Electronic Journal of Graph Theory and Applications

Cycle decompositions and constructive characterizations

Irene Heinrich, Manuel Streicher
Optimization Research Group,
Faculty of Mathematics, Technische Universität Kaiserslautern, Paul-Ehrlich Straße 14, 67663 Kaiserslautern

irene.heinrich10.10.15@gmail.com, streicher@mathematik.uni-kl.de

Abstract

Decomposing an Eulerian graph into a minimum respectively maximum number of edge disjoint cycles is an NP-complete problem. We prove that an Eulerian graph decomposes into a unique number of cycles if and only if it does not contain two edge disjoint cycles sharing three or more vertices. To this end, we discuss the interplay of three binary graph operators leading to novel constructive characterizations of two subclasses of Eulerian graphs. This enables us to present a polynomial-time algorithm which decides whether the number of cycles in a cycle decomposition of a given Eulerian graph is unique.

Keywords: constructive characterization, cycle decomposition, cycle packing, cycle covering, Eulerian graphs Mathematics Subject Classification : 05C38, 05C40, 05C45, 05C70
DOI: 10.5614/ejgta.2019.7.2.15

1. Introduction

It is well-known that a graph is Eulerian if and only if its edge set can be decomposed into cycles (cf. [3]). The decision problem whether an Eulerian graph can be decomposed into at most k cycles is NP-complete as a consequence of [10]. Also the corresponding maximization problem is NP-complete, cf. [4]. Approximation algorithms for the maximization problem are discussed in [6] and [9].

[^0]Our contribution is to give two equivalent characterizations for the class of Eulerian graphs where both numbers - the minimum and the maximum amount of cycles in a cycle decomposition coincide. We show that those are exactly the graphs that can be constructed from the set of Eulerian multiedges using a finite number of vertex-identifications and vertex-edge-identifications which will be introduced and discussed in Section 3. This constructive characterization then enables us to prove the following statement:

Theorem (5.2-shortened version). Let Ge an Eulerian graph. The number of cycles in a cycle decomposition of G is unique if and only if no two edge-disjoint cycles in G intersect more than twice.

We exploit Theorem 5.2 to develop an algorithm which applies the identification operations backwards. We can recognize the described graph class in polynomial time.

Theorem (6.6-shortened version). We can decide in time $\mathcal{O}(n(n+m))$ if the number of cycles in a cycle decomposition of a given Eulerian graph is unique.

Our main tool for proving the before mentioned results is a novel constructive characterization. A constructive characterization of a graph class is a construction manual for building all graphs in the class starting from some simple set of initial graphs. Many graph classes can be expressed through constructive characterization, among those are graphs of low treewidth [1], 3-connected [11] and k-edge-connected graphs [8].

We may turn the before mentioned statement - a graph is Eulerian if and only if it is connected and can be decomposed into cycles - into a toy example for a constructive characterization. We describe the class \mathcal{E} of Eulerian graphs recursively:

- If G is isomorphic to K_{1} or C_{n} for some $n \in \mathbb{N}, n \geq 1$, then $G \in \mathcal{E}$.
- If $G_{1}, G_{2} \in \mathcal{E}$ with $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right) \neq \emptyset$, then also $G_{1} \cup G_{2} \in \mathcal{E}$.

Often constructive characterizations can be exploited to prove a desired statement by induction. Coming back to the above toy example, we can prove that every Eulerian graph has only vertices of even degree by first observing that each C_{n} and the K_{1} have only vertices of even degree and then using the fact that the graph union with disjoint edge sets does not change the even degrees.

We study three basic binary graph operators. In Section 3 we define these operators and regard their behaviour concerning the following graph invariants: connectivity, minimum and maximum number of cycles in a cycle decomposition and treewidth. Sections 4 and 5 will then use the introduced operators for constructive characterizations of Eulerian graphs with maximum degree at most 4 and treewidth at most 2 (Section 4) and Eulerian graphs which have the property that the number of cycles in all of its cycle decompositions is the same (Section 5). Finally, in Section 6 we exploit the gained insights to develop a polynomial time algorithm which decides if the cycle number of a given Eulerian graph is unique.

2. Preliminaries

We use standard graph terminology, see [12, 2, 7]. Though, we recall some basic notions in the following. A graph G is a triple consisting of a finite non-empty vertex set $V(G)$, and a finite edge set $E(G)$ and a relation that associates with each edge two different vertices called its end vertices. Observe that this definition excludes loop edges. If two edges have the same two endvertices we call them parallel. An edge with end vertices u and v is often written as $u v$. We use this notation even if G has parallel edges between the vertices u and v. This does not lead to any inconvenience as the problems discussed in this article refer to graph invariants which do not depend on the choice of the exact edge between u and v. We denote with $N_{G}(u)$ the set of all neighbours of u in G. The degree $\operatorname{deg}_{G}(v)$ of $v \in V(G)$ is defined as the number of edges incident to v. If all vertices of G have the same degree k, then G is k-regular. We call two graphs G and G^{\prime} disjoint if $V(G) \cap V\left(G^{\prime}\right)=\emptyset$ and $E(G) \cap E\left(G^{\prime}\right)=\emptyset$. Let G and G^{\prime} be two graphs with $E(G) \cap E\left(G^{\prime}\right)=\emptyset$. We set $G \cup G^{\prime}$ to be the graph with $V\left(G \cup G^{\prime}\right)=V(G) \cup V\left(G^{\prime}\right)$ and $E\left(G \cup G^{\prime}\right)=E(G) \cup E\left(G^{\prime}\right)$.

Let $u \in V(G)$. We denote with $G-u$ the graph where u and all its incident edges are removed from G. For $F \subseteq E(G)$ we write $G-F$ for the graph with $V(G-F)=V(G)$ and $E(G-F)=E(G) \backslash F$. If $F=\{f\}$ we write $G-f$. Let G be a graph containing a vertex $u \in V(G)$ with $\operatorname{deg}_{G}(u)=2$ with two distinct neighbours. Resolving u means to remove u from G and to connect its two neighbours by a new edge. A path P is a graph of the form $V(P)=\left\{u_{0}, u_{1}, \ldots, u_{k}\right\}, E(P)=\left\{u_{0} u_{1}, u_{1} u_{2}, \ldots, u_{k-1} u_{k}\right\}$, where all the u_{i} are distinct. We often refer to a path omitting its precise edges but only listing the sequence of its vertices ordered according to their appearance in P, say $P=u_{0} u_{1} \ldots u_{k}$. We say that P is a $u_{0}-u_{k}$-path, the vertices u_{1}, \ldots, u_{k-1} are internal vertices of P. Let P be a $u-v$-path and Q be a v - w-path with $V(P) \cap V(Q)=v$. We set $P Q:=P \cup Q$. Even when we study paths as subgraphs of non-simple graphs, this notation does not lead to any inconvenience: In the upcoming topics it is never of any relevance which precise edge a path uses. If $P=u_{0} \ldots u_{k}$ is a path, then the graph $C:=P \cup u_{k} u_{0}$ is a cycle. A cycle decomposition of a graph G is a set of cycles which are subgraphs in G such that each edge appears in exactly one cycle in the set. We set

$$
\begin{aligned}
c(G) & :=\min \{|\mathcal{C}|: \mathcal{C} \text { is a cycle decomposition of } G\}, \\
\nu(G) & :=\max \{|\mathcal{C}|: \mathcal{C} \text { is a cycle decomposition of } G\}
\end{aligned}
$$

to be the minimum respectively maximum cycle number of G. A graph is Eulerian if it allows for an Euler tour, i.e. a non-empty alternating sequence $v_{0} e_{0} v_{1} e_{1} \ldots e_{k-1} v_{k}$ of vertices and edges in G such that e_{i} has end vertices v_{i} and v_{i+1} for all $0 \leq i<k, v_{0}=v_{k}$ and every edge of G appears exactly once in the sequence.

