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Abstract

We prove several results about chordal graphs and weighted chordal graphs by focusing on exposed
edges. These are edges that are properly contained in a single maximal complete subgraph. This
leads to a characterization of chordal graphs via deletions of a sequence of exposed edges from
a complete graph. Most interesting is that in this context the connected components of the edge-
induced subgraph of exposed edges are 2-edge connected. We use this latter fact in the weighted
case to give a modified version of Kruskal’s second algorithm for finding a minimum spanning tree
in a weighted chordal graph. This modified algorithm benefits from being local in an important
sense.
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1. Introduction

In this short paper we prove several results about chordal graphs by focusing on edges which
are each properly contained in a unique maximal complete subgraph; these we call exposed edges.
Our first result gives a characterization of chordal graphs as those that can be produced through a
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(a) (b) (c) (d)

Figure 1. A sequence of three erasures of exposed edges, left to right, performed on a chordal graph (cliques illustrated as simplices for emphasis).

Exposed edges being deleted are marked in red; the other exposed edges are marked with yellow dashes. Transitions (a→b→c) introduce new

exposed edges; transition (c→d) turns an exposed edge into an unexposed one. This effect is even more pronounced with larger cliques. Finally,

note how all transitions are marked with stark changes to the topology of the edge-induced subgraph of exposed edges.

sequence of exposed edge deletions starting from a complete graph. This characterization does not
follow immediately from the usual vertex-centric characterizations of chordal graphs in terms of
elimination orderings or minimal separators, and is also distinct from the important representation
of chordal graphs as intersection graphs of a family of subtrees of a tree (see [3] for a survey of
these). The edge deletions that we consider are different from the edge-without-vertex elimina-
tion orderings of related graph classes (for example, see the characterization of strongly orderable
graphs in [6]).

At first glance, one might think that exposed edges could be added to or removed from a
chordal graph en masse while maintaining chordality. However, the edge-induced subgraph of
exposed edges in a chordal graph can change dramatically through a single deletion of an exposed
edge, turning exposed edges into unexposed ones, and vice-versa (see Figure 1). Moreover, in the
reverse direction, care must be taken when adding an edge to a chordal graph to ensure that the
edge is both exposed in the larger graph and that the graph remains chordal.

Despite the unruly behavior of the edge-induced subgraph of exposed edges, we are able to
circumvent the problems this creates by proving that its connected components are always 2-edge
connected. This, in turn, leads to a third result, namely a variation of Kruskal’s second algo-
rithm [13] for finding a minimum spanning tree in a weighted graph, with its attached relation-
ship to ultrametrics and single-linkage clustering. This relationship is discussed in more detail in
Section 3. A potential application of our characterization would be to extend the results of [7]
on clique roots of K4-free chordal graphs to a broader family using an inductive computation of
clique polynomials based on the technique of [11, Lemma 1].

Our early investigations were motivated by applications of data clustering (see [2], a survey
[1], and some applications discussed in [17, 10]) and a search for an adequate notion of a mini-
mum spanning complex for our An clustering methods, analogous to the role played by minimum
spanning trees for single-linkage clustering. The results in this paper directly apply to the topo-
logical study of flag complexes obtainable by collapses from a simplex. In fact, the language is
interchangeable since the flag condition means the abstract simplicial complex is completely de-
termined by its 1-skeleton. We have chosen the graph theoretical language for a more consistent
presentation, but all the results can be restated topologically in terms of chordal complexes, which
are flag complexes whose 1-skeleton is a chordal graph. For example, our process of deleting an

410



www.ejgta.org

Edge erasures and chordal graphs | J. Culbertson et al.

exposed edge produces a simple strong deformation retraction of the associated chordal complex.
For more on this topological perspective and the relationship to simplicial collapses, see the final
section of the paper.

2. Exposed edges in chordal graphs: erasures and edge connectivity

We begin by collecting some basic definitions, notation, and terminology.

Definition 2.1. Let G = (V,E) be an undirected simple graph (with no loops or multiple edges)
having finite vertex set V and edge set E. The degree of a vertex v will be denoted by degG(v).
The open G-neighborhood of a vertex v ∈ V is

NG(v) = {w ∈ V \ {v} | vw ∈ E}.

