3 for all p ∈ V (P ) and d(yι, yj) ≤ 3
for all j 6= ι. We obtain a contradiction by showing yι is in the center.

If ι 6∈ I , then for each xj ∈ D1 there is a c ∈ V (C) that is adjacent to xj . Then yι−xι− c−xj
is a path and d(yι, xj) ≤ 3. Similarly when ι ∈ I and j 6∈ I , d(yι, xj) ≤ 3. If ι, j ∈ I then
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yι − xk − yj − xj is a path and so d(yι, xj) ≤ 3. Finally, d(yι, c) = 2 for all c ∈ V (C), and so
e(yι) = 3, a contradiction and P satisfies condition A′.

Since P satisfies conditions A′ and B′, Aucg(C,P ) = 2κ by Proposition 4.3. This contradicts
the assumptions of the proposition and hence xk 6∈ D′1 and so D′1 = D′′1 .

Then xk is not on a radial path because xk 6∈ D′1. Therefore, vertices adjacent to xk are in
C or D′′1 . Furthermore each yi ∈ D2 satisfies e(yi) ≥ 4 from H being a UCG with r(H) = 3 .
Therefore, there exists a u ∈ V (G) with d(yi, u) ≥ 4. Because d(c, yi) = 2 for all c ∈ V (C), we
know u 6∈ V (C).

Because D′1 = D′′1 , each (c, p̃i)-radial path contains xi, and hence each c is adjacent to xi. It
follows that for a c ∈ V (C) adjacent to xj ∈ D1 that

d(yi, xj) ≤ d(yi, c) + d(c, xj) = 3,

which means u 6∈ D1.
If u ∈ V (P ) then d(u, Pi) ≥ 3 and condition A′(1) is satisfied for i. If u = yj ∈ D′′2 then

dP (Pi, Pj) ≥ 2 and condition A′(2) is satisfied for i. Since these hold for each i, P satisfies
condition A′ and covA′(P ) = κ.

A weak converse of Proposition 4.4 also holds.

Proposition 4.5. If P is a graph with r(P ) > 1, κ = covA(P ) 6= covA′B′(P ) and covA′(P ) =
covA(P ), then Aucg(C,P ) = 2κ+ 1.

Proof. Assume covA′B′(P ) 6= κ but covA′(P ) = κ. Let P = {P1, . . . , Pκ} be a smallest covering
with respect to condition A′ and

G = G(C,P, P , 2)− {x0,2}.

We claim G is a UCG with C = 〈Z(G)〉, P = 〈CP(G)〉 and |I(G)| = 2κ+ 1.
By Proposition 4.2 the graph G′ = G − {x0,1} is a UCG if and only if P satisfies conditions

A′ and B′. In G′, if P satisfies conditions A′, then e(xi,1) ≥ 4 and e(xi,2) ≥ 4. This still holds in
G. Furthermore, for each vertex p ∈ V (P ), d(x0,1, p) = 4 in G, and so G is a UCG. Therefore,
Aucg(C,P ) ≤ 2κ+ 1, but by Proposition 4.3 Aucg(C,P ) > 2κ.

The case when |D2| = κ + 1 is more complicated. To understand this case we consider a new
graph G, and determine new conditions for when G is a UCG.

For two graphsC and P , let P = {P1, . . . , Pk} be a covering of P , andQ = {Q0, Q1, P2, . . . , Pk}
be a covering such that Q0 ∪Q1 = P1.

Define a graph G = G ′(C,P,Q) as follows (see Figure 3):

V (G) = V (C) ∪ V (P ) ∪ {xi, yj : 1 ≤ i ≤ k, 0 ≤ j ≤ k}

and ab is an edge in G if and only if one of the following occurs

i) ab is an edge of C.

ii) ab is an edge of P .
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iii) a is a vertex of C and b = xi for some i with 1 ≤ i ≤ k.

iv) a ∈ Pj and b = yj for some j with 2 ≤ j ≤ k.

v) a ∈ Ql and b = yl for some l = 0, 1.

vi) a = xi and b = yi for 1 ≤ i ≤ k

vii) a = x1 and b = y0.

C

• • · · · •x1 xkx2

• • · · · •• y1 y2 yky0

P

Q0 Q1 P2 Pk· · ·

︷ ︷

Figure 3: G = G′(C,P,Q)

We now determine conditions on Q for G to be a UCG with C = 〈Z(G)〉 and P = 〈CP(G)〉.
By construction for all c ∈ V (C) and p ∈ V (P ), d(c, p) = 3, and d(c, x) ≤ 2 for all x ∈
V (G) − V (P ). So G is a UCG with center C and centered periphery P if and only if for all
u ∈ V (G)− V (C), e(u) ≥ 4. Then there exists a vertex v with d(u, v) ≥ 4.