A graph G is called connected if it is non-empty and any two of its vertices are linked by a path in G. The components of a graph are its maximal (with respect to the subgraph relation) connected subgraphs. For $V_{1}, V_{2} \subseteq V(G)$ we set $E\left(V_{1}, V_{2}\right)$ to be the set of all edges with one endvertex in V_{1} and the other endvertex in V_{2}. A set F of edges is a cut in G if there exists a partition $\left\{V_{1}, V_{2}\right\}$ of V such that $F=E\left(V_{1}, V_{2}\right)$. We call F a k-cut if $|F|=k$. An element of a 1 -cut is called a cut-edge. A connected graph G is called k-edge-connected if it stays connected after the removal of $k-1$ arbitrary edges. A vertex $v \in V(G)$ is a cut-vertex if $G-v$ has more connected components than G. A connected graph without cut-vertices is called biconnected. The maximal biconnected
subgraphs of a graph are called its biconnected components. For a more detailed description of biconnectivity and some basic results we refer to [12] and [5]. We say that a set $S \subseteq V(G) \cup E(G)$ separates $w_{1}, w_{2} \in V(G)$ if there exists no $w_{1}-w_{2}$-path in G without elements of S.

A connected graph T that does not contain a cycle as a subgraph is a tree. A vertex of degree 1 in T is called a leaf. For a graph G a tree-decomposition $(\mathcal{T}, \mathcal{B})$ of G consists of a tree \mathcal{T} and a set $\mathcal{B}=\left\{B_{t}: t \in V(\mathcal{T})\right\}$ of bags $B_{t} \subseteq V(G)$ such that $V(G)=\bigcup_{t \in V(\mathcal{T})} B_{t}$, for each edge $v w \in E(G)$ there exists a vertex $t \in V(\mathcal{T})$ such that $v, w \in B_{t}$, and if $v \in B_{s} \cap B_{t}$, then $v \in B_{r}$ for each vertex r on the path connecting s and t in \mathcal{T}. A tree-decomposition $(\mathcal{T}, \mathcal{B})$ has width k if each bag has a size of at most $k+1$ and there exists some bag of size $k+1$. The treewidth of G is the smallest integer k for which there is a width k tree-decomposition of G. We write $\operatorname{tw}(G)=k$. A tree-decomposition (T, \mathcal{B}) of width k is smooth if $\left|B_{t}\right|=k+1$ for all $t \in V(\mathcal{T})$ and $\left|B_{s} \cap B_{t}\right|=k$ for all st $\in E(\mathcal{T})$. A graph of treewidth at most k always has a smooth tree-decomposition of width k; see Bodlaender [1].

The contraction of an edge e with endpoints u, v is the replacement of u and v with a single vertex whose incident edges are the edges other than e that were incident to u or v. A graph H is a minor of a graph G if an isomorphic copy of H can by obtained from G by deleting or contracting edges of G. The graph H obtained by subdivision of some edge $u v \in E(G)$ is obtained by replacing the edge $u v$ by a new vertex w and edges $u w$ and $w v$.

3. Construction operations

In the following, we introduce three binary graph operations - vertex-identification, edgeidentification and vertex-edge-identification. The constructive characterizations in Section 4 and 5 each start off by a simple base class of graphs. In Section 4 the considered class is then built by mainly using edge-identification. In Section 5 the vertex-edge-identification is the crucial construction tool. After defining the above mentioned operations we regard their behaviour concerning cycle decompositions, connectivity and treewidth.

Vertex-identification. Let G_{1}, G_{2} be disjoint graphs and let $u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)$. We construct the graph $\left(G_{1}, u_{1}\right) \bullet\left(G_{2}, u_{2}\right)$ by identifying u_{1} and u_{2}.

Figure 1. Vertex-identification of two Eulerian graphs.

Edge-identification. Let G_{1}, G_{2} be disjoint graphs. Further let $e_{i} \in E\left(G_{i}\right)$ be an edge with endpoints u_{i}, v_{i} for $i \in\{1,2\}$. We construct the graph $\left(G_{1}, e_{1}, u_{1}\right)=\left(G_{2}, e_{2}, u_{2}\right)$ by removing the edge e_{i} from $G_{i}, i \in\{1,2\}$ and adding an edge from u_{1} to u_{2} and another one from v_{1} to v_{2}.

Figure 2. Edge-identification of two Eulerian graphs.

Figure 3. Vertex-edge-identification of two Eulerian graphs.

Vertex-edge-identification. Let G_{1}, G_{2} be disjoint graphs and let e_{i} be an edge in G_{i} from u_{i} to v_{i} for $i \in\{1,2\}$. We define $\left(G_{1}, e_{1}, u_{1}\right) \mathbf{\bullet}\left(G_{2}, e_{2}, u_{2}\right)$ to be the graph where v_{1} and v_{2} are identified, the edges e_{1}, e_{2} are removed and an edge between u_{1} and u_{2} is added.

If e_{i} and u_{i} are clear from the context or the statement is independent from the choice of e_{i} and u_{i} then we simply write $G_{1} \bullet G_{2}, G_{1}=G_{2}$ and $G_{1} \bullet G_{2}$.

Cycles invariants are compatible with the identification operations. In the following we demonstrate that the identification operations preserve the cycle behaviour in a natural way. We just keep all cycles whose edges are untouched by the operation (in the case of vertex identification these are all cycles). In each of G_{1} and G_{2} exactly one edge is deleted in the construction of $G_{1}=G_{2}$ respectively $G_{1} \bullet G_{2}$. We obtain a cycle in $G_{1}=G_{2}$ respectively $G_{1} \bullet G_{2}$ which uses the edges not contained in $E\left(G_{1}\right)$ nor in $E\left(G_{2}\right)$ by combining a cycle from G_{1} with a cycle from G_{2} each containing a deleted edge.

Lemma 3.1 (Cycle invariants under construction operations). Let G_{1} and G_{2} be Eulerian graphs.
(i) The invariants c and ν show the following behaviour under vertex-identification:

$$
\begin{aligned}
c\left(G_{1} \bullet G_{2}\right) & =c\left(G_{1}\right)+c\left(G_{2}\right), \\
\nu\left(G_{1} \bullet G_{2}\right) & =\nu\left(G_{1}\right)+\nu\left(G_{2}\right) .
\end{aligned}
$$

(ii) They behave in the following way under edge-identification and vertex-edge-identification:

$$
\begin{aligned}
& c\left(G_{1}=G_{2}\right)=c\left(G_{1} \mathbf{\Xi} G_{2}\right)=c\left(G_{1}\right)+c\left(G_{2}\right)-1, \\
& \nu\left(G_{1}=G_{2}\right)=\nu\left(G_{1} \overline{\text { ढ }} G_{2}\right)=\nu\left(G_{1}\right)+\nu\left(G_{2}\right)-1 .
\end{aligned}
$$

Proof.

