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Abstract

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that
no adjacent vertices and edges receive the same color. The total chromatic number of a graph
G, denoted by χ′′(G), is the minimum number of colors that suffice in a total coloring. Behzad
and Vizing conjectured that for any graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2, where ∆(G) is
the maximum degree of G. In this paper, we prove the Behzad and Vizing conjecture for Indu -
Bala product graph, Skew and Converse Skew product graph, Cover product graph, Clique cover
product graph and Comb product graph.
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1. Introduction

All the graph should be considered here are finite, simple and undirected. Let G = (V (G), E(G))
be a graph with the sets of vertices V (G) and edges E(G) respectively. A total coloring of G is
a mapping f : V (G) ∪ E(G) → C, where C is a set of colors, satisfying the following three
conditions (a)-(c).
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(a) f(u) ̸= f(v) for any two adjacent vertices u, v ∈ V (G),
(b) f(e) ̸= f(e′) for any two adjacent edges e, e′ ∈ E(G), and
(c) f(v) ̸= f(e) for any vertex v ∈ V (G) and any edge e ∈ E(G) incident to v.

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number of colors
that suffice in a total coloring. It is clear that χ′′(G) ≥ ∆(G) + 1, where ∆(G) is the maximum
degree of G. Behzad [2] and Vizing [23] conjectured (Total Coloring Conjecture (TCC)) that for
every graph G, ∆(G) + 1 ≤ χ′′(G) ≤ ∆(G) + 2. If a graph G is total colorable with ∆(G) + 1
colors then the graph is called Type - I, and if it is total colorable with ∆(G) + 2 colors but not
∆(G) + 1 colors, then it is Type - II. A graph G is said to be total colorable if the elements of
G are colored with at most ∆(G) + 2 colors. This conjecture was verified by Rosenfeld [15] and
Vijayaditya [22] for ∆(G) = 3 and by Kostochka [11, 12] for ∆(G) ≤ 5. For planar graphs, the
conjecture was verified by Borodin [3] for ∆(G) ≥ 9. In 1992, Yap and Chew [24] proved that
any graph G has a total coloring with at most ∆(G) + 2 colors if ∆(G) ≥ |V (G)| − 5, where
|V (G)| is the number of vertices in G. The adjacent vertex distinguishing index by sums in total
proper colorings[14]. In 1993, Hilton and Hind [6] proved that any graph G has a total coloring
with at most ∆(G) + 2 colors if ∆(G) ≥ 3

4
|V (G)|. In particular, Mc Diarmid and Arroyo [4]

proved that the problem of determining the total coloring of µ-regular bipartite graph is NP-hard,
µ ≥ 3. Direct product, cartesian product, strong product and lexicographic product graphs given
by Imrich[8] et la. Recently, Vignesh et al. [21, 16] verified TCC for certain classes of deleted
lexicogaphic product graphs. In [20], they also proved that Vertex, Edge and Neighborhood corona
products of graphs are type-I graphs. In [10] verified Maximum average degree of list edge-critical
graphs and vizing conjecture. Recently [19] analysis On twin edge colorings in m-ary trees. The
following theorem is due to Yap [25].

Theorem 1.1. Let Kn be the complete graph. Then χ′′(Kn) =

{
n, if n is odd,
n+ 1, if n is even.

2. Indu - Bala Product Graph

Let G and H be two connected graphs with m and n vertices, respectively. The join of G and H
is a graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H)∪{{i, j} : i ∈ V (G), j ∈ V (H)}.
It is denoted by G ∨H .

The Indu-Bala product of G and H [9], is denoted by G▼H and is obtained from two disjoint
copies of the join G ∨ H of G and H by joining the corresponding vertices in the two copies
of H . The Indu-Bala product is not commutative. That is G▼H ̸≃ H▼G. If G and H are two
connected graphs with m and n vertices, respectively then the maximum degree is ∆(G▼H) =
max {∆(G) + n,∆(H) +m+ 1} .