The closed neighborhood NG[v] = NG(v) ∪ {v}. We will denote the induced subgraph on A ⊆ V
by G[A]. On occasion, we will simplify notation by understanding NG(v) or NG[v] to be the
induced subgraph G[NG(v)] or G[NG[v]]. Whether we are referring to the induced subgraph or just
the vertex set will be clear from the context. In particular, complete subgraphs will occasionally
be referred to as cliques. Note G[NG(v)] is sometimes called the link of v, particularly in a more
topological setting.

If v1, . . . , vk is an ordering on V , let Gi = G[{vi, . . . , vk}]. A vertex v is simplicial if the
induced subgraph on NG[v] is complete. We say that a graph has a perfect elimination ordering
if there is some ordering of V such that vi is simplicial in Gi for each 1 ≤ i ≤ k. Recall also
that a bridge is a cut-edge, that is, an edge whose removal increases the number of connected
components of the graph.

Definition 2.2. An undirected simple graph G is chordal if every induced cycle has length three.
Chordality is an induced-hereditary property.

There are many characterizations of chordal graphs available in the literature. We will not
attempt here to give a full survey of the relevant results, but rather point the reader to [3], which
provides an excellent guide to the related literature. However, there is one characterization that we
will need in the sequel and one implication—we combine those as a theorem here.

Theorem 2.1 ([4, 9]). A graph is chordal if and only if it has a perfect elimination ordering.
Moreover, any chordal graph is either complete or has two non-adjacent simplicial vertices.

Borrowing from topology, and to simplify the exposition, we refer to an edge whose endpoints
induce a two-element maximal clique as a facet edge. The following lemma, however, states that
for chordal graphs, the notions of bridge and facet edge are equivalent; although this is not true for
an arbitrary graph (a non-bridge facet edge is in an induced cycle of length at least four).

Lemma 2.1. Let G be a graph. If an edge xy ∈ G is a bridge, then it is a facet edge. Additionally,
if G is chordal, then the converse holds.
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Definition 2.3. Let G be a graph. An edge xy ∈ G is said to be exposed, if xy is contained in a
unique maximal clique and xy is not a facet edge. We will denote the edge-induced subgraph of
exposed edges of G by ∂G.

Definition 2.4. Suppose G,H are graphs with the same vertex set V . We say that H is obtained
from G through an edge erasure, if G contains an exposed edge e such that H = G− e.

The topological nature of an erasure, which can be described in terms of a strong deformation
retraction, will be discussed in Section 4. We now provide a useful characterization of exposed
edges.

Lemma 2.2. An edge vw ∈ ∂G if and only if NG(v) ∩NG(w) is a nonempty clique in G.

Proof. We remark that for any two vertices v, w ∈ G, the intersection NG(v) ∩ NG(w) is just
the union of all maximal cliques which contain both v and w, minus {v, w}. The result follows
immediately from this observation and the definitions.

The previous lemma highlights that our notion of an exposed edge is weaker than that of a
simplicial edge [6], where the intersection is replaced by the union of the neighborhoods. Indeed,
it follows from the lemma that an edge vw is exposed if and only if w is a non-isolated simplicial
vertex of G[NG(v)], and vice versa.

Theorem 2.2. A graph H can be obtained from a complete graph through a sequence of erasures
of exposed edges if and only if H is a connected chordal graph. Throughout the erasure process
each graph in the sequence remains a connected chordal graph.

Proof. First, we can see that erasures from connected chordal graphs produce connected chordal
graphs as follows. Suppose H = G − xy, with G a connected chordal graph and xy ∈ ∂G. If C
is an induced cycle in H such that {x, y} * C (i.e., possibly containing x or y, but not both), then
C is also an induced cycle of G and so of length 3. Otherwise, suppose {x, y} ⊂ C and |C| > 3.
Note that if |C| > 4, then the induced subgraph C ′ = C + xy of G has an induced cycle of length
greater than 3, a contradiction. This leaves us with the case where C = xv1yv2x for some v1, v2.
Since xy is exposed in G, we must have v1v2 ∈ G, otherwise xy would lie in two distinct maximal
cliques and xy would not be exposed. However, v1v2 ∈ G (hence in H) means that C would not
be an induced cycle in H , a contradiction. As for connectedness, it is easy to see that an erasure
does not disconnect a connected graph since by definition a bridge is not an exposed edge.