(i) For $i \in\{1,2\}$ let $v_{i} \in V\left(G_{i}\right)$ such that $G_{1} \bullet G_{2}=\left(G_{1}, v_{1}\right) \bullet\left(G_{2}, v_{2}\right)$. The vertex which arises from the identification of $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$ is a cut-vertex. Thus, we obtain a one-to-one-correspondence of cycle decompositions in $G_{1} \cup G_{2}$ and cycle decompositions in $G_{1} \bullet G_{2}$ just by relabelling v_{1} and v_{2} to v and adjusting the incident edges. Altogether we obtain $c\left(G_{1} \bullet G_{2}\right)=c\left(G_{1}\right)+c\left(G_{2}\right)$ and $\nu\left(G_{1} \bullet G_{2}\right)=\nu\left(G_{1}\right)+\nu\left(G_{2}\right)$.
(ii) Let $G_{1}=G_{2}=\left(G_{1}, e_{1}, u_{1}\right)=\left(G_{2}, e_{2}, u_{2}\right)$ for suitable $e_{i} \in E\left(G_{i}\right)$ and $u_{i} \in V\left(G_{i}\right), i \in\{1,2\}$. In a cycle decomposition of G_{i} there is exactly one cycle C_{i} containing the edge e_{i} with end vertices u_{i} and v_{i}. We obtain a one-to-one-correspondence of cycle decompositions in $G_{1} \cup G_{2}$ and cycle decompositions in $G_{1}=G_{2}$ by keeping all cycles from the decompositions of G_{1} and G_{2} except C_{1} and C_{2} and adding the cycle C with $E(C)=\left(E\left(C_{1}\right) \cup E\left(C_{2}\right) \backslash\right.$ $\left.\left\{u_{1} v_{1}, u_{2} v_{2}\right\}\right) \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$, see Figure 2. Thus,

$$
\begin{aligned}
& c\left(G_{1}=G_{2}\right)=c\left(G_{1} \cup G_{2}\right)-1=c\left(G_{1}\right)+c\left(G_{2}\right)-1 \text { and } \\
& \nu\left(G_{1}=G_{2}\right)=\nu\left(G_{1} \cup G_{2}\right)-1=\nu\left(G_{1}\right)+\nu\left(G_{2}\right)-1 .
\end{aligned}
$$

Now let $G_{1} \cdot G_{2}=\left(G_{1}, e_{1}, u_{1}\right) \mathbf{\bullet}\left(G_{2}, e_{2}, u_{2}\right)$ for suitable $e_{i} \in E\left(G_{i}\right), u_{i} \in V\left(G_{i}\right)$, $i \in\{1,2\}$. Analogously to the previous operation, we obtain a one-to-one correspondence between cycle decompositions of $G_{1} \cup G_{2}$ and $G_{1} \mathbf{\bullet} G_{2}$ by choosing C with $E(C)=$ $\left(E\left(C_{1}\right) \cup E\left(C_{2}\right) \cup\left\{u_{1} u_{2}\right\}\right) \backslash\left\{e_{1}, e_{2}\right\}$, see Figure 3. Consequently we obtain the same relations as above: $c\left(G_{1} \boldsymbol{\emptyset} G_{2}\right)=c\left(G_{1}\right)+c\left(G_{2}\right)-1$ and $\nu\left(G_{1} \emptyset G_{2}\right)=\nu\left(G_{1}\right)+\nu\left(G_{2}\right)-1$.

Corollary 3.2. Let G_{1}, G_{2} be two Eulerian graphs. If $G=G_{1} \circ G_{2}$ for some $\circ \in\{\bullet,=, \boldsymbol{\bullet}\}$ then it holds true that

$$
\nu(G)-c(G)=\left(\nu\left(G_{1}\right)-c\left(G_{1}\right)\right)+\left(\nu\left(G_{2}\right)-c\left(G_{2}\right)\right)
$$

Connectivity is compatible with the identification operations. We show in Lemma 3.4 that the behaviour of paths between two given vertices in G_{1} is preserved in $G_{1} \mathbf{\bullet} G_{2}$. We follow the intuition to keep all paths which do not contain the edge of G_{1} which is deleted in $G_{1} \overline{\boxed{\bullet}} G_{2}$ and to reroute a path which uses the deleted edge along a path in G_{2}. We translate the results to the construction $G_{1}=G_{2}$. We start off by the observation that cut-edges are preserved under vertex-edge-identification.

Observation 3.3. Let G_{1} be a graph containing a cut-edge and let G_{2} be some other graph. Then, also G_{1} ■ G_{2} contains a cut-edge.

Proof. Let $e_{i} \in E\left(G_{i}\right)$ and $u_{i} \in V\left(G_{i}\right)$ for $i \in\{1,2\}$ such that $G_{1} \overline{\boldsymbol{\sigma}} G_{2}=\left(G_{1}, e_{1}, u_{1}\right) \boldsymbol{\overline { \bullet }}\left(G_{2}, e_{2}, u_{2}\right)$. Let $e^{\prime} \in E\left(G_{1}\right)$ be a cut-edge. If $e^{\prime} \neq e_{1}$ then e^{\prime} is still a cut-edge in $G_{1} \bullet G_{2}$. Otherwise, the new edge connecting u_{1} and u_{2} is a cut-edge in $G_{1} \bar{\square} G_{2}$.

Lemma 3.4. Let G_{1} and G_{2} be 2-edge-connected graphs with edges $e_{i}=v_{i} u_{i} \in E\left(G_{i}\right)$ for $i \in\{1,2\}$. Let e be the edge in $\left(G_{1}, e_{1}, u_{1}\right) \boldsymbol{\mathbf { b }}\left(G_{2}, e_{2}, u_{2}\right)$ with end vertices u_{1} and u_{2} and let v be the vertex arising from the identification of v_{1} and v_{2}. Let $S \subseteq V\left(G_{1}\right) \cup E\left(G_{1}\right)$. Further set

$$
S^{\prime}:= \begin{cases}S, & \text { if } v_{1}, e_{1} \notin S \\ \left(S \backslash\left\{e_{1}\right\}\right) \cup\{e\}, & \text { if } e_{1} \in S, v_{1} \notin S \\ \left(S \backslash\left\{v_{1}\right\}\right) \cup\{v\}, & \text { if } v_{1} \in S, e_{1} \notin S \\ \left(S \backslash\left\{e_{1}, v_{1}\right\}\right) \cup\{e, v\}, & \text { if } v_{1}, e_{1} \in S\end{cases}
$$

Let $w_{1}, w_{2} \in V\left(G_{1}\right)$ be two distinct vertices. We may assume $w_{1} \neq v_{1}$. Set

$$
w_{2}^{\prime}:= \begin{cases}w_{2}, & \text { if } w_{2} \neq v_{1} \\ v, & \text { if } w_{2}=v_{1}\end{cases}
$$

The set S separates w_{1} and w_{2} in G_{1} if and only if S^{\prime} separates w_{1} and w_{2}^{\prime} in $G_{1} \bar{\bullet} G_{2}$.
Proof. If suffices to show: G_{1} contains a $w_{1}-w_{2}$-path without elements from S if and only if $G_{1} \boldsymbol{\sigma} G_{2}$ contains a $w_{1}-w_{2}^{\prime}$-path without elements from S^{\prime}.
Let P be a $w_{1}-w_{2}$-path in G_{1} with $(V(P) \cup E(P)) \cap S=\emptyset$. Assume that P does not contain v_{1} and e_{1}, then $w_{2}^{\prime}=w_{2}$ and P is a $w_{1}-w_{2}^{\prime}$-path in $G_{1} \mathbf{\sigma} G_{2}$ with $(V(P) \cup E(P)) \cap S^{\prime}=\emptyset$. Now assume that P contains v_{1} but not e_{1}. We obtain a $w_{1}-w_{2}^{\prime}$-path P^{\prime} with $(V(P) \cup E(P)) \cap S^{\prime}=\emptyset$ by renaming v_{1} to v in P. Last assume that P contains e_{1}. Then, P is of the form $P=P_{1} u_{1} e_{1} v_{1} P_{2}$ where P_{1} is a $w_{1}-u_{1}$-path (resp. $w_{2}-u_{1}$-path) and P_{2} is a $v_{1}-w_{2}$-path (resp. $v_{1}-w_{1}$-path) in G_{1}. From the 2-edge-connectivity of G_{2}, we obtain that there exists a $u_{2}-v_{2}$-path Q in $G_{2}-e_{2}$. Let Q^{\prime} be the path obtained from Q by renaming v_{2} to v and let P_{2}^{\prime} be the path in $G_{1} \bar{\square} G_{2}$ obtained from P_{2} by renaming v_{1} to v. Now $P_{1} u_{1} e u_{2} Q^{\prime} P_{2}^{\prime}$ is a $w_{1}-w_{2}$-path in $G_{1} \mathbf{b} G_{2}$ with $\left(V\left(P_{1} Q^{\prime} P_{2}^{\prime}\right) \cup E\left(P_{1} Q^{\prime} P_{2}^{\prime}\right)\right) \cap$ $S^{\prime}=\emptyset$.