In [9], they obtained the distance spectrum of G▼H in terms of the adjacency spectra of G
and H . Also they prove that the class of graphs Kn▼Kn+1 has integral distance spectrum. In this
section, we prove the Behzad - Vizing conjecture for Indu - Bala product of some classes of the
graphs.
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Figure 1. C6▼K5

Theorem 2.1. Let G be total colorable graph with m vertices and H be any graph with n vertices
respectively. If ∆(G) > ∆(H) and n ≥ m then χ′′(G▼H) ≤ ∆(G▼H) + 2.

Proof. The maximum degree ∆(G▼H) = {∆(G) + n}. Since G is total colorable, we color the
elements of G with ∆(G) + 2 colors. Assign colors to the edges of H using the same ∆(G) + 2
colors. Color all the edges between G and H with n colors other than ∆(G) + 2 colors.

Here, the vertices between G and H may have the same colors. To avoid this, we start recolor-
ing the vertices in H and some join edges between G and H in the following way.

Since ∆(G) > ∆(H), there will be at least one color at each vertex in H , which is common to
the missing colors at the vertices of G. Remove the colors of n matching edges (having different
colors) between G and H in G ∨H and recolor these edges with the missing colors. Color all the
vertices of H with the removed colors.

For the second copy of G ∨H in G▼H , give the same color assignment as in the first copy for
all the elements of G and edges of H . Now for the edges between G and H in the second copy
of G ∨ H , assign the color c → (c + 1) and take n + 1 as 1. Remove the colors of the same n
edges with different colors in G ∨ H and give the removed colors to the vertices, missing colors
to the edges. Note that the corresponding vertices of H in G▼H will receive the different vertex
coloring. Since ∆(G) > ∆(H), there will be some more colors (at least one) that are not assigned
to any of the edges incident with H in both the copies. Assign these missing colors to the edges
between the corresponding vertices of H . We use only ∆(G▼H) + 2 colors. Hence the graph
G▼H is total colorable.

Theorem 2.2. Let H be total colorable graph with n vertices and G be any graph with m vertices
respectively. If ∆(H) > ∆(G) and m ≥ n then χ′′(G▼H) ≤ ∆(G▼H) + 2.
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Figure 2. P3▼P2 ̸≃ P2▼P3

Proof. The maximum degree is ∆(G▼H) = ∆(H) +m+ 1. Since H is total colorable, we color
the elements of H using ∆(H)+2 colors. Color all the edges of G with the same ∆(H)+2 colors.
Color the join edges between G and H with m colors. Similar to the previous case, we remove the
colors of m matching edges (having different colors) between G and H and assign these removed
colors to the vertices of G, and assign the missing colors at the vertices of H to these m edges.

For the second copy of G▼H , assign the same coloring of H with c → (c + 1) and take
∆(H) + 3 as 1 to the second copy of G and H . Now for the edges between G and H in G ∨ H ,
assign the m colors other than ∆(H) + 2 colors. Remove the colors of the m matching edges
(having different colors) in G ∨ H and give these removed colors to the vertices of G, assign the
missing colors to these m edges. Note that the corresponding vertices of H in G▼H will receive
the different vertex coloring.

Since ∆(H) > ∆(G), there will be some more colors (at least one) that are not assigned to any
of the edges incident with H in both the copies. Assign these missing colors to the edges between
the corresponding vertices of H . We use only ∆(G▼H)+2 colors. Hence the graph G▼H is total
colorable.

We have verified the total coloring conjecture in the above theorem for some classes of G▼H .
In the following theorems, we prove the tight bound of the total coloring conjecture for certain
classes of G▼H .

Theorem 2.3. Let G be any graph with m vertices and H be a Type -I graph with n vertices. If
∆(G) ≤ ∆(H) and m > n then χ′′(G▼H) = ∆(G▼H) + 1.

Proof. The maximum degree ∆(G▼H) = ∆(H) +m+ 1.
Color all the elements of H using ∆(H) + 1 colors. Assign the edge coloring of H to the edges of
G with the same ∆(H) + 1 colors. Let C = {c1, c2, . . . , cm} be a color set with m colors. Color
the vertices of G from the color set C. Consider a vertex in G, one color from C is already assigned
to that vertex and there are m− 1 colors available. Similarly, at each vertex in G, there are m− 1
different available colors. Color the join edges between the vertices G and H with these m − 1
available colors in a cyclic way.
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For the second copy of G ∨H in G▼H , assign the color c → (c+ 1) and take ∆(H) + 2 as 1
and cm+1 as c1. In this coloring assignment, the corresponding vertices of H in both the copies will
receive different colors. Assign a new color to the edges between the two copies of H . Therefore,
χ′′(G▼H) = ∆(G▼H) + 1.

