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Abstract

A retracting-free bidirectional double tracing in a graph G is a closed walk which traverses
every edge exactly once in each direction and such that no edge is succeeded by the same edge in
the opposite direction. Studying the class Ω of all graphs admitting a retracting-free bidirectional
double tracing was proposed by Ore (1951) and is, by now, of practical use to (bio)nanotechnology.
In particular, this field needs various molecular polyhedra that are constructed from a single chain
molecule in a retracting-free bidirectional double-tracing way.

A cubic graphQ ∈ Ω has 3h edges, where h is an odd number≥ 3. The graph of the triangular
prism is the minimum cubic graph Q ∈ Ω, having 6 vertices and 9 edges. The graph of the square
pyramid is the minimum polyhedral graph G in Ω, having 5 vertices and 8 edges.

We analyze some possibilities for deriving new Ω-graphs from a given graph G ∈ Ω or G 6∈ Ω
using graph-theoretical operations. In particular, there was found that every noncycle Eulerian
graph H admits a retracting-free bidirectional double tracing (H ∈ Ω), which is a partial solution
to the problem posed by Ore.
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1. Preliminaries

In 1951, Ore [10] posed a problem, asking for a characterization of graphs that admit closed
walk which traverses every edge exactly once in each direction and such that no edge is succeeded
by the same edge in the opposite direction. The problem was partially solved in [15] and [1], and
completely solved almost 40 years later by Thomassen [14]. The further results were obtained in
[2, 6, 12, 13]. We denote by Ω the class of all graphs about which Ore posed his question [10]. The
closed walk under consideration [1, 10, 14, 15] is called here a retracting-free bidirectional tracing
[14]. Studying the class Ω [1, 2, 6, 10, 12–15] is, in particular, of practical use to nanotechnology
[3, 7–9]. Nanotechnologists construct various molecular polyhedra from a single chain molecule
by winding it onto a polyhedron’s skeleton in a retracting-free bidirectional double-tracing way
[3, 7–9].

Let Q = (V,E) be a simple cubic graph with the vertex set V and edge set E
(
|V | = n, |E| =

m = 3n/2
)
. A spanning tree T of Q is a subtree covering all the vertices of Q

(
|V (T )| =

n; |E(T )| = n − 1
)
. Its cotree Q − E(T )

(∣∣V (Q− E(T )) ∣∣ = n;
∣∣E(Q− E(T ))∣∣ = (n+ 2)/2

)
is a graph Q less all edges belonging to T . Thus, the cotree Q − E(T ) of a spanning tree T in a
connected graph Q is the spanning subgraph of Q containing exactly those edges of Q which are
not in T [4].

Thomassen proved the following (Theorem 3.3 of [14]):

Theorem 1. A connected multigraph G has a retracting-free bidirectional double tracing if and
only if G has no vertex of degree 1 and has a spanning tree T such that each connected component
of G − E(T ) either has an even number of edges or contains a vertex which in G has degree at
least 4.

A more specific result is [11]:

Corollary 1.1. A cubic graph Q admits a closed walk which traverses every edge exactly once in
each direction and such that no edge is succeeded by the same edge in the opposite direction if and
only if Q has a spanning tree T such that each (connected) component of the cotree Q−E(T ) has
an even number of edges and is either a proper cycle or simple path of length ≥ 0.

Another corollary is [11]:

Corollary 1.2. Let a cubic graph Q admit a closed walk which traverses every edge exactly once
in each direction and such that no edge is succeeded by the same edge in the opposite direction
(Q ∈ Ω). Then, Q has an odd number |E(Q)| = 3h of edges (where h = 3, 5, 7, . . .).