Let now P^{\prime} be a $w_{1}-w_{2}^{\prime}$-path in $G_{1} \boldsymbol{\emptyset} G_{2}$ with $\left(V\left(P^{\prime}\right) \cup E\left(P^{\prime}\right)\right) \cap S^{\prime}=\emptyset$. If $V\left(P^{\prime}\right) \subseteq V\left(G_{1}\right) \cup\{v\}$ then the path obtained from P^{\prime} by renaming v to v_{1} (if it is contained in P^{\prime}) is a $w_{1}-w_{2}$-path in G_{1}. Otherwise P^{\prime} must be of the form $P^{\prime}=P_{1}^{\prime} u_{1} e u_{2} P_{2}^{\prime} P_{3}^{\prime}$, where P_{1}^{\prime} is a $w_{1}-u_{1}$-path (resp. $w_{2}-u_{1}$-path) with edges in $E\left(G_{1}\right) \backslash\left\{e_{1}\right\}, P_{2}^{\prime}$ is a $u_{2}-v$-path with edges in $E\left(G_{2}\right) \backslash\left\{e_{2}\right\}$ and P_{3}^{\prime} is a v - w_{2}-path (resp. v - w_{1}-path) with edges in $E\left(G_{1}\right) \backslash\left\{e_{1}\right\}$. Let P_{3} be the path in G_{1} that arises from P_{3}^{\prime} by renaming v to v_{1}. We obtain $\left(V\left(P_{1}^{\prime} u_{1} e_{1} v_{1} P_{3}\right) \cup E\left(P_{1}^{\prime} u_{1} e_{1} v_{1} P_{3}\right)\right) \cap S=\emptyset$ and $P_{1}^{\prime} u_{1} e_{1} v_{1} P_{3}$ is a $w_{1}-w_{2}$-path in G_{1}.

Corollary 3.5. Let G_{1} and G_{2} be graphs with edges $e_{i}=v_{i} u_{i} \in E\left(G_{i}\right)$ for $i=1,2$. Let e be the edge in $\left(G_{1}, e_{1}, u_{1}\right) \boldsymbol{\bullet}\left(G_{2}, e_{2}, u_{2}\right)$ with end vertices u_{1} and u_{2} and let v be the vertex arising from the identification of v_{1} and v_{2}. It holds that $G_{1} \subseteq G_{2}$ is biconnected if and only if G_{1} and G_{2} are biconnected and contain more than one edge.

Proof. Assume that G_{1} and G_{2} are both biconnected and each contain more than one edge. Let $w \in V\left(G_{1}\right)$ and $x \in V\left(G_{2}\right)$. Then, by Menger's Theorem (see [12]) there exist internally vertex disjoint paths P_{1} from w to u_{1} and Q_{1} from w to v_{1} in G_{1}. Further, there exist internally vertex disjoint paths P_{2} from u_{2} to x and Q_{2} from v_{2} to x in G_{2}. Let for $i \in\{1,2\} Q_{i}^{\prime}$ be the path that arises from Q_{i} by renaming v_{i} to v. Now $P_{1} u_{1} e u_{2} P_{2}$ and $Q_{1}^{\prime} Q_{2}^{\prime}$ are two internally vertex disjoint w-x-paths in $G_{1} \mathbf{\Xi} G_{2}$. For $i \in\{1,2\}$ and two vertices w_{1} and w_{2} in $V\left(G_{i}\right) \backslash\left\{v_{i}\right\}$ we obtain from Lemma 3.4 and Menger's Theorem that there exists two internally vertex disjoint paths in $G_{1} \overline{\mathbf{\sigma}} G_{2}$ connecting w_{1} and w_{2}.

If G_{i} for some $i \in\{1,2\}$ contains just one edge, then $G_{1} \bar{\bullet} G_{2}$ contains a cut vertex. Next suppose that G_{i} has a cut-edge for some $i \in\{1,2\}$. By Observation 3.3 also $G_{1} \mathbf{\bullet} G_{2}$ has a cut-edge. Last suppose that G_{1} and G_{2} are 2-edge-connected and G_{i} has a cut-vertex for some $i \in\{1,2\}$. But then by Lemma 3.4 also $G_{1} \bullet G_{2}$ has a cut-vertex. This settles the claim.

Lemma 3.6. Let G_{1} and G_{2} be 2-edge connected graphs and let $e_{i} \in E\left(G_{i}\right)$ with end vertices u_{i} and v_{i} for $i \in\{1,2\}$. Let $S \subseteq V\left(G_{1}\right) \cup E\left(G_{1}\right)$. Let $w_{1}, w_{2} \in V\left(G_{1}\right)$ be two distinct vertices. Set

$$
S^{\prime}:= \begin{cases}S, & \text { if } e_{1} \notin S, \\ \left(S \backslash\left\{e_{1}\right\}\right) \cup\left\{u_{1} u_{2}\right\}, & \text { if } e_{1} \in S .\end{cases}
$$

Then, S separates w_{1} and w_{2} in G_{1} if and only if S^{\prime} separates w_{1} and w_{2} in $\left(G_{1}, e_{1}, u_{1}\right)=$ $\left(G_{2}, e_{2}, u_{2}\right)$. In particular, $G_{1}=G_{2}$ is biconnected if and only if G_{1} and G_{2} are biconnected.

Proof. The proof is analogous to the proofs of Lemma 3.4 and Corollary 3.5.

Treewidth is compatible with the identification operations. Also the treewidth behaves nicely with the identification operations. Clearly, the treewidth of a graph can be computed knowing the treewidth of its biconnected components. Furthermore, a width-optimal tree decomposition of $G_{1}=G_{2}$ or $G_{1} \bar{\square} G_{2}$ can be constructed by just slighlty changing a tree decomposition of $G_{1} \cup G_{2}$. The results are summarized in Lemma 3.7.

Lemma 3.7. Let G_{1} and G_{2} be 2-edge-connected graphs. It holds true that

$$
\begin{aligned}
\operatorname{tw}\left(G_{1} \bullet G_{2}\right) & =\max \left\{\operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}, \\
\operatorname{tw}\left(G_{1}=G_{2}\right) & =\max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\} \text { and } \\
\operatorname{tw}\left(G_{1} \bullet G_{2}\right) & =\max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\} .
\end{aligned}
$$

Proof. A graph is of treewidth at most k if and only if all of its biconnected components are of treewidth at most k, cf. [1]. Thus, $\operatorname{tw}\left(G_{1} \bullet G_{2}\right)=\max \left\{\operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$.