Theorem 2.4. Let Km be a complete graph and H be any graph with n vertices. If ∆(H) <
m− 1 < n then χ′′(Km▼H) = ∆(Km▼H) + 1.

Proof. Here, ∆(Km▼H) = m+ n− 1.
Case 1. m is odd.
From the Theorem 1.1, we know that Km requires m colors. Color the elements of Km with

m colors. Let C = {c1, c2, . . . , cn−1, cn} be a set of n new colors. Color the vertices in H using
all the n colors. Now, based on the vertex coloring of H , color the edges between Km and H from
C with a cyclic way. Color the edges in H using the same m colors such that the adjacent edges
receive different colors.

For the second copy of Km ∨H in Km▼H , we use the same m+ n colors from the first copy
to color the elements of Km and the join edges between Km and H . Change the color c to c+ 1 to
color the elements of Km and the join edges between Km and H , here, the color m+ 1 is taken as
1 and the color cn+1 is taken as c1. According to this coloring assignment, color the vertices of H
and the edges of H in such a way that there is a common missing color between the corresponding
vertices of the two copies of H . Now, we give these missing colors to the edges between the two
copies of H .

Case 2. m is even.
From the Theorem 1.1, we know that Km requires m + 1 colors. Color the elements of Km with
m+1 colors. Let C = {xi, c1, c2, . . . , cn−1} be a set of colors, where xi is the missing color at the
ith vertex in Km and c1, . . . , cn−1 are the new colors. Consider a set of matching edges between
Km and H and assign the missing colors xi to the matching edges, which are incident with ith

vertex in Km. Color the remaining join edges between Km and H from C with a cyclic way. Color
the vertices in H using the colors n − 1 new colors and a color that is not assigned to any of the
vertices in Km. Now, based on the vertex coloring of H , color the edges in H using the same m+1
colors such that the adjacent edges receive the different colors.

For the second copy of Km ∨ H in Km▼H , similar to the previous case, we use the colors
from the first copy to color the elements of Km and the join edges between Km and H . Change
the color c to c + 1 to color the elements of Km and the join edges between Km and H , here, the
color m + 2 is taken as 1 and the color cn is taken as c1. According to this coloring assignment,
color the vertices of H and the edges of H in such a way that there is a common missing color
between the corresponding vertices of two copies of H . Now, we give these missing colors to the
edges between the two copies of H . Hence, in both the cases, we used ∆(Km▼H) + 1 colors for
a total coloring of Km▼H .

Theorem 2.5. Let Kn be a complete graph and G be any graph with m vertices. If ∆(G) <
n− 1 < m then χ′′(G▼Kn) = ∆(G▼Kn) + 1.

Proof. Here, ∆(G▼Kn) = (n− 1) +m+ 1.
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Case 1. n is odd.
Color the elements of Kn with n colors. Let C = {c1, c2, . . . , cm} be a set of new m colors.

Color the vertices of G using m colors from the color set C. Now, based on the vertex coloring,
color the join edges between Kn and G from C with a cyclic way. Using the colors of Kn, we
assign the colors to the edges of G such that there is no same coloring assignment to the adjacent
edges.

For the second copy of G ∨Kn in G▼Kn, assign the color c → (c+ 1) to the elements, where
c is a color in the first copy and take n + 1 as 1 and cm+1 as c1. In this coloring assignment, the
corresponding vertices of two copies of Kn will receive different colors. We give a new color to
the edges between the two copies of Kn.

Case 2. n is even.
Color the elements of Kn with n + 1 colors. Let C = {xi, c1, c2, . . . , cm−1} be a set of colors,

where xi is the missing color at the ith vertex in Kn and c1, . . . , cm−1 are new colors. Consider a
set of matching edges between Kn and G and assign the missing colors xi to the matching edges,
which are incident with ith vertex in Kn. Color the remaining join edges between Kn and G from
C with a cyclic way. Color the vertices in G using the colors in C colors and a color that is not
assigned to any of the vertices in Kn. Now, based on the vertex coloring of G, color the edges in
G using the same n+ 1 colors such that the adjacent edges receive the different colors.