The following lemma determines the number of all simple paths in a cotree Q− E(T ) [11]:

Lemma 2. Let T be an arbitrary spanning tree of a simple cubic graph Q. Then, Q − E(T )
contains exactly (n − 2)/2 simple paths of lengths ≥ 0, while the other (connected) components,
if any, are proper cycles. (Recall that for Q ∈ Ω , Theorem 1 imposes the restriction on each
component of Q− E(T ) to have an even number of edges.)
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Denote by ck and pl the numbers of cycles of length k and paths of length l in Q − E(T ),
respectively, where k = 4, 6, 8, . . . , 2h and l = 0, 2, 4, . . . , 2h (h ∈ N \ 2N). Some simple
relations for these numbers are known, e.g. [11]:

Lemma 3. Let Q ∈ Ω and let Q− E(T ) obey Corollary 1.1. Then,

n∑
k=4

kck +
n∑

l=0

(l − 1)pl = 2 (k, l ∈ 2N). (1)

Here, we turn to the main section, where we deduce some other results.

2. The main part

Let nj = nj(G) (j ∈ N) be the number of vertices of valency j in a graph G. We state:

Lemma 4. Let T be a spanning tree of a simple cubic graph Q on n vertices. Then, T obeys the
following conditions:
(i) n1(T ) = n3(T ) + 2;
(ii) n2(T ) = n+ 2− 2n1(T )

(
n2(T ) is even

)
.

Proof. Obviously, (i) is true for any tree on n vertices with degrees ≤ 3. Indeed, recalling that
n = n1 + n2 + n3 and m = n− 1, we have:

m =
n1 + 2n2 + 3n3

2
=
n+ n2 + 2n3

2
= n− 1.

Hence,
n+ n2 + 2n3 = 2n− 2.

Thus,
n3 = (2n− 2)− n− n2 − n3 = n1 − 2,

which is tantamount to (i). Now, transform the R. H. S. of (ii) and obtain:

n+ 2− 2n1 = (n− n1) + 2− n1 = n2 + n3 + 2− n1 = n2 + (n1 − 2) + 2− n1 = n2,

where the last but one equality is due to (i), and the last side is equal to the first side, which proves
(ii). This completes the proof.

The following corollary is the dual of Lemma 4.

Corollary 4.1. Let Q − E(T ) be the cotree of a spanning T of a simple cubic graph Q on n
vertices. Then, the following conditions are obeyed by Q− E(T ):
(j) n2[Q− E(T )] = n0[Q− E(T )] + 2;
(jj) n1[(Q− E(T )] = n+ 2− 2n2[Q− E(T )]

(
n1[Q− E(T )] is even

)
.
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A caterpillar, or caterpillar tree, is a tree in which all the vertices are within distance 1 of a
central path [5]. Here, we deal with the simple caterpillars having all vertex degrees ≤ 3. Such a
caterpillar C2h is obtained by attaching exactly one pendent vertex to each vertex of a path Ph on
h vertices (of length h − 1); thus, C2h is a tree on 2h vertices. Throughout this text, we use odd
numbers h ≥ 3, which is not a restriction for a caterpillar, in general.

Imagine an h-angular prism P2h, whose one h-angular face is consecutively labeled by the
numbers 1, 2, . . . , h, while the other such face is similarly numbered by h + 1, h + 2, . . . , 2h; and
two vertices g and g + h

(
g ∈ {1, 2, . . . , h}

)
are the ends of a vertical edge. For h > 3, consider a

path of length h−1, consecutively spanning h vertices, 2+h, 2, 3, . . . , h−1, 2h−1. By attaching
to this path h pendent vertices, 1 + h, 1, 3 + h, . . . , h, 2h, respectively, we mark a spanning simple
caterpillar C2h in the skeleton of a prism P2h. In the skeleton of the missed triangular prism P6

(h = 3), a spanning caterpillar tree C6 takes the form of a ‘double fork’ (term), with a lateral edge
of the prism as its middle one. Then, we may represent any prism by its plane graph (map) and
make all our construction on the latter. Denote by Q2h and T2h a plane graph of P2h and that of its
spanning caterpillar tree C2h ⊂ P2h, respectively.

Here, we state a technical lemma, viz.:

Lemma 5. Let Q2h

(
|V (Q2h)| = 2h

)
be the graph of an h-angular prism (h is an odd number

≥ 3) and T2h be its spanning caterpillar tree. Then, the cotree Q2h − T2h is the union of a cycle
of length 4 (representing a lateral square face), a simple path of length h − 3, and h − 2 isolated
vertices.