First consider the case u = xi. In every UCG the induced covering satisfies condition A. This
implies v ∈ V (P ) and e(xi) ≥ 4 for all 1 ≤ i ≤ k. Note that, in G the induced covering is P , not
Q.

Next, consider the case u = yi for some 2 ≤ i ≤ k. Since v 6∈ V (C) and d(v, xj) ≤ 3 for
1 ≤ j ≤ k, either v ∈ V (P ) or v = yj for 0 ≤ j ≤ k and j 6= i. The one of the following holds.

i) If v ∈ V (P ) then v 6∈ Pi and d(Pi, v) ≥ 3.

ii) If v = yj , 2 ≤ j ≤ k and j 6= i, then d(Pi, Pj) ≥ 2.

iii) If v = yl for l = 0 or 1, then d(Pi, Ql) ≥ 2.

Now, consider the case u = y0 or y1. Without loss of generality we assume u = y0. Since
v 6∈ V (C), v 6= xj for 1 ≤ j ≤ k, v 6= y1 and v 6∈ Q0 ∪Q1 = P1, the following must hold.

i) If v ∈ V (P ) then v 6∈ P1 and d(Q0, v) ≥ 3.
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ii) If v = yj , 2 ≤ j ≤ k and j 6= i, then d(Q0, Pj) ≥ 2.

Now, consider the case u = p ∈ Pi for some 2 ≤ i ≤ k. Once again, if G is a UCG, then
e(p) ≥ 4, and so there exists a v ∈ V (G) such that d(u, v) ≥ 4. We know v 6∈ V (C). Also,
v 6∈ Pi since d(p, p′) ≤ 2 for all p′ ∈ Pi. Also note, that for j ≥ 2 and j 6= i, if d(u, yj) ≥ 4 then
d(u, xj) ≥ 4. This implies that we do not need to determine the conditions for d(u, yj) ≥ 4. Given
this, one of the following must hold.

i) If v = xj for j 6= i and 2 ≤ j ≤ k, then d(u, Pj) ≥ 2.

ii) If v = x1, then d(u,Q0) ≥ 2 and d(u,Q1) ≥ 2.

iii) If v = yl for l = 0 or 1, then d(u,Ql) ≥ 3.

iv) If v = p′ ∈ Pj − Pi for 2 ≤ j ≤ k and j 6= i, then d(u, p′) ≥ 4 and d(u, Pj) ≥ 2.

v) If v = p′ ∈ Ql − Pi for l = 0 or 1, then d(p,Ql) ≥ 2 and d(u, p′) ≥ 4.

The last case to consider, without loss of generality, is u = p ∈ Q0. Since d(u, v) ≤ 3 if
v ∈ V (C), v = x1, y0 or y1 or v ∈ Q0, the following must hold.

i) If v = xj , then 2 ≤ j ≤ k and d(u, Pj) ≥ 2.

ii) If v = yj for 2 ≤ j ≤ k, then d(u, Pj) ≥ 3.

iii) If v = p′ ∈ Pj −Q0 for 2 ≤ j ≤ k, then d(u, Pj) ≥ 2 and d(u, p′) ≥ 4.

iv) If v = p′ ∈ Q1 −Q0, then d(u, p′) ≥ 4 and d(u,Q1) ≥ 2.

The above discussion is in terms of Q, however the rest of the paper is in terms of P . For this
reason now summarize the discussion in terms of two technical conditions on P .

Let P = {P1, . . . , Pk} be a covering of a graph P . For a given ι and two sets Q0 and Q1 such
that Q0 ∪Q1 = Pι, let

Q = P ∪ {Q0, Q1} − {Pι}.

We say (P, P ,Q) satisfies

Condition A′′

1. if for each i 6= ι one of the following holds

(a) there is a p 6∈ Pi satisfying d(Pi, p) ≥ 3, or
(b) there is a j 6= ι satisfying d(Pi, Pj) ≥ 2, or
(c) there is an l = 0 or 1 such that d(Pi, Ql) ≥ 2,

2. and if for all l = 0, 1 either

(a) there is a p 6∈ Pι satisfying d(Ql, p) ≥ 3, or
(b) there is a j 6= ι satisfying d(Ql, Pj) ≥ 2.
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Condition B′′

1. if for each p ∈ Pi, i 6= ι one of the following holds

(a) there is a j 6= ι satisfying d(p, Pj) ≥ 2, or
(b) d(p,Q0) ≥ 2 and d(p,Q1) ≥ 2, or
(c) there is an l = 0 or 1 such that d(p,Ql) ≥ 3, or
(d) there l = 0 or 1 such that d(p,Ql) ≥ 2 and a p′ ∈ Ql so that d(p, p′) ≥ 4.