By the assumption that G_{1} and G_{2} are 2-edge connected we obtain that $G_{1}=G_{2}$ and $G_{1} \bar{\bullet} G_{2}$ each contain a cycle of length not less than 3 . Consequently $\operatorname{tw}\left(G_{1}=G_{2}\right) \geq 2$ and $\operatorname{tw}\left(G_{1} \overline{\boldsymbol{\bullet}} G_{2}\right) \geq 2$. Now, G_{1} and G_{2} are minors of $G_{1}=G_{2}$ and $G_{1} \overline{\mathbf{\sigma}} G_{2}$. Altogether $\operatorname{tw}\left(G_{1}=G_{2}\right) \geq \max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$ and $\operatorname{tw}\left(G_{1} \overline{-} G_{2}\right) \geq \max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$. For the other inequality let $\left(\mathcal{T}^{(i)}, \mathcal{B}^{(i)}\right)$ be a tree decomposition of G_{i} and let $B_{i} \in \mathcal{B}^{(i)}$ be a bag with $\left\{u_{i}, v_{i}\right\} \in B_{i}$ for $i \in\{1,2\}$. We obtain a tree decomposition of $G_{1}=G_{2}$ of width $\max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$ by the following construction. Set

$$
\begin{aligned}
B_{a} & :=\left\{u_{1}, u_{2}, v_{1}\right\}, \\
B_{b} & :=\left\{u_{2}, v_{1}, v_{2}\right\}, \\
\mathcal{B} & :=\mathcal{B}^{(1)} \cup \mathcal{B}^{(2)} \cup\left\{B_{a}, B_{b}\right\}, \\
V(\mathcal{T}) & :=V\left(\mathcal{T}^{(1)}\right) \cup V\left(\mathcal{T}^{(2)}\right) \cup\{a, b\} \text { and } \\
E(\mathcal{T}) & \left.:=E\left(\mathcal{T}^{(1)}\right) \cup E\left(\mathcal{T}^{(2)}\right)\right) \cup\{1 a, a b, b 2\} .
\end{aligned}
$$

Now $(\mathcal{T}, \mathcal{B})$ is a tree decomposition of $G_{1}=G_{2}$ of width $\max \left\{2, \operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$. The inequality for $G_{1} \boldsymbol{\emptyset} G_{2}$ follows immediately since $G_{1} \boldsymbol{\emptyset} G_{2}$ is a minor of $G_{1}=G_{2}$. This settles the claim.

4. Characterizing all subquartic Eulerian graphs of treewidth at most 2

We are now ready to discuss a constructive characterization starting with a simple class of base graphs - the closed necklaces - and then only using the operators $=$ and \bullet. More precisely we characterize all Eulerian graphs with treewidth at most 2 and maximum degree 4. A closed necklace is a graph which can be constructed from a cycle of length at least 2 by duplicating all of its edges. We define the class \mathcal{H} recursively:

- All closed necklaces are contained in \mathcal{H}.
- If $H_{1}, H_{2} \in \mathcal{H}$, then also $H_{1}=H_{2} \in \mathcal{H}$.

Observation 4.1. The only biconnected 4-regular graph of treewidth 1 is the closed necklace on two vertices. The only biconnected 4-regular graph on three vertices is the closed necklace on three vertices.

Lemma 4.2. Let G be a biconnected 4-regular graph of treewidth 2 which is not isomorphic to a closed necklace. Then G has a 2-cut $\left\{e_{1}, e_{2}\right\}$ where no end vertex of e_{1} coincides with an end vertex of e_{2}.

Proof. We prove the following statement by induction on the number of vertices of G : A biconnected 4-regular graph of treewidth 2 is either a closed necklace or it has a 2-cut $\left\{e_{1}, e_{2}\right\}$ where no end vertex of e_{1} coincides with an end vertex of e_{2}. The base case $|V(G)| \leq 3$ is settled by Observation 4.1. Let now $|V(G)| \geq 4$.

Suppose that G contains a vertex u with $N_{G}(u)=\left\{x_{1}, x_{2}\right\}$ such that u is connected to each x_{i} with exactly two edges. We construct a graph G^{\prime} by removing u and adding two edges between x_{1} and x_{2}. Observe that G^{\prime} is still biconnected, 4-regular, of treewidth at most 2. By induction G^{\prime} is either a closed necklace - in this case G is also a closed necklace. Or G^{\prime} contains a two-edge-cut of the desired form, then it is also a cut of the desired form in G.

Now suppose that each vertex in G which has exactly two neighbours is connected to one of them with three edges and to the other one with a single edge. Let $\left(\left\{X_{i}: i \in I\right\}, T\right)$ be a smooth tree decomposition of G of width 2 . Let l be a leaf in T with unique neighbour k, which exists as $\operatorname{tw}(G)=2$ and $V(G) \geq 4$. As the tree decomposition is smooth we have $X_{l}=\left\{u, x_{1}, x_{2}\right\}$ and $X_{k}=\left\{v, x_{1}, x_{2}\right\}$ with distinct vertices $u, v, x_{1}, x_{2} \in V(G)$. The biconnectivity of G and the structure of the bags X_{l} and X_{k} imply $N_{G}(u)=\left\{x_{1}, x_{2}\right\}$. We may assume that there are three edges connecting u to one of its neighbours, say x_{1}. Let $N_{G}\left(x_{1}\right)=\left\{u, x_{1}^{\prime}\right\}$ for some $x_{1}^{\prime} \in V(G)$. Note that $x_{1}^{\prime} \neq x_{2}$ as otherwise x_{2} would be a cut-vertex, contradicting the fact that G is biconnected. Thus, $\left\{x_{1} x_{1}^{\prime}, u x_{2}\right\}$ is a 2 -cut of the desired form in G.

Theorem 4.3. Let G be a graph. Then $G \in \mathcal{H}$ if and only if it is a biconnected 4 -regular graph of treewidth at most 2.

Proof. Let $G \in \mathcal{H}$. Note that this implies that G is 2-edge-connected by Lemma 3.6. If G is a closed necklace, it is biconnected, 4-regular and fulfils $\operatorname{tw}(G) \leq 2$. We prove that G fulfils the
desired properties by induction on the number of vertices. If $V(G)=2$ it is a closed necklace. So assume that $V(G) \geq 3$ and G is not a closed necklace. Consequently $G=G_{1}=G_{2}$ for two graphs $G_{1}, G_{2} \in \mathcal{H}$. By induction G_{1} and G_{2} are biconnected, 4-regular and have treewidth at most 2 . Then also G is 4-regular, $\operatorname{tw}(G) \leq 2$ by Lemma 3.7 and G is biconnected by Lemma 3.6.

Let now G be biconnected 4-regular of treewidth at most 2 . We prove $G \in \mathcal{H}$ by induction on $|V(G)|$. If $|V(G)| \in\{2,3\}$ then G must be the necklace with two or three vertices by Observation 4.1 and thus $G \in \mathcal{H}$. Let now $|V(G)| \geq 4$. If G is not a closed necklace, then $\operatorname{tw}(G)=2$ by Observation 4.1. We may apply Lemma 4.2 and obtain that $G=G_{1}=G_{2}$ for suitable G_{1}, G_{2}. Observe that G_{1} and G_{2} are biconnected, cf. Lemma 3.6, and 4-regular. Furthermore, their treewidth is bounded by 2 since they are minors of G. By induction, $G_{1}, G_{2} \in \mathcal{H}$. Thus, also $G \in \mathcal{H}$.

Let v be a cut-vertex in a 4-regular graph G. The degree of v in the biconnected components of G is 2 since otherwise the edges incident to v would contain an odd cut in an Eulerian graph. Consequently, all degrees of vertices in biconnected components of G lie in $\{2,4\}$. We conclude that a biconnected component of a 4-regular graph is either a cycle or can be obtained from a biconnected 4 -regular graph by subdivision. Together with Theorem 4.3 we obtain:

Corollary 4.4. A connected graph G is 4 -regular of treewidth at most 2 if and only if each of its biconnected components H is either a cycle such that each of its vertices is a cut-vertex in G or the graph obtained by successively resolve all former cut-vertices in H is contained in \mathcal{H}.