Proof. Sketch the proof, which follows from the construction. It is easy to establish that the
length of a simple path and the number of isolated vertices are such as stated. What remains
uncovered by the path and isolated vertices comprises 2h − (h − 2) − (h − 2) = 4 vertices and
3h − (2h − 1) − (h − 3) = 4 edges. Such quantities of vertices and edges exclude an instance
of disconnected subgraph. While a simple subgraph having 4 vertices and 4 edges may be either
a triangle with an attached pendent edge or a cycle of length 4. The former is excluded because
vertex degrees in the cotree Q2h − T2h cannot exceed 2; consequently, such a connected subgraph
can only be a cycle. Whence we arrive at the proof.

The following corollary to Lemma 5 may be of use in nanotechnology (cf. [3, 7–9]).

Corollary 5.1. LetQ2h

(
|V (Q2h)| = 2h

)
be a cubic graph of an h-angular prism, thenQ2h affords

a retracting-free bidirectional double tracing if and only if h is an odd number ≥ 3.

Proof. The necessity follows from Corollary 1.2. By virtue of Lemma 5, all components of the
cotree Q2h − E(T2h) satisfy Theorem 1 (and Corollary 1.1), which is a sufficient condition. This
gives the proof.

The operation of inserting a new 2-valent vertex into an edge is called a subdivision of an edge.
Also, the subdivision (graph) S(G) of a graphG is the graph obtained by subdivision of every edge
in G. Two graphs are homeomorphic if both can be obtained from the same graph by a sequence
of subdivisions of edges [4]. The following statement is fundamental.

Theorem 6. Let G1 and G2 be two homeomorphic simple graphs. Then, G1 ∈ Ω iff G2 ∈ Ω.
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Proof. First, let a graph G1 belong to Ω, and let σ1 be a retracting-free bidirectional double tracing
in it. Let the tracing σ1 traverse an edge uv first from vertex u to vertex v, then, after travers-
ing some other edges, traverse the same edge uv in an opposite direction, from v to u. Replace
the edge uv by an elementary path $ consecutively visiting vertices u,w1, w2, . . . , wp, v, where
all intermediate vertices wj (j ∈ {1, 2, . . . , p}) are 2-valent in a derived homeomorphic graph
G2. Evidently, G2 also admits a retracting-free bidirectional double tracing σ2 which, in place of
traversing in opposite directions the edge uv, similarly traverses the path $. While the other edges
of G2 are traversed by σ2 in the same order as these are traversed by σ1 in G1. Conversely, let
$′ be an elementary path in G2, consecutively visiting vertices u′, w′

1, w
′
2, . . . , w

′
p′ , v

′, where all
vertices w′

k (k ∈ {1, 2, . . . , p′}) are 2-valent in G2. It can similarly be demonstrated that replacing
an elementary path $′ in G2 by a single edge u′v′ allows a retracting-free bidirectional double
tracing σ′

1 in an obtained homeomorphic graph G′
1. This in sum proves that G1 ∈ Ω ⇔ G2 ∈ Ω.

Now on the contrary, let G1 6∈ Ω, and let ξ1 be an arbitrary bidirectional circuit where an
edge uv is consecutively traversed in both directions (from u to v, then, immediately, back-
wards to u). Substitute for the edge uv an elementary path $ consecutively visiting vertices
u,w1, w2, . . . , wp, v, where all inner vertices are 2-valent in G1. By this substitution, the circuit ξ1
is transformed into a circuit ξ2 of a derivative homeomorphic graph G2, while preserving in G2 the
same order of traversing all edges that are inherited from G1. Under such conditions, ξ2 cannot
avoid immediately traversing in an opposite direction one end edge (uw1 orwpv) of$. Conversely,
let $′ be an elementary path in G2 consecutively visiting vertices u′, w′

1, w
′
2, . . . , w

′
p′ , v

′, where all
inner vertices are 2-valent in G2. If $′ is consecutively traversed in both directions, substitution
of an edge u′v′ for $′ also cannot avoid immediately traversing this edge in an opposite direction.
Hence, we in sum conclude that G1 6∈ Ω ⇔ G2 6∈ Ω. Taking in account both considered cases,
when G1, G2 ∈ Ω and G1, G2 6∈ Ω, we arrive at the overall proof.