2. and if for each l = 0, 1 and each p ∈ Ql, either

(a) there is a j 6= ι satisfying d(p, Pj) ≥ 2, or
(b) there exists p′ ∈ Pι −Ql such that d(p, p′) ≥ 4 and d(p,Ql′) ≥ 2, where l′ = 0 or

1 but l′ 6= l.

When there exists an ι, Q0 and Q1 such that (P, P ,Q) satisfies condition A′′ (resp. condition
B′′), we say (P, P ) or simply P satisfies condition A′′ (condition B′′). Without loss of generality
we may renumber P so that ι = 1. Note that A′ and B′ imply A′′ and B′′ by taking ι = 1 and letting
Q0 = P1 and Q1 = ∅. However, condition A′′ does not imply condition A. So let covAA′′B′′(P ) be
the smallest size of the covering P of P satisfying conditions A, A′′ and B′′.

Similar to the discussion of conditions A′ and B′, the arguments used to determine conditions
A′′ and B′′ from the graph G(C,P,Q) are bi-directional. We summarize the discussion in the
following proposition.

Proposition 4.6. For graphs C and P , and a triple (P, P ,Q), G = G ′(C,P,Q) is a UCG if and
only if P satisfies condition A and (P, P ,Q) satisfies conditions A′′ and B′′.

We are now ready to prove analogous results to Propositions 4.4 and 4.5.

Proposition 4.7. Assume Aucg(C,P ) = 2κ + 1, and let H be a UCG with 〈Z(H)〉 = C,
〈CP(H)〉 = P , and |I(H)| = 2κ + 1 where κ = covA(P ). Furthermore, assume |D2| = κ + 1.
Then covAA′′B′′(P ) = κ.

Proof. Let H be a UCG with C = 〈Z(H)〉, P = 〈CP(H)〉, |I(H)| = 2κ + 1 and |D2| = κ + 1.
Since |D1| = κ and κ ≤ |D′′1 | ≤ |D1|, it follows that |D1| = |D′′1 |. We prove this proposition by
studying the structure of a spanning subgraph.

Let D1 = {x1, . . . , xκ} and {p̃1, . . . , p̃κ} be a set of vertices associated to the induced cover
P . By Proposition 2.1 there exists an enumeration {y0, . . . , yκ} of D2 such that the vertex yj is
adjacent to xj and p̃j for each j, 1 ≤ j ≤ κ. We may also assume y0 is adjacent to x1.

We now define a different cover of P . For each i, 0 ≤ i ≤ κ, let

Qi = {p ∈ V (P ) : p is adjacent to yi}.

Let P ′1 = Q0 ∪ Q1 and P ′i = Qi for 2 ≤ i ≤ κ, P
′
= {P ′1, . . . , P ′κ} and Q = {Q0, . . . , Qκ}.

Since |D1| = |D′′1 | every vertex of C is adjacent to vertex in D1 by Lemma 2.4. Therefore,
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G = G ′(C,P,Q) is isomorphic to a spanning subgraph of H , and is a UCG by Lemma 2.5. By
Proposition 4.6 P

′
satisfies conditions A, A′′ and B′′ which means

κ ≤ covAA′′B′′(P ) ≤ |P ′| = κ.

We conclude covAA′′B′′(P ) = κ.

Proposition 4.8. If P is a graph with r(P ) > 1, κ = covA(P ) 6= covA′B′(P ) and covAA′′B′′(P ) =
covA(P ), then Aucg(C,P ) = 2κ+ 1.

Proof. Assume covA′B′(P ) 6= κ but covAA′′B′′(P ) = κ. By Proposition 4.3 Aucg(C,P ) > 2κ,
so we need to show Aucg(C,P ) ≤ 2κ + 1. Let P be a smallest covering of P with respect to
condition A such that there is a refined cover Q where the pair (P ,Q) is smallest with respect
to conditions A′′ and B′′. Without loss of generality we may assume ι = 1. By Proposition 4.6
G = G(C,P,Q) is a UCG with C = 〈Z(G)〉, P = 〈CP(G)〉 and |I(G)| = 2κ+ 1, which implies
Aucg(C,P ) ≤ 2κ+ 1.