For the second copy of G∨Kn in G▼Kn, assign the color c → (c+1) to the elements of G∨Kn,
where n + 2 is taken as 1 and cm is taken as c1. In this coloring assignment, the corresponding
vertices of the two copies of Kn will receive different colors. We give a new color to the edges
between the two copies of Kn.

Therefore, χ′′(G▼Kn) = ∆(G▼Kn) + 1.

3. Skew Product and Converse Skew Product

The Skew product and the converse skew product graphs were introduced by Shibata and
Kikuchi [18].

Let G and H be two connected graphs. The skew product of G and H , denoted by G∆H , has
the vertex set V (G) × V (H) and the edge set E(G∆H) = {((u1, v1), (u2, v2)) | u1 = u2 and
v1v2 ∈ E(H) or u1u2 ∈ E(G) and v1v2 ∈ E(H)}.

The converse skew product of G and H , denoted by G∇H , has the vertex set V (G) × V (H)
and the edge set E(G∇H) = {((u1, v1), (u2, v2)) | v1 = v2 and u1u2 ∈ E(G) or u1u2 ∈ E(G)
and v1v2 ∈ E(H)}.

In [5] Ziming Duan, et al. considered the skew product and the converse skew product for
L(2, 1) - labeling. They obtained upper bounds for the L(2, 1) - labeling number, which improves
the upper bound obtained by Shao and Zhang [17] in many cases.

In this section, we study the total coloring of skew and converse skew product graphs. Figure
3 shows the graph P3∆C4.

Theorem 3.1. If H is a total colorable graph then Pm∆H is also total colorable.

Proof. Let H be any total colorable graph with n vertices. The graph Pm∆H can be viewed as
m copies H1, H2, . . . , Hm of H with direct product edges E(Pm ×H). We know that ∆(Pm∆H)
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Figure 3. P3∆C4

= ∆(Pm) × ∆(H) + ∆(H) = 3∆(H). First, we color all the copies of H with ∆(H) + 2. Each
vertex v in Hi is adjacent to d(v) vertices in Hi+1 and Hi−1. Note that there is no edges between
the corresponding vertices in Hi+1 and Hi−1. Now, assign the ∆(H) colors to edges between the
odd and even copies of H and assign another ∆(H) colors to the even and odd copies H colors.
Therefore, Pm∆H satisfies TCC.

The above theorem gives only upper bound. In the following corollary and theorem, we prove
the tight bound of the total coloring conjecture.

Corollary 3.1. If H is any Type - 1 graph then χ′′(Pm∆H) = ∆(Pm∆H) + 1.

If H is a Type - 2 graph then Pm∆Kn may be Type - 1 or Type - 2. For example, P2∆P2 ≃ C4

is a Type-2 graph. In the following theorem, we prove that P3∆Kn is always Type - 1 for all n.

Theorem 3.2. χ′′(P3∆Kn) = ∆(P3∆Kn) + 1.

Proof. Let Kn be a complete graph with n vertices. If n is odd then from the above corollary, it is
easy to see that P3∆Kn is a Type - 1 graph. Let n = 2k, k ≥ 2. Here ∆(P3∆Kn) = 3(n− 1). We
give a total coloring of Kn as in [7]. c′′n(i, j) ≡ (τi(j) + τj(i) + 2) mod (n+ 1), i ̸= j, i, j ∈ [n]0
defines a special (n+ 1)-edge coloring of Kn with p colors and color (p+ 1) mod p are missing
in the line p ∈ [n]0, where τp is the transposition of p and n − 1. The vertices are colored by the
canonical vertex-coloring to obtain a special total coloring of Kn. We give this total coloring of
the first copy of Kn in this way. For the second copy we give the same edge coloring as in the first
copy of Kn. In this edge coloring, the color p and the color (p+ 1) mod p are missing in the line
p ∈ [n]0 (at the vertex p ∈ [n]0). Assign one of these missing colors to the edge between the first
and second copy. Color the vertices in the second copy of Kn with new n − 1 colors and color
n + 1 (which is not assigned to any of the vertices in the first copy). Now for the edges between
the first and second copy, we need n − 2 colors. At each of the vertices in the second copy there
will be n − 2 colors, we assign these colors to the edges between the two copies. For the edges
between the second and third copy, we use the another set of missing colors at the vertices in each
of the copies of Kn and new n−2 colors. Color Kn in the third layer with same color as first layer.