An undirected graph H is called a minor of the graph G if H can be formed from G by
deleting edges and vertices and by contracting edges. Note that two homeomorphic graphs G1 and
G2 always have a common minor H that is their common homeomorph without 2-valent vertices.
Within such a broadened context, we come here to another statement, which adds to Theorem 6.

Theorem 7. Let G be a simple graph belonging to Ω, and let G(u, v) be a graph obtained by
identifying two arbitrary vertices u and v of G, without forming a loop from edge uv, if any(
|V [G(u, v)]| = |V (G)| − 1; |E(G)| − 1 ≤ |E[G(u, v)]| ≤ |E(G)|

)
. Then, G(u, v) ∈ Ω.

Proof. Let σ be a retracting-free bidirectional double tracing in G, which consecutively traverses
edges e1, e2, . . . , e2|E(G)| (each of |E(G)| edges is traversed in this sequence twice, in opposite
directions). First, let u and v be nonadjacent vertices in G. Then, identifying vertices u and v
allows us also to use the same cyclic sequence of edges for a retracting-free bidirectional double
tracing σ′ in G(u, v), which satisfies our statement. Now let u′ and v′ be adjacent vertices in G. In
this case, deleting an edge u′v′ and identifying vertices u′ and v′, ofG, produces another connected
cyclic sequence of edges, where edge u′v′ is missing. However, missing the edge u′v′ of σ does
not change the order of traversing the other edges (borrowed from σ) in the last reduced sequence
(and the direction of traversing each edge therein). Thus, such a reduced sequence also comprises
a retracting-free bidirectional double tracing σ′′ inG(u′, v′), which implies thatG(u′, v′) ∈ Ω. The
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last fact in combination with that G(u, v) ∈ Ω, for nonadjacent vertices u and v, completes the
proof.

The nanobiological field [3, 7–9] needs finding working rules that allow researchers to con-
struct bigger graphs belonging to Ω from smaller ones. The latter graphs may or may not them-
selves belong to Ω; in particular, they may be Eulerian graphs. Below, we present some rigorous
assertions that contribute to this topic.

Let Θ be the class of all Eulerian simple graphs. For convenience, we also introduce a com-
bined class Φ := Θ ∪ Ω which is comprised of all Eulerian and all Ω-graphs. For these classes of
graphs, we give here the following three theorems.

Theorem 8. Let G1 ∈ Φ and G2 ∈ Ω be two simple graphs with vertices v1 and v2, respectively.
Also, let G be a graph obtained by connecting vertices v1 and v2 with a simple path $ of length l
(l ∈ N+). Then, G ∈ Ω.

Proof. Divide the proof into two parts.
Case 1. Let G1 ∈ Θ and G2 ∈ Ω. We start from vertex v1 of G1 and traverse all edges of
an arbitrary Eulerian circuit ε ‘in a positive direction’ to complete this circuit and return to the
original vertex v1. Then, we move along the connecting path $ to vertex v2 of G2 and traverse
its edges to exactly complete an arbitrary retracting-free bidirectional double tracing thereof and
return to vertex v2. From v2, we move along the connecting path $ in an opposite direction into
vertex v1 from which we traverse all edges of the Eulerian circuit ε, of G1, now in an opposite,
‘negative direction’ and return to our original point v1. Clearly, our walk used each edge of G
exactly once in each direction and without immediately passing through any edge in an opposite
direction (only doing this after traversing other edges). This proves Case 1.
Case 2. Let G1, G2 ∈ Ω. We can traverse from vertex v1 all edges of an arbitrary retracting-free
bidirectional double tracing of a subgraph G1, then, move along the connecting path $ into point
v2, traverse all edges of an arbitrary retracting-free bidirectional double tracing of a subgraph G2

and through the path$ return in an opposite direction into our original point vertex v1. This proves
Case 2 and completes the overall proof.