The following theorem summarizes Propositions 4.1, 4.3, 4.4, 4.5, 4.7, and 4.8.

Theorem 4.1. If P is a graph with r(P ) > 1 and covA(P ) = κ, then following holds:

1. Aucg(C,P ) = 2κ if and only if covA′B′(P ) = κ.

2. Aucg(C,P ) = 2κ+ 1 if and only if κ 6= covA′B′(P ) and either

(a) covA′(P ) = κ or

(b) covAA′′B′′(P ) = κ.

3. Aucg(C,P ) = 2κ+ 2 otherwise.

5. Coverings

In this section we determine when κ = covA(P ) is the size of smallest coverings with respect to
the other conditions described in Sections 3 and 4. To do this we introduce one last set of notation.
For a graph G, a vertex V in G and s ∈ N let

Ns[v] = {x ∈ V (G)|d(v, x) ≤ s}

be the closed s-neighborhood of v. When s = 1 we simply let N1[x] = N [x].
Proposition 3.1 and Theorem 3.1 determine Aucg(Kn, P ) up to knowing when covA(P ) =

covAB(P ). We now determine conditions for a graph P to satisfy covA(P ) = covAB(P ).

Proposition 5.1. If P is a graph with diam(P ) ≥ 3, then covA(P ) = 2.

Proof. Suppose x is a vertex in P satisfying e(x) ≥ 3. Let P1 = N [x] and P2 = V (P )−P1. Then
d(x, P2) ≥ 2. Since e(x) ≥ 3, P2 contains a vertex y satisfying d(x, y) ≥ 3, and so d(y, P1) ≥ 2.
Thus, {P1, P2} is a covering of P satisfying condition A.

173



www.ejgta.org

On central-peripheral appendage numbers of uniform central graphs | Choi and Needleman

Proposition 5.2. If P is a graph satisfying diam(P ) ≥ 4 and r(P ) ≥ 3, then covAB(P ) = 2.

Proof. Let x and y be vertices in P satisfying d(x, y) = 4. We construct P1 and P2 recursively.
Initialize P1 := N [x] and P2 := N [y]. Note that d(x,N [y]) = d(y,N [x]) = 3. For a vertex z in
V (P )− (P1 ∪ P2), update P1 and P2 as follows.

i) If there is a vertex p ∈ P2 satisfying d(z, p) ≥ 3, then let P1 := P1 ∪ {z}.

ii) Else if there is a vertex p ∈ P1 satisfying d(z, p) ≥ 3, then let P2 := P2 ∪ {z}.

iii) Else there is a vertex p ∈ V (P ) − (P1 ∪ P2) satisfying d(z, p) = 3, since r(P ) = 3. Let
P1 := P1 ∪ {z} and P2 := P2 ∪ {p}.

Continue until all vertices of P have been accounted for. By construction {P1, P2} is a covering
of P satisfying condition B. Since N [x] ⊂ P1, d(x, P2) ≥ 2 and similarly d(y, P1) ≥ 2. Thus
{P1, P2} satisfies condition A.

Proposition 5.3. If P is a graph with r(P ) = 2, then covAB(P ) 6= 2.

Proof. Suppose there is a covering {P1, P2} of P satisfying conditions A and B. Assume P1 con-
tains a vertex z with e(z) = 2. By condition B, d(z, P2) = 2 and so N(z)∩P2 = ∅. If p is a vertex
in P2, then d(z, p) = 2 and so d(P1, p) = 1, a contradiction to condition A.

Proposition 5.4. For every α ∈ N, there exists a graph P with r(P ) = diam(P ) = 2 and
covA(P ) = 2α.

Proof. Construct Pα = (V α, Eα) as follows. Let

V α = {ei, fi : 1 ≤ i ≤ α}

and
Eα = {eiej, fifj, eifj : 1 ≤ i, j ≤ α, i 6= j}.

Note, Pα is a complete graph minus a perfect matching. It follows that r(Pα) = diam(Pα) = 2.
We now show covA(Pα) = 2α. By Lemma 3.1 there exists a covering

{Pα
1 , P

α
2 , . . . , P

α
k }

of Pα satisfying condition A. Suppose e1 ∈ Pα
1 . If Pα

1 contains a vertex other than e1, then
d(Pα

1 , x) = 1 for all x ∈ V α−Pα
1 , a contradiction to condition A. Therefore Pα

1 = {e1}. Similarly
|Pα
i | = 1 for all i = 1, 2, . . . , k and covA(Pα) = 2α.

