Electronic Journal of Graph Theory and Applications

The rainbow k-connectivity of the non-commutative graph of a finite group

Luis A. Dupont, Raquiel R. López Martínez, Miriam Rodríguez
Facultad de Matemáticas, Universidad Veracruzana,
Circuito Gonzalo Aguirre Beltrán S/N; Zona Universitaria; Xalapa, Ver., México, CP 91090.
ldupont@uv.mx, ralopez@uv.mx, miriamrodriguezuv@gmail.com

Abstract

The non-commuting graph $\Gamma(G)$ of a non-abelian group G is defined as follows. The vertex set $V(\Gamma(G))$ of $\Gamma(G)$ is $G \backslash Z(G)$ where $Z(G)$ denotes the center of G and two vertices x and y are adjacent if and only if $x y \neq y x$. We prove that the rainbow k-connectivity of $\Gamma(G)$ is equal to $\left\lceil\frac{k}{2}\right\rceil+2$, for $3 \leq k \leq|Z(G)|$.

Keywords: non-commuting graph, non-abelian group, rainbow connectivity, rainbow path AMS Mathematics Subject Classification: 05C15, 05C25, 05C38
DOI: 10.5614/ejgta.2020.8.1.7

1. Introduction

Let G be a group and $Z(G)$ be the center of G. The non-commuting graph $\Gamma(G)$ associated to G is the graph with vertex set $G \backslash Z(G)$ and such that two vertices x and y are adjacent whenever $x y \neq y x$. The non-commuting graph of a group was first considered by Paul Erdös in 1975, [6]. Subsequently, it was strongly developed in [1].

Let Γ be a connected graph with the vertex set $V(\Gamma)$ and the edge set $E(\Gamma)$. Define a coloring $\varphi: E(\Gamma) \rightarrow\{1,2, \ldots, t\}, t \in \mathbb{N}$, where adjacent edges may be colored the same. Given an edge coloring of Γ, a path P is rainbow if no two edges of P are colored the same. An edge-colored

Received: 6 November 2018, Revised: 12 May 2019, Accepted: 27 June 2019.

The rainbow k-connectivity of the non-commutative graph of a finite group $\mid \quad$ Luis A. Dupont et al.
graph Γ is rainbow connected if every pair of vertices of Γ are connected by a rainbow. The rainbow connection number $\mathrm{rc}_{1}(\Gamma)$ of Γ is defined to be the minimum integer t such that there exists an edge-coloring of Γ with t colors that makes Γ rainbow connected.

From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edgecolored graph Γ is called rainbow k-connected if any two distinct vertices of Γ are connected by at least k internally disjoint rainbow paths. The rainbow k-connectivity of Γ, denoted by $\mathrm{rc}_{\mathrm{k}}(\Gamma)$, is the minimum number of colors required to color the edges of Γ to make it rainbow k-connected, and φ is called a rainbow k-coloring of Γ. We usually denote $\mathrm{rc}_{1}(\Gamma)$ by $\operatorname{rc}(\Gamma)$.

The importance of rainbow connection number emerge from applications to the secure transfer of classified information between agencies [2]. Recently, Septyanto in [8], showed another form to see the application.

The commutator of an ordered pair g_{1}, g_{2} of elements of G is the element

$$
\left[g_{1}, g_{2}\right]=g_{1}^{-1} g_{2}^{-1} g_{1} g_{2} \in G
$$

G is abelian if and only if $\left[g_{1}, g_{2}\right]=1$
Let $G(V, E)$, and let $a=\left(e_{1}, \ldots, e_{j}\right)$ be a path with $e_{i} \in E$. Then $l(a):=j$ is called the length of a.

We denote by $P(x, y)$ the set of all x, y paths in G. Then $d(x, y):=\min \{l(a) \mid a \in P(x, y)\}$ is called the distance from x to y.

We call $\operatorname{diam}(G):=\max \{d(x, y) \mid x, y \in G\}$ the diameter of G. The length of a shortest cycle of G is called the girth of G.

When a pair of vertices g_{i}, g_{j} are joined, we denoted by $g_{i} \sim g_{j}$. In otherwise we denoted by $g_{i} \nsim g_{j}$.

A non-commutative graph $\Gamma(G)$ is connected and the diameter of $\Gamma(G)$ is 2 , $\operatorname{diam}(\Gamma(G))=2$.
Theorem 1.1. [1] For any non-abelian group G, $\operatorname{diam}(\Gamma(G))=2$. In particular, $\Gamma(G)$ is connected.

In [9], it is shown that $\operatorname{rc}(\Gamma(G))=\operatorname{rc}_{2}(\Gamma(G))=2$.
Theorem 1.2. [9] Let G be a finite non-abelian group. Then $\operatorname{rc}(\Gamma(G))=\operatorname{rc}_{2}(\Gamma(G))=2$.
In the present article, we estimate $\mathrm{rc}_{\mathrm{k}}(\Gamma(G))$ for $3 \leq k \leq|Z(G)|$. Our main result is the following theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then $\mathrm{rc}_{\mathrm{k}}(\Gamma(G)) \leq k$, for $3 \leq k \leq|Z(G)|$ with $|Z(G)| \geq 3$. Specifically $r_{k}(\Gamma(G))=\left\lceil\frac{k}{2}\right\rceil+2$.

The rainbow k-connectivity of the non-commutative graph of a finite group $\quad \mid \quad$ Luis A. Dupont et al.
2. $\operatorname{rc}_{\mathrm{k}}(\Gamma(\boldsymbol{G}))$ with $1 \leq k \leq|Z(G)|$

Let G be a finite non-abelian group, from now on we write the vertices of $\Gamma(G)$ as the partition

$$
V(\Gamma(G))=g_{1} Z \dot{\cup} g_{2} Z \dot{\cup} \cdots \dot{\cup} g_{m} Z
$$

with $Z=Z(G), g_{i} Z \neq Z, m=[G: Z(G)]-1$ and where $g_{i} Z$ is an independent subset of $\Gamma(G)$.
Proposition 2.1. Let G be a finite non-abelian group. Then the m-partite graph $\Gamma(G)$ with partition $V(\Gamma(G))=g_{1} Z \dot{\cup} g_{2} Z \dot{\cup} \cdots \dot{\cup} g_{m} Z$, provides an adjacency by blocks.
Proof. Observe that every pair of vertices $g_{i} \sim g_{j}$, if and only if for all $x, y \in Z g_{i} x \sim g_{j} y$. In addition, for each i, the vertex $g \in V(\Gamma(G))$ is adjacent to g_{i} if and only if it is adjacent to every element of the set $g_{i} Z$. In other words, it is an adjacency by blocks.

Definition 2.2. Let G be a non-commutative finite group, with m-partition

$$
V(\Gamma(G))=g_{1} Z \dot{\cup} g_{2} Z \dot{\cup} \cdots \dot{\cup} g_{m} Z
$$

adjacency by blocks. We define the skeleton of the m-partition as the subgraph induced by $M=$ $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$. The skeleton is denoted by $S_{\Gamma(G)}^{M}$.