Theorem 9. LetG1, G2 ∈ Φ be two graphs with vertices v1 and v2, respectively. Also, letG(v1, v2)
be graph obtained by identifying of vertices v1 and v2 of graphs G1 and G2, respectively. Then,
G(v1, v2) ∈ Ω.

Proof. It is similar to the proof of Theorem 8, and we only sketch it. What is new is that there
are now three cases: G1 ∈ Φ,G2 ∈ Ω; G1, G2 ∈ Ω (both as in Theorem 8); and, additionally,
G1, G2 ∈ Θ. To prove the first two cases, it is sufficient to repeat the respective steps of the
proof to Theorem 8; however, since there is no connected path between subgraphs G1 and G2,
the demonstration is shorter. The third case can be proven by traversing first an arbitrary Eulerian
circuit of a subgraph G1, then, a similar circuit of G2; while traversing starts and terminates at
vertex v obtained by identification of vertices v1 and v2 of graphs G1 and G2, respectively. Then,
we repeat the procedure, while traversing the same Eulerian cycle in G1 in an opposite direction
and, similarly, the same Eulerian cycle in G2 in an opposite direction, to return to vertex v. This
completes a retracting-free bidirectional double tracing. Whence the proof follows.
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Theorem 10. Let G = ∪sj=1Gj be a connected vertex union of graphs G1, G2, . . . , Gs ∈ Φ without
identifying edges

(
|V (G)| ≤

∑s
j=0 |V (Gj)| − s+ 1; |E(G)| =

∑s
j=1 |E(Gj)|

)
. Then, G ∈ Ω.

Proof. It is due to repetitive application of Theorems 9 and 7. First, construct from all graphs
G1, G2, . . . , Gs an intermediate connected graphG′ in which any two subgraphsGj andGk (j, k ∈
{1, 2, . . . , s}) share either 0 or 1 common vertex. By virtue of Theorem 9, G′ ∈ Ω. Further, by
continuing identification (merging) of pertinent vertices of G′, eventually produce a graph G. By
Theorem 7, the graph G also belongs to Ω, which is the proof.

Theorems 7–10 can be used for recursively constructing Ω-graphs that can be regarded as
models of intricate molecular constructs designed for nanotechnological applications (consult [3,
7–9]).

The next theorem affords a partial solution to the problem posed by Ore.

Theorem 11. Let G be a noncycle Eulerian graph
(
|E(G)| − |V (G)| ≥ 1

)
. Then, G ∈ Ω. That

is, every Eulerian graph which is not a cycle admits a retracting-free bidirectional double tracing.

Proof. Recall that each noncycle Eulerian graph G is a vertex union (without identifying edges)
of proper cycles. It is sufficient to note that the cycles are themselves Eulerian graphs. Hence, by
virtue of Theorem 10, we conclude that G ∈ Ω, which proves the statement.

The line graph L(H) of a simple graph H is the graph whose vertex set V (L) is in one-to-
one correspondence with the set of edges E(H) of the graph H , with two vertices of L(H) being
adjacent if and only if the corresponding edges are incident in H .

As a last statement, we consider the following theorem.

Theorem 12. Let L(H) be the line graph of a noncycle simple graph H . Also, let all vertices of
H have either only odd degrees ≥ 3 or only even degrees ≥ 2. Then, L(H) ∈ Ω.

Proof. Since every vertex in L(H) has an even degree, L(H) is an Eulerian graph. Hence, by
Theorem 11, L(H) ∈ Ω, which is the proof.
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[6] S. Klavžar and J. Rus, Stable traces as a model for self-assembly of polypeptide nanoscale
polyhedrons, MATCH Commun. Math. Comput. Chem. 70(1) (2013), 317–330.
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