Propositions 5.1 through 5.3 determine when covA(P ) = covAB(P ) for all graphs P with
r(P ) > 1 except those with r(P ) = diam(P ) = 2 and those with r(P ) = diam(P ) = 3.
Proposition 5.4 gives insight into richness of the case r(P ) = diam(P ) = 2. However, we do not
have any definitive results for r(P ) = diam(P ) = 3. This is discussed further in Section 6.

For a non-complete graph C, Theorem 4.1 relates Aucg(C,P ) to covA′B′(P ), covA′(P ), and
covAA′′B′′(P ). Because of Proposition 5.4, we only consider P with diam(P ) > 2. By Proposition
5.1 we need to understand when the smallest coverings are of size 2.
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Proposition 5.5. P is a graph with covA′B′(P ) = 2 if and only if P is disconnected.

Proof. Assume P is disconnected. Let P1 be the vertices of a connected component of P and let
P2 = V (P )− P1. Since, for all u ∈ P1 and v ∈ P2, d(u, v) =∞ it follows that {P1, P2} satisfies
conditions A′ and B′.

Next, assume P is connected but P = {P1, P2} is a covering. Since P is connected, d(P1, P2) =
1 and there is a p1 ∈ P1 and p2 ∈ P2 with d(p1, p2) = 1. Therefore d(p1, P2) = 1 and d(p2, P1) = 1
and condition B′ fails, and so covA′B′(P ) > 2.

Proposition 5.6. For a graph P , covA′(P ) = 2 if and only if diam(P ) ≥ 5.

Proof. Assume diam(P ) ≥ 5. Then there exist u, v ∈ V (P ) with d(u, v) ≥ 5. Let P1 = {p ∈
V (P ) : d(u, p) ≤ 2} and P2 = V (P )−P1. Then d(u, P2) ≥ 3. Also d(v, P1) ≥ 3 because if there
is a p ∈ P1 with d(v, p) ≤ 2, then d(u, v) ≤ d(u, p) + d(p, v) ≤ 4, a contradiction. So {P1, P2}
satisfies condition A′.

Next, assume there is a covering {P1, P2} of P satisfying condition A′. Then there is a u ∈ P1

such that d(u, P2) ≥ 3. Then N2[u] ⊂ P1 and N2[u] ∩ P2 = ∅. Similarly, P2 contains a vertex v
such that d(v, P1) ≥ 3, and so N2[v] ⊂ P1 and N2[v] ∩ P1 = ∅. Therefore d(u, v) ≥ 5.

Proposition 5.7. If P is a graph with diam(P ) ≤ 3, then covAA′′B′′(P ) 6= 2.

Proof. Let P be a graph with diam(P ) ≤ 3. Suppose there is a covering P = {P1, P2} of P
satisfying condition A such that for ι = 1 the triple (P, P ,Q) satisfies conditions A′′ and B′′,
where Q = {Q0, Q1, P2} with P1 = Q0 ∪ Q1. For each p ∈ P1, d(p, P2) ≥ 2 by condition B′′(2)
because diam(P ) ≤ 3. This implies d(P1, P2) ≥ 2. However, d(P1, P2) ≤ 1 since P is connected,
a contradiction.

Proposition 5.8. If P is a graph with r(P ) = 2, then covAA′′B′′(P ) 6= 2.

Proof. Let P be a graph with r(P ) = 2. Suppose there is a covering P = {P1, P2} of P satisfying
condition A such that for ι = 1 the triple (P, P ,Q) satisfies conditions A′′ and B′′, where Q =
{Q0, Q1, P2} with P1 = Q0 ∪Q1.

For a central vertex c ∈ V (P ) either c ∈ P1 or c ∈ P2.
Suppose c ∈ P1. Without loss of generality assume c ∈ Q0. By condition B′′(2), d(c, P2) ≥ 2.

In fact, d(c, P2) = 2 because c is central, and so there exists a p ∈ P2 with d(c, p) = 2. Let c−x−p
be a geodesic. Then x ∈ P1, e(x) ≤ 3 and d(x, P2) = 1. Therefore, {P1, P2} does not satisfy
condition B′′-2 for x, a contradiction.