Remark 2.3. The graph $\Gamma(G)$ is not complete, however $S_{\Gamma(G)}^{M}$ can be complete, we can see this in the follow example: Let $G=D_{2 \times 4}:=\left\langle a, x: a^{4}=x^{2}=1, x a x=a^{-1}\right\rangle$, the dihedral group of order 8 . Then $Z:=Z(G)=\left\{1, a^{2}\right\}$, and we have

$$
V(\Gamma(G))=a Z \dot{\cup} x Z \dot{\cup} a x Z
$$

Since each pair of $\{a, x, a x\}$ do not commute, we have $S_{\Gamma\left(D_{2 \times 4}\right)}^{M}$ is complete.
By Theorem 1.2, there is a coloration

$$
\varphi: E(\Gamma(G)) \rightarrow\{1,2\}
$$

such that $\operatorname{rc}(\Gamma)=\operatorname{rc}_{2}(\Gamma)=2$. Thus, the graph $\Gamma(G)$ is not complete, implies that $\varphi\left(E\left(S_{\Gamma(G)}^{M}\right)\right)=$ $\{1,2\}$. Therefore, the coloration

$$
\phi:=\left.\varphi\right|_{E\left(S_{\Gamma(G)}^{M}\right)}: E\left(S_{\Gamma(G)}^{M}\right) \rightarrow\{1,2\}
$$

meets the 2-connectivity, that is to say, $\operatorname{rc}\left(S_{\Gamma(G)}^{M}\right) \leq 2$. Consider $Z(G)=\left\{e=z_{1}, z_{2}, z_{3}, \ldots, z_{s}\right\}$ and define the following coloring of $\Gamma(G)$:

$$
\begin{gathered}
\psi: E(\Gamma(G)) \rightarrow\{1,2\} \text { given by } \\
\psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=\phi\left(\left\{g_{i}, g_{j}\right\}\right) \text { for } 1 \leq i, j, p \leq m ; i \neq j \\
\psi\left(\left\{g_{i} z_{p}, g_{j} z_{q}\right\}\right) \neq \phi\left(\left\{g_{i}, g_{j}\right\}\right) \text { for } 1 \leq i, j, p, q \leq m ; i \neq j ; p \neq q .
\end{gathered}
$$

In the next section we give a coloring for $3 \leq k \leq s$ with $p \neq q$. Moreover in section 6 we will proof that this coloring works.

The rainbow k-connectivity of the non-commutative graph of a finite group $\quad \mid \quad$ Luis A. Dupont et al.

3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for $\Gamma(G)$, with $k \geq 3$. We may ask for the maximum number of paths from v_{1} to v_{2} vertices, no two of which have an edge in common (such paths are called edge-disjoint paths). As a consequence of Menger's theorem about max-flow and min-cut, Witney [10] presented that a graph is k-connected if and only if any two vertices are connected by k internally disjoint paths. With Whitney's result we can answer how many edge-disjoint paths are connecting a given pair of vertices on $\Gamma(G)$.

Definition 3.1. The edge-connectivity is the minimum size of a subset $C \subset E(G)$ for which $G-C$ is not connected for a graph G. The edge-connectivity of G is denoted by $\lambda(G)$. If $\lambda(G) \geq k$ then G es called k-edge connected.

The next theorem is a result implied by Menger's theorem. This form can be found in [7, Chapter 15].

Theorem 3.2. An undirected graph $G=(V, E)$ is k-edge-connected if and only if there exist k edge-disjoint paths between any two vertices s and t.

As we can obtain the rainbow-connectivity number of $\Gamma(G)$ and this graph is connected by blocks with $s=|Z(G)|$ as size of each block, we have that the graph $\Gamma(G)$ is s-edge-connected and there exist s edge-disjoint paths in $\Gamma(G)$. Then, our problem now is coloring the s edge-disjoint paths of $\Gamma(G)$.

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for $g_{i}, g_{j}, g_{k}, g_{l} \in$ $S_{\Gamma(G)}^{M}$ and $z_{r}, z_{t}, z_{w}, z_{p} \in Z(G)$. The first case is when $g_{i} z_{r} \sim g_{j} z_{t}$ which give us a bipartite complete graph in $\Gamma(G)$. The second case is when we have $g_{i} z_{r} \sim g_{j} z_{t} \sim g_{k} z_{w}$, but $g_{i} z_{r} \nsim g_{k} z_{w}$.

Remark 3.4. We note that $\lambda(G) \geq s$. Then, if we want a path between end vertices $g_{i} z_{r}$ and $g_{j} z_{t}$, without loss of generality we start with $g_{i} z_{r}$, necessarily, from 3.2, the edges $g_{i} z_{r} \sim g_{j} z_{t_{b}}$ with $t_{b} \in\{1, \ldots, s\}$, are in the set of edge-disjoint paths. The same happens for the edges $g_{i} z_{r_{a}} \sim g_{j} z_{t}$ with $r_{a} \in\{1, \ldots, s\}$ because we have s disjoint paths, therefore we need all outedge from $g_{i} z_{r}$, and all in-edge to $g_{j} z_{t}$, thus all our edge-disjoint paths have the following form: $\left(g_{i} z_{r}, g_{j} z_{t_{b}}, \ldots, g_{i} z_{r_{a}}, g_{j} z_{t}\right)$, with $t_{a}, r_{b} \in\{1, \ldots, s\}$.

4. Rainbow k-connectivity

4.1. Case when $g_{i} \sim g_{j} \in V\left(S_{\Gamma(G)}^{M}\right)$

Let $s=|Z(G)|$ and let $\bar{r} \equiv r \bmod s$ with $1 \leq r \leq s$. If $g_{i} \sim g_{j} \in V\left(S_{\Gamma(G)}^{M}\right)$, then the set of edges is given by

$$
\begin{aligned}
E_{1}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{r} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=1\right\} \bigcup \\
& \left\{e \in E(\Gamma(G)) \mid \text { for } g_{i} z_{r} \sim g_{j} z_{\overline{r+1}} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=2\right. \text { with } \\
& 1 \leq i, j, p \leq m ; i \neq j\} \\
E_{2}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{r} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=2\right\} \bigcup \\
& \left\{e \in E(\Gamma(G)) \mid \text { for } g_{i} z_{r} \sim g_{j} z_{\overline{r+1}} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=1\right. \text { with } \\
& 1 \leq i, j, p \leq m ; i \neq j\} \\
E_{3}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+2}}\right\} \\
\vdots & \vdots \\
E_{n}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+n-1}}\right\} \\
E_{n+1}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+n}}\right\} \\
E_{n+2}= & E(\Gamma(G)) \backslash\left(E_{1} \cup \cdots \cup E_{n+1}\right)
\end{aligned}
$$

with $n=\left\lfloor\frac{k}{2}\right\rfloor$. The coloring given by:

$$
\begin{aligned}
\psi: E(\Gamma(G)) & \longrightarrow\{1, \ldots, n+2\} \\
f & \mapsto
\end{aligned} \quad \text { if } f \in E_{i}
$$

For an easier study of this kind of graph we use a table called rainbow table, whose entries $\left(r_{a}, t_{b}\right)$ are the color from edge $\left(g_{i} z_{r_{a}}, g_{j} z_{t_{b}}\right)$. This table is the following form:

$$
\begin{gathered}
g_{i} z_{1} \\
g_{i} z_{2} \\
g_{i} z_{3} \\
\quad \vdots \\
g_{i} z_{n} \\
g_{i} z_{n+1} \\
\quad \vdots \\
g_{i} z_{s}
\end{gathered}\left[\begin{array}{ccccccccc}
g_{j} z_{1} & g_{j} z_{2} & g_{j} z_{3} & \cdots & g_{j} z_{n} & g_{j} z_{n+1} & g_{j} z_{n+2} & \cdots & g_{j} z_{s} \\
1 & 2 & 3 & \cdots & n & n+1 & & & \\
& 1 & 2 & \cdots & n-1 & n & n+1 & & \\
& & 1 & \cdots & n-2 & n-1 & n & \\
& & & & \vdots & \vdots & \vdots & & \\
& & & & 1 & 2 & 3 & \cdots & n+1 \\
n+1 & & & & & 1 & 2 & \cdots & n \\
2 & 3 & 4 & \cdots & n+1 & & & & \vdots \\
& & & & & & & & 1
\end{array}\right]
$$