Conversely, it suffices to show that for any non-complete connected chordal graph G, we can
add an edge e such that e ∈ ∂(G+ e) with G + e chordal. (Merely ensuring e ∈ ∂(G+ e) does
not guarantee that G + e is chordal.) Given such a G, suppose v1, . . . , vk is a perfect elimination
ordering for G. Let 1 ≤ ` ≤ k be the smallest index such that Gi is complete for i > `. Then there
is some j > ` with v`vj /∈ G, because G` is not complete, but G`+1 is.

Let us show that e := v`vj is the edge we are looking for. Setting G′ = G + e, we claim that
v1, . . . , vk is also a perfect elimination ordering for G′. This will demonstrate that G′ is chordal,
by Theorem 2.1.

For i < `, the neighbors of vi in G′ are just the same neighbors of vi in G, and NGi
[vi] is a

clique since vi is simplicial in Gi. In particular, {vj, v`} * NG(vi) since e /∈ G. Thus vi is also
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simplicial in G′i. On the other hand, for i > `, Gi (and hence G′i) is complete and so every vertex
is simplicial. We still need to check that v` is simplicial in G′`. This follows from the fact that
vjvn ∈ G′` for all n > ` since G′`+1 is complete.

It remains to show that e ∈ ∂G′. It is convenient to use the characterization of exposed edges
given in Lemma 2.2. Notice again that for i < `, we must have that {vj, v`} * NG′(vi), since as
noted above, {vj, v`} * NG(vi). Hence

NG′(vj) ∩NG′(v`) = NG′`
(v`) \ {vj},

which is a clique, as shown above, because v` is simplicial in G′`.

It is natural to ask whether one could retain this result while replacing the class of exposed
edges with a different one. This is easily answered by noticing that the removal of a non-exposed
edge either disconnects the graph (in the case of a facet edge) or results in an induced 4-cycle.

Theorem 2.2 is similar in spirit to the result of Spinrad and Sritharan [14] showing that weakly
chordal graphs can be recognized by the possibility of successively adding edges through the two-
pair construction to arrive at a complete graph.

The following observations can be derived directly from the definitions and will be useful
below:

Lemma 2.3. Let G be a graph. If S ⊂ E is a set of facet edges, then ∂G = ∂(G− S). If v is a
simplicial vertex with degG(v) > 1, then every edge e incident with v is exposed.

Proposition 2.1. Any connected chordal graph G can be reduced through a sequence of erasures
to a tree.

Proof. By Theorem 2.2, it suffices to verify that if G is not a tree, then G contains an exposed
edge. Let G′ be the subgraph of G obtained by removing all facet edges and let G′0 be a connected
component of G′ which is not a single isolated vertex. By Theorem 2.1 and Lemma 2.3, G′0 has
exposed edges, and they are also exposed in G.

Lemma 2.4. Let G be a chordal graph and v a vertex in G that is in a maximal clique of size at
least three. Then v is incident with at least two exposed edges.

Proof. Since v is in a maximal clique of size at least three, the induced subgraph NG(v) is chordal
and not edgeless. Thus there is some connected component of NG(v) containing an edge, and so
we can use Theorem 2.1 to find two simplicial vertices v1, v2 in NG(v) in that component. But this
implies that NG(v) ∩NG(vi) is a (non-empty) clique for i = 1, 2, and so vv1 and vv2 are exposed
edges in G. Note that an isolated vertex u in NG(v) would correspond to a facet edge uv in G.

Theorem 2.3. If G is a chordal graph, then every connected component of ∂G is 2-edge connected.

Proof. It is simple to check that the theorem holds when G is either complete or has no more than
four vertices. Now suppose that G is a counterexample with a minimal number of vertices (so
|G| ≥ 5).
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First, we claim that G has no facet edges. By Lemma 2.1, it suffices to verify that G is bridge-
less. Suppose e were a bridge (and hence not exposed in G). Applying Lemma 2.3 with S = {e},
we have that ∂G = ∂(G− e). Now, the connected components of G− e each have fewer vertices
than G, implying that all exposed edges in G− e occur in cycles. It follows that G could not have
been a counter-example—a contradiction.