Next, suppose c ∈ P2. By the hypotheses c does not satisfy B′′(1a), B′′(1c), and B′′(1d).
Therefore, d(c,Q0) ≥ 2 and d(c,Q1) ≥ 2. Since c is a central vertex, d(c,Q0) = 2 and d(c,Q1) =
2. Then there exist q0 ∈ Q0 and q1 ∈ Q1, satisfying d(c, q0) = 2 and d(c, q1) = 2. Let c − x − q0
and c − y − q1 be paths. Then both x and y are in P2 and d(P2, Qi) ≤ 1 for i = 0, 1. Therefore
{P1, P2} does not satisfy condition A′′(1).
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To fully understand Aucg(C,P ) there are still two cases left to consider, when diam(P ) = 4
and r(P ) = 3, and diam(P ) = 4 and r(P ) = 4. In these cases covA′B′(P ) 6= 2 and covA′(P ) 6= 2.
When diam(P ) = r(P ) = 4, covAA′′B′′(P ) = 2 depends on P . To show that there exist graphs P
with covAA′′B′′(P ) 6= 2, we introduce the following lemma.

Lemma 5.1. If P is a graph with diam(P ) = 4 and covAA′′B′′(P ) = 2, then there exist three
vertices x1, x2, x3 such that

N2[x1] ∩N2[x2] ∩N2[x3] = ∅.

Proof. Suppose there is a covering P = {P1, P2} of P satisfying condition A such that for ι = 1
the triple (P, P ,Q) satisfies conditions A′′ and B′′, where Q = {Q0, Q1, P2} with P1 = Q0 ∪Q1.

Since P is connected, without loss of generality we may assume that d(P2, Q1) ≤ 1. Then
A′′(2b) is not satisfied for l = 1 and so, from A′′(2a), there exists a p1 ∈ P2 such that d(Q1, p1) ≥ 3.
For l = 0 there are two cases for condition A′′(2), either part 2a is met or part 2b is met.

For l = 0, either there exists a p0 ∈ P2 such that d(Q0, p0) ≥ 3 or d(P2, Q0) ≥ 2 by condition
A′′(2b).

Suppose d(P2, Q0) ≥ 2, by connectivity of P we know d(P2, Q1) ≤ 1 and d(Q0, Q1) ≤ 1.
Since d(p1, Q1) ≥ 3, N2[p1] ∩Q1 = ∅ and so

N2[p2] ⊂ (P2 ∪Q0)−Q1.

Since p1 ∈ P2 and d(Q0, P2) ≥ 2, N1[p1] ∩Q0 = ∅ and N1[p1] ⊂ P2. From

2 ≤ d(Q0, P2) ≤ d(Q0, N1[p1]),

it follows that N2[p1] ⊂ P2. Therefore, d(N2[p1], Q0) ≥ 2 and d(p1, Q0) ≥ 4. Since diam(P ) = 4,
d(p1, Q0) = 4.

Let p1 − x − y − z − q0 be a geodesic for some q0 ∈ Q0. Then z 6∈ Q0 since d(z, p1) = 3,
and z 6∈ P2 since d(q0, z) = 1. Hence z ∈ Q1. Furthermore, y ∈ N2[p1] ⊂ P2, so d(z, P2) ≤ 1
and d(z,Q0) ≤ 1. This implies condition B′′(2) is not met for z ∈ Q1, a contradiction. Therefore
d(P2, Q0) ≤ 1.

Then, for l = 0 condition A′′(2a) is satisfied and there is a p0 ∈ P2 such that d(Q0, p0) ≥ 3.
Therefore, N2[p0] ∩Q0 = ∅. Since N2[p1] ∩Q1 = ∅, it follows that N2[p0] ∩N2[p1] ⊂ P2.

From condition A′′(1) there exists a q ∈ Q0 such that d(q, P2) ≥ 3. Then N2[q] ∩ P2 = ∅ and

N2[p0] ∩N2[p1] ∩N2[q] = ∅.

Proposition 5.9. There exists a graph P with r(P ) = diam(P ) = 4 and covAA′′B′′(P ) 6= 2.

Proof. Let P be the graph of a hexagonal prism as in Figure 4. Then r(P ) = diam(P ) = 4. If
covAA′′B′′(P ) = 2 then by Lemma 5.1 there exist vertices x1, x2, x3 such that

N2[x1] ∩N2[x2] ∩N2[x3] = ∅,
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or equivalently,
N2[x1]

c ∪N2[x2]
c ∪N2[x3]

c = V (P ).

For any vertex x of P , the complement of N2[x] is a star with three pendant vertices as in Figure 4.
Because the prism has twelve vertices, a set of three stars would cover the prism with no overlap.
However, one can check this is not possible and so covAA′′B′′(P ) 6= 2

•

••

•

••

•

••

•

••

x

..
...
..
...
............