Case $g_{i} \sim g_{j}$ in $S_{\Gamma(G)}^{M}, s=|Z(G)|$ and $n=\left\lfloor\frac{k}{2}\right\rfloor$.
The $(n+2)$-color in the table is given by white space.
4.2. Case when $g_{i} \sim g_{j} \sim g_{l}$ but $g_{i} \nsim g_{l}$ in $S_{\Gamma(G)}^{M}$

Let $s=|Z(G)|$ and let $\bar{r} \equiv r \bmod s$ with $1 \leq r \leq s$. If $g_{i} \sim g_{j} \in V\left(S_{\Gamma(G)}^{M}\right)$, then the set of edges is given by

$$
\begin{aligned}
E_{1}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{r} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=1\right\} \cup \\
& \left\{e \in E(\Gamma(G)) \mid \text { for } g_{i} z_{r} \sim g_{j} z_{\overline{r+1}} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=2\right. \text { with } \\
& 1 \leq i, j, p \leq m ; i \neq j\} \\
E_{2}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{r} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=2\right\} \cup \\
& \left\{e \in E(\Gamma(G)) \mid \text { for } g_{i} z_{r} \sim g_{j} z_{\overline{r+1}} \text { such that } \psi\left(\left\{g_{i} z_{p}, g_{j} z_{p}\right\}\right)=1\right. \text { with } \\
& 1 \leq i, j, p \leq m ; i \neq j\} \\
E_{3}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+2}}\right\} \\
\vdots & \vdots \\
E_{n}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+n-1}}\right\} \\
E_{n+1}= & \left\{e \in E(\Gamma(G)) \mid g_{i} z_{r} \sim g_{j} z_{\overline{r+n}}\right\} \\
E_{n+2}= & E(\Gamma(G)) \backslash\left(E_{1} \cup \cdots \cup E_{n+1}\right)
\end{aligned}
$$

with $n=\left\lceil\frac{k}{2}\right\rceil$. The coloring given by:

$$
\begin{aligned}
\psi: E(\Gamma(G)) & \longrightarrow\{1, \ldots, n+2\} \\
f & \mapsto
\end{aligned} \quad i \quad \text { if } f \in E_{i}
$$

This give us a table as:

	$g_{i} z_{1}$	$g_{i} z_{2}$	\ldots	$g_{i} z_{n}$	$g_{i} z_{n+1}$	\ldots	$g_{i} z_{s}$	$g_{l} z_{1}$	$g_{l} z_{2}$	\ldots	$g_{l} z_{n-1}$	$g_{l} z_{n}$	$g_{l} z_{n+1}$	\ldots	$g_{l} z_{s}$
$g_{j} z_{1}$	1			$n+1$	n	\ldots	2	2	1	\ldots	$n-1$	n	$n+1$	\ldots	
$g_{j} z_{2}$	2	1			$n+1$	\ldots	3		2	\cdots	$n-2$	$n-1$	n	\ldots	
!	:	!					;			\ddots	\vdots	\vdots			
$g_{j} z_{n-1}$	$n-1$	$n-2$	\because				n				2	1	3		$n+1$
$g_{j} z_{n}$	n	$n-1$		1			$n+1$	$n+1$				2	1		n
$g_{j} z_{n+1}$	$n+1$	n		:	1				$n+1$				2		$n-1$
\vdots				!				:	:					\because	:
$g_{j} z_{s}$				n	$n-1$	\ldots	1	1	3		n	$n+1$			2

Case when $g_{i} \sim g_{j} \sim g_{l}$ but $g_{i} \nsim g_{l}$ in $S_{\Gamma(G)}^{M}$ with $n=\left\lceil\frac{k}{2}\right\rceil$ and $(n+2)$-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when $s=6$ and $g_{1} \sim g_{2}$ in $S_{\Gamma(G)}^{M}$ with the coloring assigned before.
Without loss of generality suppose that $\psi\left(\left\{g_{1} z_{p}, g_{2} z_{p}\right\}\right)=1$, then the rainbow table is given by:

$g_{1} z_{1}$
$g_{1} z_{2}$
$g_{1} z_{3}$
$g_{1} z_{4}$
$g_{1} z_{5}$
$g_{1} z_{6}$$\left[\begin{array}{cccccc}g_{2} z_{1} & g_{2} z_{2} & g_{2} z_{3} & g_{2} z_{4} & g_{2} z_{5} & g_{2} z_{6} \\ & 1 & 2 & 3 & & \\ \\ & 1 & 2 & 3 & & \\ & & 1 & 2 & 3 & \\ 3 & & & 1 & 2 & 3 \\ 2 & 3 & & & 1 & 2 \\ & & & & & 1\end{array}\right]$

We can see that there is not exist a rainbow k-connectivity with 4 colors. To give s edge-disjoint paths with ends vertices $g_{1} z_{2}$ and $g_{2} z_{4}$, the first path cross above $g_{2} z_{1}$, then we start the path with $g_{1} z_{2} \stackrel{4}{\sim} g_{2} z_{1}$. Now, we need move from $g_{2} z_{1}$ but our only options are $g_{2} z_{1} \stackrel{1}{\sim} g_{1} z_{1}, g_{2} z_{1} \stackrel{3}{\sim} g_{1} z_{5}$ and $g_{2} z_{1} \stackrel{2}{\sim} g_{1} z_{6}$ and these edges can not arrive to $g_{2} z_{4}$ because all the in-edge repeat color 4. For this reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need to add one color more, and the table is given by
$g_{1} z_{1}$
$g_{1} z_{2}$
$g_{1} z_{3}$
$g_{1} z_{4}$
$g_{1} z_{5}$
$g_{1} z_{6}$$\left[\begin{array}{cccccc}g_{2} z_{1} & g_{2} z_{2} & g_{2} z_{3} & g_{2} z_{4} & g_{2} z_{5} & g_{2} z_{6} \\ 1 & 2 & 3 & 4 & & \\ & 1 & 2 & 3 & 4 & \\ & & 1 & 2 & 3 & 4 \\ 4 & & & 1 & 2 & 3 \\ 3 & 4 & & & 1 & 2 \\ 2 & 3 & 4 & & & 1\end{array}\right]$

Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths with our table. Let $g_{1} \sim g_{2}$ in $S_{\Gamma(G)}^{M}$ and $|Z(G)|=4$. Then, we will build our rainbow table with 3 colors the following form.
$g_{1} z_{1}$
$g_{1} z_{2}$
$g_{1} z_{3}$
$g_{1} z_{4}$$\left[\begin{array}{cccc}g_{2} z_{1} & g_{2} z_{2} & g_{2} z_{3} & g_{2} z_{4} \\ 1 & 2 & & \\ & 1 & 2 & \\ & & 1 & 2 \\ 2 & & & 1\end{array}\right]$

From this table we can found $\mathrm{rc}_{3}(\Gamma(G))=3$ for any vertices. For example, for end vertices $g_{1} z_{3}, g_{2} z_{4}$

1-path: $g_{1} z_{3} \stackrel{2}{\sim} g_{2} z_{4}$
2-path: $\quad g_{1} z_{3} \quad \stackrel{3}{\sim} g_{2} z_{1} \quad \stackrel{2}{\sim} g_{1} z_{4} \quad \stackrel{1}{\sim} g_{2} z_{4}$
3-path: $g_{1} z_{3} \quad \stackrel{1}{\sim} g_{2} z_{3} \quad \stackrel{2}{\sim} g_{1} z_{2} \quad \stackrel{3}{\sim} g_{2} z_{4}$