This gives a total coloring of P3∆Kn as 3n− 2.

The above theorems are also true for converse skew product.
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4. Cover, Clique Cover and Comb Products

The cover product of two graphs G and H (introduced by Llamas and Bernal [13]) with fixed
vertex covers C(G) and C(H) is a graph G⊛H with vertex set V (G)∪V (H) and edge set E(G)∪
E(H) ∪ {{i, j} : i ∈ C(G), j ∈ C(H)}. The cover product is commutative but not symmetric.
Figure 4 shows the graph G ⊛ H . In [13], Llamas and Bernal described the Betti polynomial of
G ⊛ H in terms of those of G and H . The cover product of two graphs is a generalization of the
join of two graphs.

G H

C(G)
C(H)

Figure 4. G⊛H

Theorem 4.1. Let G and H be two total colorable graphs. Let k1 and k2 be the vertex covering
numbers of G and H , respectively. If either ∆(H) ≤ ∆(G) and k1 ≤ k2 or ∆(G) ≤ ∆(H) and
k2 ≤ k1 then χ′′(G⊛H) ≤ ∆(G⊛H) + 2.

Proof. Let G and H be two total colorable graphs. Let C(G) and C(H) be the minimal vertex
cover sets of G and H , respectively and assume that the vertices with maximum degrees of G and
H are in C(G) and C(H) respectively. Let #C(G) = k1 and #C(H) = k2. The maximum degree
∆(G⊛H) = max {∆(G) + k2,∆(H) + k1}.

Case 1. Suppose ∆(H) ≤ ∆(G) and k1 ≤ k2.
In this case, ∆(G ⊛H) = ∆(G) + k2. Assign the ∆(G) + 2 colors to the elements of G and

H . Remove the colors of the vertices in C(H) and assign the k2 colors to the k2 vertices in C(H).
Each vertex in C(H) is incident with k1 vertices in C(G). Since k1 ≤ k2, take the k2 colors and
assign to the edges between C(G) and C(H) with a cyclic way.

Case 2. Suppose ∆(G) ≤ ∆(H) and k2 ≤ k1.
In this case, ∆(G⊛H) = ∆(H) + k1. Assign the ∆(H) + 2 colors to the elements of G and

H . Remove the colors of the vertices in C(G) and assign the k1 colors to the k1 vertices in C(G).
Each vertex in C(G) is incident with k2 vertices in C(H). Since k2 ≤ k1, take the k1 colors and
assign to the edges between C(G) and C(H) with a cyclic way.

In both cases, we use only ∆(G⊛H) + 2 colors. Hence the theorem.

Corollary 4.1. Let G and H be two Type-I graphs. Let k1 and k2 be the vertex covering numbers
of G and H , respectively. If either ∆(H) ≤ ∆(G) and k1 ≤ k2 or ∆(G) ≤ ∆(H) and k2 ≤ k1
then χ′′(G⊛H) = ∆(G⊛H) + 1.
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Let G and H be two graphs. Let C = {C1, C2, . . . , Cq} be a clique cover of G and U be
a subset of V (H). A new graph operation called clique cover product (introduced by Bao-Xuan
Zhu) [26], denoted by GC ⋆ HU , as follows: for each clique Ci ∈ C , add a copy of the graph H
and join every vertex of Ci to every vertex of U .