Since G is chordal, Theorem 2.1 allows us to find non-adjacent simplicial vertices u, v ∈ G.
Then G − u has fewer vertices and so every exposed edge of G − u is contained in a cycle of
exposed edges in G− u. Notice that for vertices x, y ∈ G− u, we have that

NG−u(x) ∩NG−u(y) = [NG(x) ∩NG(y)] \ {u}.

and so using Lemma 2.2 we see that if {x, y} * NG[u], then xy is exposed in G− u if and only if
xy is exposed in G. Thus in this case, if xy is exposed in G we can find a cycle C = xyv1 · · · vkx ⊂
∂(G− u). If none of the edges in C are in NG(u), then C ⊂ ∂G. However, if some edges of C
are contained in NG(u), then let i be the smallest index with vivi+1 in NG(u). Similarly, let j be
the largest index with vj−1vj in NG(u). Notice that j > i, but we could have j = i + 1 if there
is a single edge of C in NG(u). (In order to make the notation consistent, we are treating v0 as
y and vk+1 as x.) Since G has no facet edges, we may apply Lemma 2.3 to see that the cycle
C ′ = xyv1 · · · vi−1viuvjvj+1 . . . vkx is a cycle of exposed edges in G containing xy.

The remaining case to be considered is when {x, y} ⊂ NG[u]. Here {x, y} * NG(v), since
xy ∈ ∂G and u and v are not adjacent. Hence, by the same reasoning as before, we can find a cycle
of exposed edges in G containing xy by modifying a cycle of exposed edges in G − v containing
xy.

3. Weighted chordal graphs and w-erasures

We turn now to an application of these results in the setting of edge-weighted finite graphs, and
show a connection with single-linkage clustering through minimum spanning trees.

Definition 3.1. Let (G,w) be an edge-weighted graph, with w : E → R≥0
, and let H be a subgraph

with the induced weight. We say that H is obtained from G through a w-erasure, if H = G − e
where e ∈ ∂G with w(e) ≥ w(e′) for any exposed edge e′ of G.

Observe that given any sequence G0, G1, . . . , Gm of graphs obtained through erasures of ex-
posed edges e0, e1, . . . , em−1, we can define a weighting w of G0 such that G0, G1, . . . , Gm is also
a sequence of w-erasures. Also, recall that a minimum spanning tree for a connected weighted
graph G is a spanning tree which minimizes the sum of the weights over the edges of the tree.

Theorem 3.1. Let (G,w) be a weighted, connected chordal graph. If G′ is obtained from G
through a w-erasure, then G′ contains a minimum spanning tree of (G,w).

Proof. Let xy ∈ ∂G and G′ = G−xy be obtained by a w-erasure. First, recall that G′ is connected
since any bridge in G is not exposed and hence not removed in a w-erasure. It is also clear that the
theorem holds whenever |V (G)| ≤ 3.
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Figure 2. Example of a heaviest edge that is not exposed: the “`1 square” drawn on the left is a weighted K4 with
two edges of weight 2, both of them exposed (initially all edges are). Performing a single w-erasure (bottom, yellow
dashed edges) results in one diameter becoming unexposed, with all the remaining edges being shorter. Proceeding
with Kruskal’s original algorithm (top, red edges) results in a four cycle before a minimum spanning tree is obtained,
while w-erasures maintain chordality throughout.

Let T be a minimum spanning tree of (G,w). The case of concern is when xy ∈ T . Then let
Tx, Ty denote the connected components of x and y, respectively, in T − xy. Let F denote the set
of all edges uv ∈ G with u ∈ Tx and v ∈ Ty, excluding the edge xy. Since G′ is connected, F
intersects G′. For any uv ∈ F , the graph T ′ := T − xy + uv is a spanning tree of G, implying
wuv ≥ wxy, by minimality of T .