If we note, we can not find 4 edge-disjoint paths with 3 colors, because $g_{1} z_{1}$ to $g_{2} z_{1}$ passes through $g_{2} z_{3}$, the paths are the followings: $g_{1} z_{1} \stackrel{3}{\sim} g_{2} z_{3} \stackrel{2}{\sim} g_{1} z_{2} \stackrel{3}{\sim} g_{2} z_{1}$ or $g_{1} z_{1} \stackrel{3}{\sim} g_{2} z_{3} \stackrel{1}{\sim} g_{1} z_{3} \stackrel{3}{\sim}$ $g_{2} z_{1}$. Then, we need add another color, then the table is 4 colors the following form:
$g_{1} z_{1}$
$g_{1} z_{2}$
$g_{1} z_{3}$
$g_{1} z_{4}$$\left[\begin{array}{cccc}g_{2} z_{1} & g_{2} z_{2} & g_{2} z_{3} & g_{2} z_{4} \\ 1 & 2 & 3 & \\ & 1 & 2 & 3 \\ 3 & & 1 & 2 \\ 2 & 3 & & 1\end{array}\right]$

Then, with all this 4 colors we found all 4 edge-disjoint paths from $g_{1} z_{1}$ to $g_{2} z_{1}$, and they are the followings:

1-path: $\quad g_{1} z_{1} \stackrel{1}{\sim} g_{2} z_{1}$
2-path: $\quad g_{1} z_{1} \stackrel{2}{\sim} g_{2} z_{2} \quad \stackrel{1}{\sim} g_{1} z_{2} \quad \stackrel{4}{\sim} g_{2} z_{1}$
3-path: $\quad g_{1} z_{1} \stackrel{\stackrel{3}{\sim}}{\sim} g_{2} z_{3} \quad \stackrel{4}{\sim} g_{1} z_{4} \quad \stackrel{2}{\sim} g_{2} z_{1}$
4-path: $\quad g_{1} z_{1} \stackrel{4}{\sim} g_{2} z_{4} \stackrel{\underset{\sim}{\sim}}{\sim} g_{1} z_{3} \quad \stackrel{3}{\sim} g_{2} z_{1}$
and the same is true for any pair of vertices.

6. Proofs

6.1. Case 3-partite with $|Z(G)|=3$

The coloring given before can not help us to find all the disjoint-edge paths for the case when $g_{i} \sim g_{j} \sim g_{l}$ but $g_{i} \nsim g_{l}$ in $S_{\Gamma(G)}^{M}$, for example, the rainbow table for this case is the next

$$
\begin{aligned}
& g_{j} z_{1} \\
& g_{j} z_{2} \\
& g_{j} z_{3}
\end{aligned}\left[\begin{array}{cccccc}
g_{i} z_{1} & g_{i} z_{2} & g_{i} z_{3} & g_{l} z_{1} & g_{l} z_{2} & g_{l} z_{3} \\
1 & & 2 & 2 & 1 & \\
2 & 1 & & & 2 & 1 \\
& 2 & 1 & 1 & & 2
\end{array}\right]
$$

But, we can see that for go from $g_{i} z_{1}$ to $g_{l} z_{2}$ we have same colors then, we need to do paths with length at least 4 like the following picture:

The coloring given for this specifical case is the following: The rainbow tables for each case

are the following:

The rainbow k-connectivity of the non-commutative graph of a finite group $\mid \quad$ Luis A. Dupont et al.

$$
\left.\begin{array}{l}
g_{j} z_{1} \\
g_{j} z_{2} \\
g_{j} z_{3}
\end{array}\left[\begin{array}{cccccc}
g_{i} z_{1} & g_{i} z_{2} & g_{i} z_{3} & g_{l} z_{1} & g_{l} z_{2} & g_{l} z_{3} \\
1 & 3 & 2 & 2 & 3 & 4 \\
2 & 4 & 1 & 4 & 1 & 3 \\
4 & 2 & 3 & 1 & 4 & 2
\end{array}\right] \quad \begin{array}{c}
g_{i} z_{1} \\
g_{i} z_{2}
\end{array} g_{i} z_{3} \begin{array}{ccccc}
& g_{l} z_{1} & g_{l} z_{2} & g_{l} z_{3} \\
2 & 3 & 4 & 1 & 3 \\
2 \\
4 & 1 & 3 & 2 & 4 \\
1 \\
1 & 4 & 2 & 4 & 2
\end{array}\right]
$$

With $\psi\left(\left\{g_{i}, g_{j}\right\}\right)=1$ in $S_{\Gamma(G)}^{M}$.
With $\psi\left(\left\{g_{j}, g_{l}\right\}\right)=1$ in $S_{\Gamma(G)}^{M}$.
Theorem 6.1. Let G be a non-abelian group with $|Z(G)|=3$ and $\Gamma(G)$ be the non-commutative graph associated to G, then $\mathrm{rc}_{3}(\Gamma(G))=4$.

Proof. Let the set of edges be the following form:
$E_{1}=\left\{e \in E(\Gamma(G)) \mid g_{i} z_{k_{r}} \sim g_{j} z_{1}\right.$ such that $\psi\left(\left\{g_{i}, g_{j}\right\}\right)=1$ for $g_{i}, g_{j} \in S_{\Gamma(G)}^{M}$ and $\left.k_{r}=1,2,3\right\}$ $\bigcup\left\{e \in E(\Gamma(G)) \mid g_{j} z_{2} \sim g_{l} z_{2}, g_{j} z_{3} \sim g_{l} z_{1}\right.$ such that $\psi\left(\left\{g_{j}, g_{l}\right\}\right)=2$ for $\left.g_{j}, g_{l} \in S_{\Gamma(S)}^{M}\right\}$
$E_{2}=\left\{e \in E(\Gamma(G)) \mid g_{i} z_{k_{r}} \sim g_{j} z_{2}\right.$ such that $\psi\left(\left\{g_{i}, g_{j}\right\}\right)=1$ for $g_{i}, g_{j} \in S_{\Gamma(G)}^{M}$ and $\left.k_{r}=1,2,3\right\}$
$\bigcup\left\{e \in E(\Gamma(G)) \mid g_{j} z_{j_{a}} \sim g_{l} z_{j_{a}}\right.$ such that $\psi\left(\left\{g_{j}, g_{l}\right\}\right)=2$ for $g_{j}, g_{l} \in S_{\Gamma(S)}^{M}$ and $\left.j_{a}=1,3\right\}$
$E_{3}=\left\{e \in E(\Gamma(G)) \mid g_{i} z_{k_{r}} \sim g_{j} z_{3}\right.$ such that $\psi\left(\left\{g_{i}, g_{j}\right\}\right)=1$ for $g_{i}, g_{j} \in S_{\Gamma(G)}^{M}$ and $\left.k_{r}=1,2,3\right\}$
$\bigcup\left\{e \in E(\Gamma(G)) \mid g_{j} z_{1} \sim g_{l} z_{2}, g_{j} z_{2} \sim g_{l} z_{3}\right.$ such that $\psi\left(\left\{g_{j}, g_{l}\right\}\right)=2$ for $\left.g_{j}, g_{l} \in S_{\Gamma(S)}^{M}\right\}$
$E_{4}=E \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$
And the coloring is given by

$$
\begin{aligned}
\psi: E(\Gamma(G)) & \longrightarrow\{1,2,3,4\} \\
f & \mapsto i \quad \text { if } i \in E_{i} .
\end{aligned}
$$

The following are all the 3 edge-disjoint paths for each pair of vertices when $\phi\left(\left\{g_{j}, g_{l}\right\}\right)=2$