We obtain a constructive characterization of the class \mathcal{H}^{\prime} containing all Eulerian graphs of treewidth at most 2 and with maximum degree 4 in a straightforward way:

- All closed necklaces are in \mathcal{H}^{\prime}.
- All cycles are in \mathcal{H}^{\prime}.
- If $G \in \mathcal{H}^{\prime}$ and G^{\prime} is obtained from G by subdividing an edge then $G^{\prime} \in \mathcal{H}^{\prime}$.
- If $G_{1}, G_{2} \in \mathcal{H}^{\prime}$, then $G_{1}=G_{2} \in \mathcal{H}^{\prime}$.
- If for $i \in\{1,2\} G_{i} \in \mathcal{H}^{\prime}$ and $v_{i} \in V\left(G_{i}\right)$ with $\operatorname{deg}_{G_{i}}\left(v_{i}\right)=2$, then $\left(G_{1}, v_{1}\right) \bullet\left(G_{2}, v_{2}\right) \in \mathcal{H}^{\prime}$.

Now that we have extensively studied the applications of the binary operator $=$, we continue with considering the class of graphs which arises using the operators \bullet and $\mathbf{0}$.

5. Constructive characterization of all graphs with unique cycle-decomposition size

In this section we prove our main result - two equivalent characterizations for the class of graphs where the minimum and maximum number of cycles in a cycle decomposition coincide. We show first that the class of graphs with unique cycle decomposition size is contained in the class of graphs where two cycles intersect at most twice.

Lemma 5.1.

(i) Let H be an Eulerian subgraph of an Eulerian graph G. If $c(H)<\nu(H)$ then $c(G)<\nu(G)$.
(ii) Let H^{\prime} be a graph which is decomposable into two edge disjoint cycles that have more than two vertices in common. Then $c\left(H^{\prime}\right)=2$ and $\nu\left(H^{\prime}\right) \geq 3$.

In particular: An Eulerian graph G containing two edge-disjoint cycles that have more than two vertices in common satisfies $c(G)<\nu(G)$.
Proof. Let $\overline{\mathcal{C}}$ be a maximum cycle decomposition of H and $\underline{\mathcal{C}}$ be a minimum cycle decomposition of H. Further let \mathcal{C} be a cycle decomposition of $G-E(H)$. We obtain

$$
c(G) \leq|\mathcal{C} \cup \underline{\mathcal{C}}|<|\mathcal{C} \cup \overline{\mathcal{C}}| \leq \nu(G),
$$

proving the first claim.
Let now $H^{\prime}=C_{1} \cup C_{2}$ for two edge-disjoint cycles C_{1} and C_{2}. Further let $v_{1}, v_{2}, v_{3} \in V\left(C_{1}\right) \cap$ $V\left(C_{2}\right)$ be three distinct vertices. Let $i \in\{1,2\}$. As C_{i} is a cycle there exists a path P_{i} from v_{1} to v_{2} with $v_{3} \notin V\left(P_{i}\right)$, which is a subgraph of C_{i}. Then $P_{1} P_{2}$ is even and the degree of v_{3} in $H^{\prime}-E\left(P_{1} P_{2}\right)$ is 4 . We get $\nu\left(H^{\prime}\right) \geq \nu\left(H^{\prime}-E\left(P_{1} P_{2}\right)\right)+\nu\left(P_{1} P_{2}\right) \geq 2+1=3$ as claimed.

We are now ready to present a constructive characterization of all Eulerian graphs with the property that the number of cycles in a cycle decomposition is unique. Let us define a class of graphs \mathcal{G}, where the base graphs are Eulerian multiedges and all other graphs recursively arise from operations on two disjoint graphs in the class.

- If G is an Eulerian multiedge, i.e. a graph that consist only of two vertices and an even number of parallel edges between the two vertices, then $G \in \mathcal{G}$.
- Let $G_{1}, G_{2} \in \mathcal{G}$ with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$ and v_{i} a vertex in G_{i} for $i \in\{1,2\}$. Then $\left(G_{1}, v_{1}\right) \bullet\left(G_{2}, v_{2}\right) \in \mathcal{G}$.
- Let $G_{1}, G_{2} \in \mathcal{G}$ with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset, e_{i}$ be an edge in G_{i} from u_{i} to v_{i} for $i \in\{1,2\}$. Then $\left(G_{1}, e_{1}, u_{1}\right) \boldsymbol{\bullet}\left(G_{2}, e_{2}, u_{2}\right) \in \mathcal{G}$.

Theorem 5.2. Let G be a graph. The following three statements are equivalent.
(i) G is Eulerian with $c(G)=\nu(G)$.
(ii) G is Eulerian and no two edge disjoint cycles in G have more than two vertices in common.
(iii) $G \in \mathcal{G}$.

Proof. (i) implies (ii): This implication is stated in Lemma 5.1.
(ii) implies (iii): Suppose that there are graphs satisfying (ii) but not (iii). Then amongst those graphs there exists a graph G of lowest order. Note that G is not an Eulerian multiedge, since these satisfy (iii). We establish further structural properties of G :

Property 1. G is biconnected.
Proof of Property 1: Suppose G is not biconnected. Then there exists some cut-vertex $v \in V(G)$. Thus, there are two graphs G_{1} and G_{2} such that $G=G_{1} \bullet G_{2}$. As no two cycles in G_{1} and G_{2} have more than two vertices in common, we get $G_{1}, G_{2} \in \mathcal{G}$ by the minimality of G and thereby $G \in \mathcal{G}$, contradicting the choice of G.

Property 2. For all $e \in E(G): G-e$ is biconnected.
Proof of Property 2: Suppose that $G-e$ is not biconnected. Then there are two graphs G_{1} and G_{2} such that $G=G_{1} \overline{\boldsymbol{\bullet}} G_{2}$. Note that the vertex $v \in V(G)$ that is split up in G_{1} and G_{2} cannot be an endpoint of e, as G is biconnected by Property 1. Further observe that neither G_{1} nor G_{2} contain edge disjoint cycles with more than two vertices in common. By the minimality of G we obtain $G_{1}, G_{2} \in \mathcal{G}$. Consequently $G \in \mathcal{G}$. A contradiction.

Property 3. For all $v \in V(G): G-v$ is 2-edge-connected.
Proof of Property 3: Suppose that $G-v$ contains a one-edge-separator. Again, there are two graphs G_{1} and G_{2} such that $G=G_{1} \mathbf{\Xi} G_{2}$ and we can argue as in the proof of Property 2.
Property 4. For all $v \in V(G)$ there is at most one neighbour of v that is connected to v by multiple edges.
Proof of Property 4: Assume that there is a vertex v that is connected to two different vertices w_{1} and w_{2} by multiple edges. By Property 3 we know that $G-v$ is 2-edge-connected. By Menger's Theorem (see [12]) there exist two edge disjoint paths P_{1}, P_{2} from w_{1} to w_{2} in $G-v$. But then the two cycles $v w_{1} P_{1} w_{2} v$ and $v w_{1} P_{2} w_{2} v$ are edge disjoint and share more than two vertices. This is a contradiction to (ii).

Property 5. For all $v \in V(G)$ we have $|N(v)| \geq 4$.
Proof of Property 5: Suppose there is a vertex v with $|N(v)| \leq 3$. Assume that $|N(v)|=1$. Then G is either an Eulerian multiedge or not biconnected - a contradiction to the assumption respectively Property 1. Now assume that $|N(v)|=2$, say $N(v)=\left\{w_{1}, w_{2}\right\}$. By Property $4 v$ cannot be connected to both neighbours by multiple edges, say v is connected to w_{1} by a single edge e. If we delete w_{2} from $G-e$ we isolate v which is a contradiction to Property 2.