On the other hand, if uv ∈ ∂G, then wuv ≤ wxy and so any exposed edge in F has equal
weight with xy. Now we can appeal to Theorem 2.3 to see that xy is contained in a cycle of
exposed edges of G which necessarily intersects F , say at uv. Thus T ′ = T − xy + uv is another
minimum spanning tree contained of (G,w) in G′.

In his seminal paper on minimum spanning trees [13], Kruskal proposed two algorithms for
computing such a tree. The second of which proceeds as follows: starting with the complete graph
G0 = Kn endowed with the weight w, for each i ≥ 0 remove from Gi a heaviest edge (that is,
one whose w-value is maximal) among those not separating the current graph to obtain Gi+1. The
process terminates after stage t =

(
n−1
2

)
with Gt+1 a tree. Using the cut property of minimum

spanning trees, it is easy to argue that every minimum spanning tree of (Kn, w) may be obtained
in this way. The preceding theorem then allows us to show that, surprisingly, when restricting this
algorithm to only exposed edges, we are nonetheless able to recover all minimum spanning trees.
In so doing, we have replaced a global eligibility criterion, namely checking non-separation for
a heaviest edge, with a local condition: checking whether a heaviest edge satisfies Lemma 2.2.
Some differences between the two algorithms are illustrated in Figure 2.

Corollary 3.1. Consider a weighted complete graph (Kn, w), for example, the weighted graph
associated with a finite metric space. Then a maximal sequence of w-erasures produces a minimum
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spanning tree for (Kn, w). Any minimum spanning tree for w can be obtained in this way.

Proof. By induction, the first statement is a direct consequence of Proposition 2.1 and Theo-
rem 3.1. For the second, let us start with a given minimal spanning tree T for w, and a sequence
G0, . . . , Gk of graphs obtained by erasure, with G0 = Kn and Gi containing T for each 0 ≤ i ≤ k.
If Gk 6= T , then for any exposed edge xy in T of maximal weight (among the exposed edges of
Gk), the same reasoning as in the proof of Theorem 3.1 (and using the same notation), shows that
there must be another exposed edge uv in Gk with equal weight as xy and u ∈ Tx, v ∈ Ty (in
particular, uv /∈ T ). Thus we can extend the sequence by setting Gk+1 = Gk − uv.

4. Connections to the topological viewpoint

Topologically, we can view the characterization of chordality given in Theorem 2.1 in terms
of perfect elimination orderings as providing the basis for realizing chordal graphs as the 1-
dimensional skeleta of simplicial flag complexes assembled through successive “coning-off’ of
existing simplices; or (by reversing the perspective) of simplicial flag complexes which admit an
exceedingly tame kind of strong-deformation retraction to a vertex through a sequence of “vertex-
collapses.” Put in the language of simple homotopy theory (see, e.g. [12], Definition 6.13 and the
ensuing discussion), erasing a simplicial vertex w of a chordal graph G is realized in the polyhe-
dron |K| of the subtended complex K as the straight-line homotopy from the identity mapping of
|K| to the (realization of the) simplicial map K → sd(K). This homotopy fixes all vertices of
K −w and maps w to the barycenter of its opposing face in K, which is the face subtended by the
collection of the neighbors of w in G, see Figure 3 (left).

Figure 3. Collapsing an ‘exposed’ vertex w in a 3-facet (left); an exposed edge uv in a 2-facet (center); and an exposed
edge in a 3-facet (right).

Using the same language, the erasure process described in this paper can be understood as an-
other restricted type of strong deformation retraction characterized, at the level of one-dimensional
skeleta, by the removal of exposed edges. Indeed, at the level of the complexes, it quickly becomes
evident that erasing an arbitrary edge of Gi to obtain Gi+1 (as required by Kruskal’s algorithm)
does not guarantee a strong deformation retraction of Ki = KGi

onto Ki+1, unless the edge being
removed is exposed. Here Ki is the flag complex with 1-skeleton Gi and an exposed edge is one
that is properly contained in a unique maximal simplex of Ki. Then it is possible to eliminate the
edge by “pressing in” in the form of an edge-collapse, see Definition 6.13 in [12] and Figure 3
(center,right). Homotopy equivalences of this kind have been studied by combinatorial algebraic
topologists since the introduction of the notions of collapsibility and simple homotopy types by
Whitehead [15, 16] (also see [12], Chapter 6, for an overview and more modern treatment). Our
results, then, provide an understanding of chordal graphs as 1-skeleta of connected flag complexes
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arising as strong deformation retractions of a simplex, providing an interpretation of chordality
from the standpoint of extendibility.