$\begin{aligned} & g_{j} z_{1} \stackrel{2}{\sim} g_{l} z_{1} \\ & g_{j} z_{1} \stackrel{4}{\sim} g_{l} z_{3} \stackrel{2}{\sim} g_{j} z_{3} \stackrel{1}{\sim} g_{l} z_{1} \\ & g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{1} \end{aligned}$	$\begin{aligned} & g_{j} z_{1} \stackrel{3}{\sim} g_{l} z_{2} \\ & g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{1} \stackrel{1}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \\ & g_{j} z_{1} \stackrel{\stackrel{4}{\sim}}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & g_{j} z_{1} \stackrel{4}{\sim} g_{l} z_{3} \\ & g_{j} z_{1} \stackrel{2}{\sim} g_{l} z_{1} \stackrel{4}{\sim} g_{j} z_{2} \stackrel{3}{\sim} g_{l} z_{3} \\ & g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{3} \end{aligned}$
$\begin{aligned} & g_{j} z_{2} \stackrel{4}{\sim} g_{l} z_{1} \\ & g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{2}{\sim} g_{l} z_{1} \\ & g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{1}{\sim} g_{l} z_{1} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & g_{j} z_{2} \stackrel{1}{\sim} g_{l} z_{2} \\ & g_{j} z_{2} \stackrel{\stackrel{2}{\sim}}{\sim} g_{l} z_{1} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{l} z_{2} \\ & g_{j} z_{2} \stackrel{\stackrel{4}{\sim}}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & g_{j} z_{2} \stackrel{\stackrel{3}{\sim}}{g_{l} z_{3}} \\ & g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{1} \stackrel{1}{\sim} g_{j} z_{3} \stackrel{2}{\sim} g_{l} z_{3} \\ & g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{4}{\sim} g_{l} z_{3} \end{aligned}$
$\begin{aligned} & \hline g_{j} z_{3} \stackrel{1}{\sim} g_{l} z_{1} \\ & g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \stackrel{3}{\sim} g_{j} z_{1} \stackrel{2}{\sim} g_{l} z_{1} \\ & g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{1} \end{aligned}$	$\begin{aligned} & \hline g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \\ & g_{j} z_{3} \stackrel{1}{\sim} g_{l} z_{1} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{l} z_{2} \\ & g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & \hline g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{3} \\ & g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \stackrel{1}{\sim} g_{j} z_{2} \stackrel{3}{\sim} g_{l} z_{3} \\ & g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{1} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{3} \end{aligned}$

All the edge-disjoint paths when $\phi\left(\left\{g_{i}, g_{j}\right\}\right)=2, \phi\left(\left\{g_{j}, g_{l}\right\}\right)=2$ and $g_{i} \sim g_{j} \sim g_{l}$ but $g_{i} \nsim g_{l}$

$g_{i} z_{1} \sim g_{l} z_{1}$	$g_{i} z_{1} \sim g_{l} z_{2}$	$g_{i} z_{1} \sim g_{l} z_{3}$
$\begin{aligned} & \hline g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \stackrel{2}{\sim} g_{l} z_{1} \\ & g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{l} z_{1} \\ & g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \stackrel{2}{\sim} g_{l} z_{3} \stackrel{3}{\sim} g_{i} z_{2} \stackrel{1}{\sim} g_{l} z_{2} \\ & g_{i} z_{1} \\ & g_{j} z_{2} \stackrel{1}{\sim} g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \\ & g_{i} z_{1} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & \hline g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \stackrel{4}{\sim} g_{l} z_{3} \\ & g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \stackrel{3}{\sim} g_{l} z_{3} \\ & g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{3} \end{aligned}$

$g_{i} z_{2} \sim g_{l} z_{1}$	$g_{i} z_{2} \sim g_{l} z_{2}$	$g_{i} z_{2} \sim g_{l} z_{3}$
$\begin{aligned} & g_{i} z_{2} \stackrel{3}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{j} z_{1} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{l} z_{1} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{3} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{1} \end{aligned}$	$\begin{aligned} & g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \\ & g_{i} z_{2} \stackrel{4}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{\stackrel{4}{\sim}}{\sim} g_{l} z_{2} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{1} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{2} \stackrel{3}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{l} z_{3} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{2}{\sim} g_{l} z_{3} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{l} z_{3} \end{aligned}$

$g_{i} z_{3} \sim g_{l} z_{1}$	$g_{i} z_{3} \sim g_{l} z_{2}$	$g_{i} z_{3} \sim g_{l} z_{3}$
$\begin{aligned} & g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \stackrel{1}{\sim} g_{l} z_{1} \\ & g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{2} \stackrel{1}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{l} z_{1} \\ & g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{l} z_{1} \end{aligned}$	$\begin{aligned} & g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{l} z_{2} \\ & g_{i} z_{3} \stackrel{1}{\sim} g_{j} z_{2} \stackrel{\stackrel{3}{\sim}}{\sim} g_{l} z_{3} \stackrel{\stackrel{2}{\sim}}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{l} z_{2} \\ & g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \stackrel{2}{\sim} g_{i} z_{2} \stackrel{4}{\sim} g_{j} z_{2} \stackrel{1}{\sim} g_{l} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{4}{\sim} g_{l} z_{3} \\ & g_{i} z_{3} \stackrel{1}{\sim} g_{j} z_{2} \stackrel{3}{\sim} g_{l} z_{3} \\ & g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \stackrel{2}{\sim} g_{l} z_{3} \end{aligned}$

All the edge-disjoint paths when $\psi\left(\left\{g_{i}, g_{j}\right\}\right)=1$

$\begin{aligned} & g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \\ & g_{i} z_{1} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{i} z_{2} \stackrel{3}{\sim} g_{j} z_{1} \\ & g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \stackrel{3}{\sim} g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \end{aligned}$	$\begin{aligned} & g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \\ & g_{i} z_{1} \stackrel{\stackrel{4}{\sim}}{\sim} g_{j} z_{3} \stackrel{\sim}{\sim} g_{i} z_{3} \stackrel{1}{\sim} g_{j} z_{2} \\ & g_{i} z_{1} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \\ & g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \stackrel{1}{\sim} g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \\ & g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{3} \end{aligned}$
$\begin{aligned} & g_{i} z_{2} \stackrel{3}{\sim} g_{j} z_{2} \\ & g_{i} z_{2} \stackrel{4}{\sim} g_{j} z_{2} \stackrel{1}{\sim} g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \\ & g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \end{aligned}$	$\begin{aligned} & g_{i} z_{2} \stackrel{4}{\sim} g_{j} z_{2} \\ & g_{i} z_{2} \stackrel{\stackrel{3}{\sim}}{\sim} g_{j} z_{1} \stackrel{1}{\sim} g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \\ & g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{i} z_{3} \stackrel{1}{\sim} g_{j} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{3} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{1} \stackrel{\sim}{\sim} g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \\ & g_{i} z_{2} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{\sim}{\sim} g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{3} \\ & \hline \hline \text { 俍 } \end{aligned}$
$\begin{aligned} & g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \\ & g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{i} z_{2} \stackrel{3}{\sim} g_{j} z_{1} \\ & g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{i} z_{1} \stackrel{1}{\sim} g_{j} z_{1} \end{aligned}$	$\begin{aligned} & g_{i} z_{3} \stackrel{1}{\sim} g_{j} z_{2} \\ & g_{i} z_{3} \stackrel{\stackrel{3}{\sim}}{\sim} g_{j} z_{3} \stackrel{4}{\sim} g_{i} z_{1} \stackrel{2}{\sim} g_{j} z_{2} \\ & g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{3}{\sim} g_{i} z_{2} \stackrel{4}{\sim} g_{j} z_{2} \end{aligned}$	$\begin{aligned} & g_{i} z_{3} \stackrel{3}{\sim} g_{j} z_{3} \\ & g_{i} z_{3} \stackrel{\sim}{\sim} g_{j} z_{2} \stackrel{4}{\sim} g_{i} z_{2} \stackrel{2}{\sim} g_{j} z_{3} \\ & g_{i} z_{3} \stackrel{2}{\sim} g_{j} z_{1} \stackrel{1}{\sim} g_{i} z_{1} \stackrel{4}{\sim} g_{j} z_{3} \end{aligned}$

Theorem 6.2. Let G be a finite non-abelian group. Then $\operatorname{rc}_{\mathrm{k}}(\Gamma(G)) \leq\left\lceil\frac{k}{2}\right\rceil+2$, for $3 \leq k \leq s=$ $|Z(G)|$ with $|Z(G)| \geq 4$.