Last assume that $|N(v)|=3$, say $N(v)=\left\{w_{1}, w_{2}, w_{3}\right\}$. By Property 4, we may further assume that v is connected to w_{1} and w_{2} by a single edge only. By Property 2 the graph $G-v w_{1}$ is biconnected. Thus, there is a cycle C in $G-v w_{1}$ containing the vertices v and w_{1}. Since w_{2} and w_{3} are the only neighbours of v in $G-v w_{1}$, we obtain that C also contains the vertices w_{2} and w_{3}. The graph $G-E(C)$ is even and thus $v w_{1}$ is contained in some cycle C^{\prime} in $G-E(C)$. The single edge $v w_{2}$ is contained in C. Hence, v has only neighbours w_{1} and w_{3} in $G-E(C)$. Thus, C^{\prime} contains the vertex w_{3} as well. Thereby C and C^{\prime} are two edge disjoint cycles with more than two vertices in common - a contradiction.

We now exploit Properties 4 and 5 to complete the proof. Regard a path $P=v_{1} v_{2} \ldots v_{k}$ with the property that $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$ and $v_{1} v_{k} \in E$. Such a path can be found in a greedy fashion: Start at some vertex v in the graph and always move to a new vertex until all neighbours of the current vertex w have already been visited. The resulting path contains the neighbourhood of w. Now simply set v_{1} to be the neighbour of w that has been visited first and the subsequent vertices accordingly. By Property 5 we have $\left|N\left(v_{k}\right)\right| \geq 4$. Thus, we can find $i, j \in\{2, . ., k-2\}$ with $i \neq j$ and $v_{i}, v_{j} \in N\left(v_{k}\right)$. Property 4 implies that v_{k} is connected to v_{i} or v_{j} by a single edge. Without loss of generality let this be v_{i}. Set $C:=v_{1} v_{2} \ldots v_{k} v_{1}$. Then $G-E(C)$ is an even graph and we can find a cycle C^{\prime} in $G-E(C)$ containing the edge $v_{k} v_{i}$. Since $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$
the two edge disjoint cycles C and C^{\prime} have more than two vertices in common, which contradicts assumption (ii). Altogether we may conclude $G \in \mathcal{G}$.
(iii) implies (i): Eulerian multiedges fulfil property (i). Let G_{i} be a graph with $c\left(G_{i}\right)=\nu\left(G_{i}\right)$ for $i \in\{1,2\}$. If G arises from vertex-identification or vertex-edge-identification from graphs G_{1} and G_{2}, by Lemma 3.1 we have

$$
\nu(G)-c(G)=\nu\left(G_{1}\right)-c\left(G_{1}\right)+\nu\left(G_{2}\right)-c\left(G_{2}\right)=0,
$$

which implies (i).
Combining the constructive characterization in Theorem 5.2 with Lemma 3.7 we obtain that all graphs with unique cycle number are of treewidth at most 2 . In particular, they are planar and at most 2-vertex-connected.

6. Algorithmic recognition of graphs with unique cycle number

In this section, we present an $\mathcal{O}(n(m+n))$-algorithm which decides if the cycle number of a given Eulerian graph is unique. The main idea of the algorithm is to exploit the following two observations:

Observation 6.1. Cycles are subgraphs of the biconnected components of a given graph. Hence: A graph G fulfils $c(G)=\nu(G)$ if and only if this equation holds true for each of its biconnected components.

Observation 6.2. Let G be a biconnected graph. Then G fulfils $c(G)=\nu(G)$ if and only if it fulfils one of the following two properties:

- The graph G is an Eulerian multiedge.
- There exists graphs G_{1} and G_{2} such that $G=G_{1}$ - G_{2}. For any two graphs G_{1} and G_{2} satisfying this equation it holds that $c\left(G_{1}\right)=\nu\left(G_{1}\right)$ and $c\left(G_{2}\right)=\nu\left(G_{2}\right)$.

Proof. By Theorem $5.2 G \in \mathcal{G}$. Hence G is either an Eulerian multiedge or there exists $G_{1}, G_{2} \in \mathcal{G}$ with $G=G_{1} \bullet G_{2}$ or $G=G_{1} \bullet G_{2}$. The case $G=G_{1} \bullet G_{2}$ cannot occur since G is biconnected. Now assume that G_{1}, G_{2} are graphs with $G=G_{1} \bar{\bullet} G_{2}$. Suppose that $c\left(G_{i}\right)<\nu\left(G_{i}\right)$ for some $i \in\{1,2\}$. We obtain by Lemma 3.1 that $c(G)=c\left(G_{1}\right)+c\left(G_{2}\right)-1<\nu\left(G_{1}\right)+\nu\left(G_{2}\right)-1=\nu(G)$. A contradiction.

These two observations already give an outline of the whole algorithm: We start by computing the biconnected components of the given graph. If a biconnected component is of the form $G_{1} \mathbf{\bullet} G_{2}$, we replace it by $G_{1} \cup G_{2}$ and check if further decomposition is possible. Corollary 3.5 ensures us that G_{1} and G_{2} are still biconnected - hence, it suffices to replace $G_{1} \cdot G_{2}$ by G_{1} and G_{2} in the list of biconnected components. If at some point of the algorithm no component allows for further decomposition, the input graph has a unique cycle number if and only if each of the computed components is an Eulerian multiedge.

Definition 6.3 (Vertex-Edge Separation). Let G be a disjoint union of biconnected graphs. Further let $v \in V(G)$ and $e \in E(G)$ be a vertex and an edge in the same component H of G. We call the tuple $(v, e) a$ vertex-edge-separator in G if $H-v-e$ has more than one component. Observe that (v, e) is a vertex-edge-separator if and only if there exist biconnected graphs H_{1}, H_{2} with edges $e_{i}=u_{i} v_{i} \in E\left(H_{i}\right)$ for $i=1,2$, such that $H=\left(H_{1}, e_{1}, u_{1}\right) \mathbf{\bullet}\left(H_{2}, e_{2}, u_{2}\right)$ where v is the vertex that arises from the identification of v_{1} and v_{2} and e is the edge from u_{1} to u_{2} in H. We call the process of replacing H by $H_{1} \cup H_{2}$ in G a vertex-edge-separation step. The constructed graph is called vertex-edge-separation of G. Observe that the constructed graph is again a disjoint union of biconnected graphs by Corollary 3.5.

Before we describe the algorithm we will prove a Lemma showing that edges which are not contained in a vertex-edge separator at some step of the algorithm will never be contained in a vertex-edge separator. This proof implies that it suffices to check for each vertex only once whether it is contained in a vertex-edge-separator during the algorithm.

Lemma 6.4. Let G be a biconnected graph satisfying $G=G_{1} \boldsymbol{\square} G_{2}$ for two graphs G_{1}, G_{2}. Further let $v \in V(G)$ be some vertex in G which is not contained in any vertex-edge separator of G. Then v is not contained in any vertex-edge separator of G_{1} or G_{2}.

Proof. The graphs G_{1} and G_{2} both are biconnected and consequently also 2-edge-connected by Corollary 3.5. As v is not contained in a vertex-edge separator in G it is either contained in G_{1} or G_{2}. Hence, by Lemma $3.4 v$ cannot be contained in a vertex edge separator in G_{1} or G_{2}.

We are now ready to present a formal algorithm and prove its correctness. In the description of Algorithm 6.1 we use the two black box procedures FindCutEdge and Split:

FindCutEdge(G) returns a cut-edge of G if one exists and Nil else.
$\operatorname{SPlit}(\mathbf{G}, \mathbf{v})$ gets a graph G and a cut-vertex $v \in V(G)$ as input. Let G_{1} and G_{2} be graphs satisfying $G=\left(G_{1}, v_{1}\right) \bullet\left(G_{2}, v_{2}\right)$ where v is the vertex that arises from identifying v_{1} with v_{2}. The procedure returns $G_{1} \cup G_{2}, v_{1}$ and v_{2}.

When implementing the algorithm the two procedures would rather be done at the same time using a slightly modified version of the lowpoint algorithm for finding biconnected components by Hopcroft and Tarjan, cf. [5]. We merely state it in the presented way to better catch the intuition behind the algorithm.