...........
..........

.
.............

..

...
..

(N2[x])
c

Figure 4: A hexagonal prism and the complement of a 2-neigborhood.

Proposition 5.10. There exists a graph P with r(P ) = diam(P ) = 4 and covAA′′B′′(P ) = 2.

Proof. Let P be the graph of a heptagonal prism as in Figure 5. Then r(P ) = diam(P ) = 4.
Consider the covering P = {P1, P2}, where P1 = Q0 ∪ Q1 as in Figure 5. Here vertices of Q0

are represented by the open circles, Q1 by the open squares, and P2 by the filled circles. One can
verify this covering satisfies conditions A, A′′ and B′′, and so covAA′′B′′(P ) = 2.

◦

◦2

2

••
•

◦

◦
2

2

•
•

2

Q0
Q1

P2

Figure 5: A graph P with r(P ) = diam(P ) = 4 and covAA′′B′′(P ) = 2

.

6. Appendage Numbers

In this section we determine Aucg(C,P ) for most pairs of graphs (C,P ) based on the structure
of C, proving Theorems 6.1, 6.2, and 6.3, given in the introduction. Conjectures are also given for
the two remaining cases.

Theorem 6.1. Let C = {v} and P be any graph with r(P ) ≥ 2. Then Aucg(C,P ) = 0.
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Proof. Let H be the graph with vertex set

V (H) = V (P ) ∪ {v}

and edge set
E(H) = E(P ) ∪ {vp|p ∈ V (P )}.

We claim H is a UCG with 〈Z(H)〉 = C, 〈CP(H)〉 = P and |I(H)| = 0.
Since v is adjacent to all other vertices in H , e(v) = 1. If p is a vertex in P there is a

p′ ∈ V (P ) satisfying dP (p, p′) = 2. Since p and p′ are not adjacent in P , they are not adjacent in
H and e(p) ≥ 2. This implies 〈Z(H)〉 = {v} and H is a UCG with 〈CP(H)〉 = P .

Theorem 6.2. When n ≥ 2

Aucg(Kn, P ) =

{
2 if diam(P ) ≥ 4 and r(P ) ≥ 3

3 if diam(P ) ≥ 3 and r(P ) = 2

Furthermore, for all t ∈ N there is a graph P with diam(P ) = r(P ) = 2 and Aucg(Kn, P ) ≥ t.

Proof. This follows directly from Proposition 3.1, Theorem 3.1 and Propositions 5.1, 5.2, 5.3, and
5.4.

Conjecture 1. If diam(P ) = r(P ) = 3, then Aucg(Kn, P ) = 2.

When diam(P ) = r(P ) = 3, Aucg(C,P ) = 2 or 3. However, all our examples show
Aucg(Kn, P ) = 2, but we have not been able to prove this is always true.

Theorem 6.3. If C is a graph with diam(C) > 1 then

Aucg(C,P ) =



4 if diam(P ) =∞
5 if 5 ≤ diam(P ) <∞
5 or 6 if diam(P ) = 4 and r(P ) = 4

6 if diam(P ) = 4 and r(P ) = 2

6 if diam(P ) = 3

Furthermore, for all t ∈ Z there is a graph P with diam(P ) = r(P ) = 2 and Aucg(C,P ) ≥ t.

Proof. This follows directly from Theorem 4.1, Proposition 5.1 and Propositions 5.4, through
5.10.

The only case not accounted for is when diam(P ) = 4 and r(P ) = 3. In this case we know
covA′B′(P ) 6= 2, so Aucg(C,P ) = 5 or 6. We also know covA′(P ) 6= 2. Therefore Aucg(C,P ) = 5
if and only if covAA′′B′′(P ) = 2. However, we have not found this to be the case for any such P .
We also have been unable to show it is impossible, so we are left with the following conjecture.

Conjecture 2. If C is a graph with diam(C) > 1 and P is a graph with diam(P ) = 4 and
r(P ) = 3, then Aucg(C,P ) = 6.
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The diam(P ) = r(P ) = 4 case also warrants further discussion. Propositions 5.9 and 5.10
show there are examples of P whenAucg(C,P ) = 6 and with Aucg(C,P ) = 5. It will be necessary
to find another metric invariant other than diameter and radius to refine the results of this case. At
this point we are unsure what a suitable invariant may be.