Proof. We will proof that 4 is a coloring works for our graph.

1. Case $\mathbf{g}_{\mathbf{i}} \sim \mathbf{g}_{\mathbf{j}}$ Let $g_{i} z_{i_{a}}, g_{j} z_{j_{b}}$ be the end vertices. We want to find the edge-disjoint paths between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that the first path is given by $g_{i} z_{i_{a}} \stackrel{\left(i_{a}, j_{b}\right)}{\sim} g_{j} z_{b}$ with color $\left(i_{a}, j_{b}\right)$.

Let j_{1} be the column assigned to the row i_{a} such that $\left(i_{a}, j_{1}\right)=f_{1}$ then, we remove the entries with color f_{1} to the column $g_{j} z_{j_{1}}$ and, the same happen to column $g_{j} z_{j_{b}}$.

Remark 6.3. When we say remove the entry we say that entry is not consider to form the rainbow path.
Thus, the path for this case is

$$
\begin{equation*}
g_{i} z_{i_{a}} \stackrel{f}{\sim} g_{j} z_{j_{1}} \stackrel{\left(i_{a_{1}}, j_{1}\right)}{\sim} g_{i} z_{i_{a_{1}}} \stackrel{\left(i_{a_{1}}, j_{b}\right)}{\sim} g_{j} z_{j_{b}} \tag{1}
\end{equation*}
$$

The rainbow k-connectivity of the non-commutative graph of a finite group $\mid \quad$ Luis A. Dupont et al.
with $\left(i_{a_{1}}, j_{1}\right) \neq f_{1} \neq\left(i_{a_{1}}, j_{b}\right)$ the colors assigned to remaining entries and $g_{j} z_{j_{1}}, g_{i} z_{i_{a_{1}}}$ the respective vertices from remaining entries.

Let $\left(i_{a}, j_{2}\right)$ be the entry with $j_{2} \neq j_{1}$, such that $\left(i_{a}, j_{2}\right)=f_{2}$ then, we remove the entries with same color as f_{2} in column $g_{j} z_{j_{2}}$. We can not use the entry $\left(g_{i} z_{a_{1}}, g_{j} z_{j_{b}}\right)$ because is an edge for 1 , moreover we remove all the entries with same color as f_{2} in column $g_{j} z_{j_{b}}$. Thus, the path is the following:

$$
\begin{equation*}
g_{i} z_{i_{a}} \stackrel{\left(i_{a}, j_{2}\right)}{\sim} g_{j} z_{j_{2}} \stackrel{\left(i_{a_{2}}, j_{2}\right)}{\sim} g_{i} z_{i_{a_{2}}} \stackrel{\left(i_{a_{2}}, j_{b}\right)}{\sim} g_{j} z_{j_{b}} \tag{2}
\end{equation*}
$$

with $\left(i_{a_{2}}, j_{2}\right),\left(i_{a_{2}}, j_{b}\right)$ the colors assigned to remaining entries and $g_{j} z_{j_{2}}, g_{i} z_{i_{a_{2}}}$ the respective vertices from remaining entries.

$$
g_{i} z_{i_{a_{1}}}\left[\begin{array}{cccc}
& g_{j} z_{j_{b}} & g_{j} z_{j_{1}} & \\
g_{i} z_{i_{a}} & \vdots & \vdots & \\
\cdots & f & & \cdots \\
& \vdots & \vdots & \\
\cdots & & f & \cdots \\
& \vdots & \vdots &
\end{array}\right]
$$

Under the conditions stated above we apply the same to all the colors assigned to i_{a}-raw. We take edges from remaining entries to form the rest paths with the same method. Let j_{1}^{\prime} such that $f^{\prime}=\left(i_{a}, j_{1}^{\prime}\right)$ from j_{b}-column we remove the row with entry same color like f^{\prime}. The new path is the following:

$$
\begin{equation*}
g_{i} z_{i_{a}} \stackrel{\left(i_{a}, j_{1}^{\prime}\right)}{\sim} g_{j} z_{j_{1}^{\prime}} \stackrel{\left(i_{a_{1}^{\prime}}, j_{1}^{\prime}\right)}{\sim} g_{i} z_{a_{a_{1}^{\prime}}} \stackrel{\left(i_{a_{1}^{\prime}}, j_{b}\right)}{\sim} g_{j} z_{j_{b}} \tag{3}
\end{equation*}
$$

Take $\left(i_{a}, j_{1}^{\prime}\right),\left(i_{a_{1}^{\prime}}, j_{1}^{\prime}\right)$ as remaining entries from all the entries do not removed before with a dofferent color as f^{\prime}.

Remark 6.4. Suppose that we can coloring with only $\left\lfloor\frac{k}{2}\right\rfloor+1$ colors. Let $g_{i} z_{i_{m}}$ any start vertex, then there exists a pair of vertices $g_{j} z_{j_{n}}, g_{j} z_{j_{n^{\prime}}}$ such that $\left\{\left(a_{i_{r}}, b_{j_{n}}\right) \mid\left(a_{i_{r}}, b_{j_{n}}\right)\right.$-color \neq $\left(\left\lfloor\frac{k}{2}\right\rfloor+1\right)-$ color $\}$ identify with $\left\{\left(a_{i_{r}}, b_{j_{n^{\prime}}}\right) \mid\left(a_{i_{r}}, b_{j_{n}}\right)-\right.$ color $=$ the last color $\}$, therefore is impossible to built k paths between any end vertices $g_{i} z_{i_{m}}, g_{j} z_{j_{n}}$ passes through $g_{j} z_{j_{n^{\prime}}}$, just like 5.1.
2. Case: $\mathbf{g}_{\mathbf{i}} \sim \mathbf{g}_{\mathbf{j}} \sim \mathbf{g}_{\mathbf{1}}$ with $\mathbf{g}_{\mathbf{i}} \nsim \mathbf{g}_{\mathbf{1}}$ in $S_{\Gamma(G)}^{M}$.
(a) Repetition of different color to the last color

Case: repetition of one color between columns. Suppose that f is the repeated color between the columns assigned to the end vertices $g_{i} z_{i_{a}}$ and $g_{l} z_{l_{b}}$ i.e. $f=\left(j_{c}, i_{a}\right)=$ $\left(j_{c}, l_{b}\right)$ in the rainbow table, for some $c=\{1, \ldots,|Z(G)|\}$, with $l_{b} \in g_{l} Z$ and $i_{a} \in g_{i} Z$. Suppose that f is in the path passes through $g_{j} z_{j_{c}}$, thus for do the rainbow path we need
to find another row $j_{c^{\prime}}$ such that $\left(j_{c^{\prime}}, l_{b}\right)=f^{\prime} \neq f$ then for do the rainbow path, to the row $j_{c^{\prime}}$ we remove the columns with color f (i.e. 2 columns) and one of color f^{\prime}. To row j_{c} remove 2 columns for color f^{\prime} and 2 columns assigned for i_{a} and l_{b}. Then we remove a total of 7 columns. There are in total $2|Z(G)|$ columns in our rainbow table, then it remains $2|Z(G)|-7$ columns with $|Z(G)| \geq 4$, leaving at least one column for do the path without similar colors. The path is $g_{i} z_{i_{a}} \stackrel{f}{\sim} g_{j} z_{j_{c}} \stackrel{f_{1}}{\sim} g\left(j_{c}\right) \stackrel{f_{2}}{\sim} g\left(j_{c^{\prime}}\right) \stackrel{f^{\prime}}{\sim} g_{l} z_{l_{b}}$ with f_{1}, f_{2} colors assigned to left column and $g\left(j_{c}\right), g\left(j_{c^{\prime}}\right)$ vertices in column assigned to above column.