An alternative view, from a purely algebraic perspective, ties edge-erasures to chordality via
Fröberg’s theorem [8] on linear resolution of edge ideals in Stanley–Reisner rings. Simplicial
collapses were applied in an alternative proof of Fröberg’s theorem in [5], strengthening the topo-
logical connection.

We close by briefly noting that this approach could be generalized by considering simplicial
complexes other than the simplex as starting points, or ambient complexes, for the erasure process.
For example, an interesting replacement would be the standard triangulation of the n-cube induced
by its isomorphism with the Hasse diagram of the inclusion order in a power set. The correspond-
ing question, then, is to identify which families of complexes/graphs might be characterized as
emerging from some ambient complex S by excavating them out of S via repeated application of
a restricted family of collapses, subject to a suitable stopping condition.
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[8] R. Fröberg, On stanley-reisner rings, Banach Center Publications, 26(2):57–70, 1990.

417

https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1016/j.dam.2017.10.015
http://www.mate.unlp.edu.ar/~pablodc72/decariathesis.pdf
https://doi.org/10.1007/BF02992776
https://doi.org/10.37236/68
https://doi.org/10.37236/68
https://doi.org/10.1016/S0166-218X(99)00149-3
https://doi.org/10.1016/S0166-218X(99)00149-3
https://dx.doi.org/10.5614/ejgta.2019.7.1.8
http://eudml.org/doc/268115


www.ejgta.org

Edge erasures and chordal graphs | J. Culbertson et al.

[9] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
15(3):835–855, 1965.

[10] D.P. Guralnik, B. Moran, A. Pezeshki and O. Arslan, Detecting poisoning attacks on hier-
archical malware classification systems, In SPIE Proceedings Vol. 10185: Cyber Sensing
2017.

[11] H. Hajiabolhassan and M.L. Mehrabadi. On clique polynomials, Australas. J. Combin.,
18:313–316, 1998.

[12] D. Kozlov. Combinatorial Algebraic Topology, vol. 21, Springer Science & Business Media,
2007.

[13] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem,
Proceeding of the American Mathematical Society, 7(1):48–50, 1956.

[14] J. Spinrad and R. Sritharan, Algorithms for weakly triangulated graphs, Discrete Appl. Math.,
59(2):181–191, 1995.

[15] J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. Lond. Math. Soc., 2(1):243–
327, 1939.

[16] J.H.C. Whitehead, Simple homotopy types, Amer. J. Math., 72(1):1–57, 1950.

[17] D. Zhu, D.P. Guralnik, X. Wang, X. Li and B. Moran, Statistical properties of the single
linkage hierarchical clustering estimator, J. Statist. Plann. Inference, 185:15–28, 2017.

418

http://dx.doi.org/10.2140/pjm.1965.15.835
https://doi.org/10.1117/12.2266556
https://doi.org/10.1117/12.2266556
https://ajc.maths.uq.edu.au/pdf/18/ajc-v18-p313.pdf
https://books.google.com/books?hl=en&lr=&id=BfBHAAAAQBAJ&oi=fnd&pg=PA2&dq=Combinatorial+algebraic+topology,+kozlov&ots=BhDu3DoB9R&sig=qMRL3XnT8_pe8E3c4oouFc79LLU
https://www.jstor.org/stable/2033241
https://doi.org/10.1016/0166-218X(93)E0161-Q
https://doi.org/10.1112/plms/s2-45.1.243
https://www.jstor.org/stable/2372133
https://doi.org/10.1016/j.jspi.2016.12.002
https://doi.org/10.1016/j.jspi.2016.12.002

	Introduction
	Exposed edges in chordal graphs: erasures and edge connectivity
	Weighted chordal graphs and w-erasures
	Connections to the topological viewpoint