Finally, independent of C, there is a major difference between possible appendage numbers
when diam(P ) > 2 and when diam(P ) = 2. When diam(P ) > 2, Theorems 6.2 and 6.3 show
there are only finitely many possible appendage numbers, and which are independent of the size
of V (P ). On the other hand, for diam(P ) = r(P ) = 2 the graph Pα in Proposition 5.4 gives

Aucg(Kn, P
α) = |V (Pα)| = 2α.

This may suggest that appendage numbers are related to |V (P )| when diam(P ) = r(P ) = 2,
however the following proposition shows this is not the case.

Proposition 6.1. For every α, β ∈ N, there is a graph P such that V (P ) = 2α+β andAucg(Kn, P ) =
2α.

Proof. In this proof we modify the construction of Pα from Proposition 5.4. For α, β ∈ N define
Pα,β = (V α,β, Eα,β) as follows. Let

V α,β = {ei, fi, gj : 1 ≤ i ≤ α, 1 ≤ j ≤ β}

and
Eα,β = {eiej, fifj, eifj, ekgl, fkgl : 1 ≤ i, j ≤ α, i 6= j, 2 ≤ k ≤ α, 1 ≤ l ≤ β}.

That is, Pα,β is the graph from Proposition 5.4 with β new vertices, g′is, that are adjacent to every
vertex except themselves, e1 and f1. Observe that diam(Pα,β) = r(Pα,β) = 2 if α ≥ 2.

We now show covA(Pα,β) = covAB(Pα,β) = 2α. Let Pα,β = {P1, . . . , Pk} be a covering of
Pα,β satisfying condition A. For 2 ≤ i ≤ α, {ei}, {fi} ∈ Pα,β as in Proposition 5.4. If

{e1, f1, g1, . . . , gβ} ∈ Pα,β,

then Pα,β fails to satisfy condition A. Therefore e1, f1 and the gls must be contained in least two
elements of Pα,β , and so covA(Pα,β) ≥ 2α.

Let Pα,β
1 = {e1} and Qα,β

1 = {f1, g1 . . . , gβ}, and for 2 ≤ i ≤ α let Pα,β
i = {ei} and

Qα,β
i = {fi}. Then {Pα,β

1 , Qα,β
1 , . . . , Pα,β

α , Qα,β
α } is a covering of Pα,β that satisfies both conditions

A and B. So Aucg(Kn, P
α,β) = 2α and V (Pα,β) = 2α + β.

7. Other Appendage Numbers

In the paper [4] Gu defines Aucg(C) to be the minimum number of vertices needed to be added
to C in order to create a uniform central graph G with 〈Z(G)〉 = C. To match notation we let
Aucg(C,−) = Aucg(C). Gu’s main theorem is the following.
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Theorem 7.1 (Gu). If C is a connected graph, then

Aucg(C,−) =


2 if C = {v}
4 if C = Kn, n ≥ 2

6 otherwise
.

We use our results to give an alternative proof of Gu’s result which is also true without the
condition that C is connected.

Proof. Observe that Aucg(C,−) = min{Aucg(C,P ) + |V (P )|} where the minimum is taken over
all graphs P . By Proposition 2.2, r(P ) > 1 and so we may assume |V (P )| ≥ 2. Since covA(P ) ≥
2 for any P , by Proposition 3.1Aucg(Kn, P ) ≥ 2 for n ≥ 2, and by Proposition 4.1Aucg(C,P ) ≥ 4
for any non-complete graph C. Hence Aucg(Kn,−) ≥ 4 and Aucg(C,−) ≥ 6.

Let P 2 be a graph with two isolated vertices {u, v} and P 2 = {{u}, {v}} a covering. Note P 2

satisfies conditions A, B, A′ and B′. Let

G1 = G(Kn, P
2, P 2, 1)− {x0,1}

and
G2 = G(Kn, P

2, P2, 2)− {x0,1, x0,2}.
The graph G1 is the UCG in the first half of the proof of Theorem 3.1 and G2 is a UCG by Propo-
sition 4.2. Furthermore, |I(G1)| = 2 and |I(G1)| = 4, so Aucg(Kn,−) = 4 and Aucg(C,−) = 6.

Finally, Aucg({v},−) = 2 by Theorem 6.1.

We can also consider Aucg(−, P ), the minimum number of vertices needed to be added to P in
order to construct a uniform central graph G with 〈CP(G)〉 = P . From Propositions 2.2 and 6.1,
it follows that Aucg(−, P ) =∞ if r(P ) = 1, and Aucg(−, P ) = 1 otherwise.
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