$$
j_{c}\left[\begin{array}{ccccccc}
i_{a} & & & & l_{b} \\
& \vdots & & & & \\
j_{c^{\prime}}
\end{array}\left[\begin{array}{ccccccc}
\\
\cdots & f & \cdots \cdots \cdots f^{\prime} \cdots & f_{1} & \cdots & f^{\prime} \cdots & f \\
& \vdots & & & & & \\
& & & & \\
& & & & & \\
& & & & & & \\
& & & & & & \\
& & & & &
\end{array}\right]\right.
$$

Now we make the path who starts in $g_{i} z_{i_{a}} \stackrel{g}{\sim} g_{j} z_{j_{c^{\prime}}}$
When $\mathbf{g} \neq \mathbf{f}$ and $\mathbf{g} \neq \mathbf{f}^{\prime}$. As written above we remove the columns in row $j_{c^{\prime}}$ with color f and one of color g, i.e. 3 columns, and in the row j_{c} remove the columns assigned with color g and two of columns i_{a} and l_{b}, in total we remove 7 columns and leaving $2|Z(G)|-7$ columns where we can find the desired path.
Case: repetition of two colors between columns with $g=\mathbf{f}^{\prime}$. We remove 2 columns with color f^{\prime} to j_{c}-row and 2 columns assigned to i_{a} and l_{b}. In row $j_{c^{\prime}}$ remove 2 columns assigned with color f. There are in total $2|Z(G)|-6$ free columns to find rainbow paths.
Case: repetition of 3 colors Suppose that there are 3 repeated colours between the columns for do the paths with end vertices $g_{i} z_{i_{a}}$ and $g_{l} z_{l_{b}}$ passes through $g_{j} z_{j_{c}}, g_{j} z_{j_{c^{\prime}}}$ and $g_{j} z_{j_{c^{\prime \prime}}}$. For do the paths passes through $g_{j} z_{j_{c}}$, just like the first case, we remove columns with color f^{\prime} to j_{c}-row and, to row j_{c}^{\prime} remove the 2 columns with color f minus the rows assigned i_{a} and l_{b}, then for $|Z(G)| \geq 4$ there are $2|Z(G)|-6$ free columns for do the rainbow path with end vertices $g_{i} z_{i_{a}}$ and $g_{l} z_{l_{b}}$ cross above $g_{j} z_{j_{c}}$ and $g_{j} z_{j_{c}}$. The same happens for rainbow path passes through $g_{j} z_{j_{c^{\prime}}}, g_{j} z_{c^{\prime \prime}}$ and $g_{j} z_{j_{c^{\prime \prime}}}, g_{j} z_{j_{c}}$. The paths have the following form:

$$
\begin{aligned}
& g_{i} z_{i_{a}} \stackrel{f}{\sim} g_{j} z_{j_{c}} \stackrel{g_{1}}{\sim} g_{1}\left(j_{c}\right) \stackrel{g_{2}^{\prime}}{\sim} g_{2}^{\prime}\left(j_{c^{\prime}}\right) \stackrel{f^{\prime}}{\sim} g_{l} z_{l_{b}}, \\
& g_{i} z_{i_{a}}, \\
& g_{j}^{\prime} g_{j} z_{j_{c^{\prime}}}^{\sim} g_{1}^{\prime}\left(j_{c^{\prime}}\right) \stackrel{g_{2}^{\prime \prime}}{\sim} g_{2}^{\prime \prime}\left(j_{c^{\prime \prime}}\right) \stackrel{f^{\prime \prime}}{\sim} g_{l} z_{l_{b}} \\
& g_{i} z_{i_{a}} \stackrel{f_{1}^{\prime \prime}}{\sim} g_{j} z_{j_{c^{\prime \prime}}}^{\sim} g_{1}^{\prime \prime}\left(j_{c^{\prime \prime}}\right) \stackrel{g_{2}}{\sim} g_{2}\left(j_{c}\right) \stackrel{f}{\sim} g_{l} z_{l^{\prime}}
\end{aligned}
$$

Note that $g_{1}, g_{2}^{\prime} ; g_{1}^{\prime}, g_{2}^{\prime \prime}$ and $g_{1}^{\prime \prime}, g_{2}$ are the colors between free columns with colors assigned $f, f^{\prime} ; f^{\prime}, f^{\prime \prime}$ and $f^{\prime \prime}, f$ respectively, and $g_{1}\left(j_{c}\right), g_{2}\left(j_{c}\right) ; g_{1}^{\prime}\left(j_{c^{\prime}}\right), g_{2}^{\prime}\left(j_{c^{\prime}}\right) ; g_{1}^{\prime \prime}\left(j_{c^{\prime \prime}}\right)$, $g_{2}^{\prime \prime}\left(j_{c^{\prime \prime}}\right)$ are vertices associated to the colors in the free columns with its rows $j_{c}, j_{c^{\prime}}, j_{c^{\prime \prime}}$ respectively.
(b) Repetition of last color between columns

Case: repeat the last color $\left\lceil\frac{\mathrm{k}}{\mathbf{2}}\right\rceil+2$ one time. Let $g_{i} z_{i_{a}}$ and $g_{l} z_{l_{b}}$ be the end vertices and suppose that only is repeated the last color $\left\lceil\frac{k}{2}\right\rceil+2$ only one time. Let $f=\left\lceil\frac{k}{2}\right\rceil+2$ be the last color and let $B=2\left[k-\left(\left\lceil\frac{k}{2}\right\rceil+1\right)\right]$ be the number of entries with the last color in each row of the rainbow table. Let $j_{c^{\prime}}$ be a row associated with different color to f in the entries $\left(j_{c^{\prime}}, i_{a}\right)$ and $\left(j_{c^{\prime}}, l_{b}\right)$.

For make the rainbow path passes through j_{c}, to row $j_{c^{\prime}}$ remove B columns associated to the last color f and one column designated to color f^{\prime}, i.e., we remove $B+1$ columns. Further in row j_{c} we remove $B-2$ columns associated to $f, 2$ columns associated to color f^{\prime} and 2 columns for columns associated to i_{a} and l_{b}, thus we remove from row $j_{c} B+2$ columns. If the columns removed are all different from each other then we keep $C=2 k-(2 B+3)$ free columns, in the extreme case that we eliminate the same columns for each case, evaluate in f and f^{\prime}, thus we would have $2 k-(B+2)$ free columns, then the value of free columns is $2 k-(2 B+3) \leq C \leq 2 k-(B+2)$ for $k \leq 4$. The same happens to do a path passes through $g_{j} z_{j^{\prime}}$. Thus, we have enough free columns to do the rainbow path.

$$
j_{c}\left[\begin{array}{cccc}
& i_{a} & l_{b} & \\
& \vdots & \vdots & \\
j_{c^{\prime}} & & f & f \\
\cdots & & \cdots \\
& \vdots & \vdots & \\
\cdots & f^{\prime} & \cdots \\
& \vdots & \vdots &
\end{array}\right]
$$