Theorem 6.5. Given a biconnected graph G with n vertices and m edges Algorithm 6.2 returns a graph G^{\prime} that does not contain a vertex-edge separator. The graph G can be obtained from G^{\prime} by repeated vertex-edge-identification of connected components of G^{\prime}. Algorithm 6.2 can be implemented to run in time $\mathcal{O}(n \cdot(m+n))$.

Proof. Note that each time a vertex-edge separation step is applied the number of vertices, edges and components of G all increase by 1 . The size of the largest component never increases though and at least one component becomes smaller. Thus, Algorithm 6.2 terminates.

```
Algorithm 6.1 Test if vertex is contained in a vertex-edge separator, if so apply vertex-edge sepa-
ration.
TestAndDecompose \((G, v)\)
    Input: \(\quad\) Graph \(G\) and vertex \(v \in V(G)\).
Output: Graph \(G\), vertices \(v_{1}, v_{2}\)
    \(1 e=u_{1} u_{2}=\operatorname{FindCutEdge}(G-v)\)
    2 if \(e\) is not Nil then
        \(G=G-e\)
        \(G, v_{1}, v_{2}=\operatorname{Split}(G, v)\)
        Add an edge between \(u_{1}\) and \(v_{1}\) to \(G\).
        Add an edge between \(u_{2}\) and \(v_{2}\) to \(G\).
        return \(G, v_{1}, v_{2}\)
    else
        return \(G\), Nil, Nil
    end if
```

```
VE-Components \((G)\)
    Input: Biconnected graph \(G\).
    Output: Disjoint union \(G\) of biconnected graphs.
    \(S:=V\)
    while \(S \neq \emptyset\) do
        Take out arbitrary \(v \in S\)
        \(G, v_{1}, v_{2}=\operatorname{TestandDecompose}(G, v)\)
        if \(v_{1} \neq \mathrm{Nil}\) then
        Add \(v_{1}\) and \(v_{2}\) to \(S\).
    end if
end while
return \(G\)
```

Algorithm 6.2 Computation of vertex-edge-components using vertex-edge separation.

Let G be a biconnected graph and G^{\prime} the graph returned by the algorithm starting with G. By Lemma 6.4 any vertex that is not contained in a vertex-edge separator in a graph G is also not contained in a vertex-edge separator in $G_{1} \cup G_{2}$ with $G=G_{1}$ 厄 G_{2}. As every vertex in G^{\prime} is at some point contained in the set S and, when regarded, is only kept in the graph if it is not contained in a vertex-edge separator, no vertex of G^{\prime} can be contained in a vertex-edge separator. This proves the correctness of the Algorithm.

Now we discuss the running time of the algorithm. If G contains only one vertex, the algorithm terminates after the first iteration, as no vertex-edge separation step can be applied. Now assume that $n \geq 2$. Algorithm 6.2 never creates a component with only one vertex. Thereby any component of G^{\prime} contains at least two vertices. Let k be the number of vertex-edge separation steps taken during the whole procedure. We get that the number of components in G^{\prime} is exactly $k+1$, so the number of vertices in G^{\prime} is at least $2 \cdot(k+1)$. As in each iteration exactly one additional vertex is added to the graph, we know that $\left|V\left(G^{\prime}\right)\right|=k+n$. Thus, $k+n \geq 2 \cdot(k+1)$ which implies $k \leq n-2$. As already mentioned, we can find a cut-edge and split the graph using a slightly altered version of the usual lowpoint algorithm for finding biconnected components, cf. [5]. This algorithm can be implemented to run in time $\mathcal{O}(n+m)$. Thus any call to TestandDecompose needs at most time $\mathcal{O}(n+m)$. Altogether Algorithm 6.2 can be implemented to run in time $\mathcal{O}(n(n+m))$.

Next we want to use Algorithm 6.2 to find out if the cycle number of a biconnected graph G is unique. As pointed out earlier, we will do this by simply testing if all components remaining, after Algorithm 6.2 has terminated, are Eulerian multiedges.

```
Algorithm 6.3 Test if cycle number of a graph is unique.
ISCyCLENUMBERUNIQUE \((G)\)
    Input: Biconnected graph \(G\).
    Output: \(\begin{cases}\text { True, } & \text { if cycle number is unique, } \\ \text { False, } & \text { else. }\end{cases}\)
    \(H=\operatorname{VE-Components}(G)\)
    for all \(v \in V(H)\) do
    if \(|N(v)| \neq 1\) or \(\#\) of incident edges is odd then
        return False
    end if
end for
return True
```

Theorem 6.6. Algorithm 6.3 correctly decides if the cycle number of a biconnected graph G with n vertices and medges is unique. It can be implemented to run in time $\mathcal{O}(n(m+n))$.

Proof. First note, that a graph H is a disjoint union of Eulerian multiedges if and only if each vertex has exactly one neighbour and the number of incident edges is even. This proves that Algorithm 6.3 returns True if and only if the graph H in the algorithm is a collection of Eulerian
multiedges. The running time is clear as the whole algorithm is clearly dominated by the running time of Algorithm 6.2.

It remains to show that this indeed is a necessary and sufficient condition for the graph G to have a unique cycle number. It is easy to see that G is contained in \mathcal{G}, as in order to create it we only have to do the algorithm backwards. Now assume that G has a unique cycle number but Algorithm 6.2 does not terminate with a collection of Eulerian multiedges. Then there exists a component H, which is not an Eulerian multiedge and does not allow a vertex-edge separation step. This implies that $H \notin \mathcal{G}$ and by Theorem 5.2 we have $\nu(H)>c(H)$. If we now apply Lemma 3.1 multiple times, we get that $\nu(G)>c(G)$, which is a contradiction to G having unique cycle number.

Observe that we can also use Algorithm 6.2 to reduce computation of minimum or maximum cycle number to smaller graphs: We simply run the algorithm on a given graph G and compute a minimum respectively maximum cycle decomposition in the outputted components. By Lemma 3.1 we can then puzzle the cycle decomposition together in order to obtain a minimum or maximum cycle decomposition of G.

Acknowledgement

We would like to thank the anonymous reviewer, Sebastian Johann, Sven O. Krumke, Eva Schmidt and Till Heller for their helpful comments on this article.
[1] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1-2) (1998), 1-45.
[2] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Springer, 2000.
[3] H. Fleischner, Eulerian graphs and related topics, 1990.
[4] I. Holyer. The NP-completeness of some edge-partition problems, SIAM J. Comput. 10 (4) (1981), 713-717.
[5] J. Hopcroft and R. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation, Commun. ACM 16 (6) (1973), 372-378.
[6] M. Krivelevich, Z. Nutov, M.R. Salavatipour, J.V. Yuster, and R. Yuster, Approximation algorithms and hardness results for cycle packing problems, ACM Trans. Algorithms 3 (4) (2007).
[7] S.O. Krumke and H. Noltemeier, Graphentheoretische Konzepte und Algorithmen (2009).
[8] W. Mader. Konstruktion aller n-fach kantenzusammenhaïgenden digraphen, European J. Combin. 3 (1) (1982), 63-67.
[9] C. Otto and P. Recht, Maximum cycle packing using SPR-trees, Electron. J. Graph Theory Appl. 7 (1) (2019), 147-155.
[10] B. Péroche. NP-completeness of some problems of partitioning and covering in graphs, Discrete Appl. Math. 8 (2) (1984), 195-208.
[11] W.T. Tutte, A theory of 3-connected graphs, Indag. Math. 23 (1961), 441-455.
[12] D.B. West, Introduction to Graph Theory, 2001.

[^0]: Received: 23 November 2018, Revised: 30 May 2019, Accepted: 15 June 2019.