For example, consider the two graphs G and H with V (G) = {u1, . . . , u6} and V (H) =
{v1, . . . v5}. Let C = {K4 = {u1, u2, u5, u6} , K3 = {u5, u3, u4} , K2 = {u2, u3}} be a clique
cover of G and U = {v2, v3, v4} be a subset of V (H). Figure 5 shows an example of GC ⋆ HU .
In [26], Bao-Xuan Zhu showed the clique cover product of some graphs preserves symmetry, uni-
modality, log - concavity or reality of zeros of independence polynomials.
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Figure 5. GC ⋆ HU

Theorem 4.2. Let G and H be two total colorable graphs with ∆(H) ≤ ∆(G). Then GC ⋆ HU is
also total colorable.

Proof. Let G and H be two total colorable graphs with ∆(H) ≤ ∆(G). Let k be the clique number
of G. Choose a subset U in V (H) such that |U | = r ≥ k.

Here , ∆(GC ⋆ HU) = ∆(G) + r. Let H1, H2, . . . , Hk be the k copies of H corresponding to
the k cliques in G. Assign the ∆(G)+2 colors to the elements of G and H1, H2, . . . , Hk. Consider
the first clique and H1. Remove the colors of the vertices in U of H1 and assign the r colors to the
vertices in U of H1. Each vertex in U of H1 is incident with the first clique in G. Since the clique
size k ≤ r, take the r colors and assign to the edges between U of H1 and the first clique in G with
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a cyclic way. The same procedure can be applied to color the vertices of U in H2, . . . , Hk and the
join edges between the cliques and U in H2, . . . , Hk. Therefore χ′′(GC ⋆HU) ≤ ∆(G)+r+2.

The comb product graph was introduced by Accardi, Ghorbal and Obata [1]. Let G and H be
two graphs. The comb product of G and H with a distinguished vertex o ∈ V (H) is by definition
a graph obtained by grafting a copy of H at vertex o into each vertex of G. This comb product is
denoted by G ▷o H .

In other words, G ▷o H is a graph with V (G ▷o H) = {(g, h)| g ∈ V (G) and h ∈ V (H)} and
E(G×H) = {((g, h), (g′, h′))| gg′ ∈ E(G) and h = h′ = o; or g = g′ and hh′ ∈ E(H)}, where
o∈ V (H) is the distinguished vertex V (H). Figure 4 shows the graph G ▷o H .

G H

x

y

O

G H
o

(x, y)

Figure 6. G ▷o H

Theorem 4.3. If G and H are two total colorable graphs then G ▷o H is also total colorable.

Proof. Let G be a total colorable graph with n vertices and H1, H2, . . . , Hn be the n copies of
H . Let o ∈ V (H) be the distinguished vertex in H . The maximum degree ∆(G ▷o H) =
max{∆(G) + ∆(H),∆(G) + deg(o),∆(H)} .

Case 1. Suppose ∆(G ▷o H) = ∆(G) + ∆(H).
In this case, the distinguished vertex becomes the vertex of maximum degree. Since G is total

colorable, we give ∆(G) + 2 colors to the elements of G. Now, we have to the color the elements
of Hi, i = 1, 2, . . . , n. Since the vertex o ∈ Hi is merged with ith vertex in G, the vertex o is
colored and there will be at least one missing color at o. As H is total colorable, the ith copy Hi

requires ∆(H) + 2 colors. Now, we use the missing colors at o and the color of o with extra ∆(H)
colors to color the elements of Hi, i = 1, 2, . . . , n.

Case 2. Suppose ∆(G ▷o H) = ∆(G) + deg(o).
Color the elements of G with ∆(G)+2 colors. At the vertex o, there will be at least one missing

color. We use the color of o, the missing colors at o, the colors that are not used to the edges of G
incident at o and deg(o) colors to color the elements of Hi, i = 1, 2, . . . , n.

Case 3. Suppose ∆(G ▷o H) = ∆(H).
In this case ∆(G) < ∆(H). First color the elements of G with ∆(H) + 2 colors. At the vertex

o, we have used at most ∆(G) + 1 colors to color the vertex o and edges incident at o in G. Now,
we color the elements of Hi with the vertex color o, missing colors at o and the remaining colors.

In all cases, we use only ∆(G▷o H) + 2 colors to color the elements of G▷o H . Hence G▷o H
is total colorable.

Corollary 4.2. If G and H are Type-I graphs then G ▷o H is also a Type-I graph.
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