Later, for make the rainbow path from $g_{i} z_{i_{a}} \stackrel{g}{\sim} g_{j} z_{z_{j_{c^{\prime}}}}$ we remove 2 columns assigned to color g to j_{c}-row, $B-2$ columns assigned to color f and 2 for the columns i_{a}, l_{b},
i.e., remove $B+2$ columns. Moreover from $j_{c^{\prime}}$-row remove B columns for last color f plus 1 column for color g, i.e. $B+1$ columns. In total the amount of free columns is between:

$$
\begin{equation*}
2 k-(2 B+3) \leq C \leq 2 k-(B+2) \quad k \geq 4 \tag{4}
\end{equation*}
$$

Then, there are enough free columns for do the rainbow path.
Case: repeat two colors, one of them the last color, i.e., $\mathbf{g}=\mathbf{f}^{\prime} \neq \mathbf{f}$. To the row $j_{c^{\prime}}$ we remove B columns associated to last color f and the row j_{c} we remove $B-2$ columns associated to last color $f, 2$ columns associated to color f^{\prime} and 2 columns associated to columns i_{a} and l_{b}, i.e. we remove $B+2$ columns. In total there are $2 k-(2 B+2) \leq C \leq 2 k-(B+2)$

$$
\begin{equation*}
2(k-B-1) \leq C \leq 2 k-(B+2) \quad \text { for } k \geq 4 \tag{5}
\end{equation*}
$$

Since $k-B-1>0$ for all k we always have a minimum, two columns to form two paths.

Case: repeat at most $\frac{B}{2}$ entries between columns. Suppose that between columns i_{a} and l_{b} assigned to end vertices $g_{i} z_{i_{a}}, g_{l} z_{l_{b}}$ there are, at most $D=k-\left(\left\lceil\frac{k}{2}\right\rceil+1\right)$ entries with the last color f in each column, since $D<\left\lceil\frac{k}{2}\right\rceil+1$ we can proceed like the previous cases.
3. Case: any vertices of same class We can do the paths directly, if we want to go from $g_{i} z_{i_{a}}$ to $g_{i} z_{i_{b}}$ the paths are of the following form $g_{i} z_{i_{a}} \stackrel{\left(i_{a}, p\right)}{\sim} g_{j} z_{p} \stackrel{\left(i_{j}, p\right)}{\sim} g_{i} z_{i_{b}}$ for $p=\{1, \ldots, s=$ $|Z(G)|\}$. We note that we can only find up to $\left(\left\lceil\frac{k}{2}\right\rceil+2\right)$ edge disjoint paths for any pair of vertices.

$$
\begin{aligned}
& g_{i} z_{i} \\
& g_{i} z_{i}
\end{aligned}\left[\begin{array}{ccccc}
g_{j} z_{1} & g_{j} z_{2} & \cdots & \cdots & g_{j} z_{s} \\
\left(i_{a}, j_{1}\right) & \left(i_{a}, j_{2}\right) & \cdots & \cdots & \left(i_{a}, j_{s}\right) \\
\mid & \mid & & & \mid \\
\left(i_{b}, j_{1}\right) & \left(i_{b}, j_{2}\right) & \cdots & \cdots & \left(i_{b}, j_{s}\right)
\end{array}\right]
$$

Corollary 6.5. Let G be a finite non-abelian group. If $g_{i} \sim g_{j}$ then $\left\lfloor\frac{k}{2}\right\rfloor+1<\mathrm{rc}_{k}(\Gamma(G))$.
Proof. From 6.4.
Corollary 6.6. Let G be a finite non-abelian group. If $g_{i} \sim g_{j} \sim g_{l}$ with $g_{i} \nsim g_{l}$ then $\left\lceil\frac{k}{2}\right\rceil+1<$ $\mathrm{rc}_{k}(\Gamma(G))$.

Proof. Suppose that $B=2\left(k-\left\lceil\frac{k}{2}\right\rceil\right)$ then, for any value of $k, B=2 m(k=\{2 m, 2 m+1\})$. For the case where only repeat one time the last color f, from 4

$$
\begin{array}{lr}
-3 \leq C \leq 2 m-2 \quad \text { for } k=2 m \\
-1 \leq C \leq 2 m \quad \text { for } k=2 m+1
\end{array}
$$

Thus, there are cases when we have not free columns for do the rainbow paths. The same happens for case 5:

$$
\begin{array}{cc}
-2 \leq C \leq 2 m-2 & \text { for } k=2 m \\
0 \leq C \leq 2 m-1 & \text { for } k=2 m+1
\end{array}
$$

Therefore, we can not form k rainbow paths with $\left\lceil\frac{k}{2}\right\rceil+1$ different colors.
Theorem 1.3 Let G be a finite non-abelian group. Then $\operatorname{rc}_{\mathrm{k}}(\Gamma(G))=\left\lceil\frac{k}{2}\right\rceil+2$, for $3 \leq k \leq s=$ $|Z(G)|$ with $|Z(G)| \geq 4$.

Proof. From 6.2, 6.5 and 6.6.
Given the structure of $\Gamma(G)$, it could be considered a generalization of study in [5] to find the Harary index of $\Gamma(G)$.

Example 6.7. Let G be the Heisenberg group for $p=3$ with presentation

$$
\left\langle x, a, b \mid x^{3}=a^{3}=b^{3}=1, a b=b a, x a x^{-1}=a b, x b x^{-1}=b\right\rangle .
$$

We know that $|G|=27,|G \backslash Z(G)|=24$ and $|G / Z(G)|=9$, i.e. the partition for $V(\Gamma(G))=$ $\left\{Z, a Z, a^{2} Z, x Z, a x Z, a^{2} x Z, x^{2} Z, a x^{2} Z, a^{2} x^{2} Z\right\}$ by $[x, a]=b$ we have $x a=b a x$, then $x a Z=$ $a x Z$. The following is the graph for $S_{\Gamma(G)}^{M}$

Figure 1. Heisenberg skeleton graph for $p=3$.
In $S_{\Gamma(G)}^{M}$ the only vertices with distance 2 are a with a^{2} and x with x^{2}. Suppose without loss of generality that $\psi(\{g, a\})=1$. The edge-disjoint paths for end vertices a and a^{2} are the following

$$
\begin{gathered}
\\
g \\
g b \\
g b^{2}
\end{gathered}\left[\begin{array}{cccccc}
a & a b & a b^{2} & a^{2} & a^{2} b & a^{2} b^{2} \\
1 & 3 & 2 & 2 & 3 & 4 \\
2 & 4 & 1 & 4 & 1 & 3 \\
4 & 2 & 3 & 1 & 4 & 2
\end{array}\right]
$$

And all the paths are given in 6.1.

Figure 2. Heisenberg skeleton graph for $p=5$.

Example 6.8. Let G be the Heisenberg group for $p=5$ with presentation

$$
\left\langle x, a, b \mid x^{5}=a^{5}=b^{5}=1, a b=b a, x a x^{-1}=a b, x b x^{-1}=b\right\rangle .
$$

We know that $|G|=125,|G \backslash Z(G)|=120$ and $|G / Z(G)|=25$. Since $[x, a]=b$ we have $x a=b a x$, then $x a Z=a x Z$. The graph 2 is the skeleton $S_{\Gamma(G)}^{M}$ of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without loss of generality we give the 5 edge-disjoint paths for end vertices $x, a x^{2} \in S_{\Gamma(G)}^{M}$. By 1.3 we know that we need $\left(\left\lfloor\frac{5}{2}\right\rfloor+2\right)$-color. The rainbow table is given below

x
$x b$
$x b^{2}$
$x b^{3}$
$x b^{4}$$\left[\begin{array}{ccccc}a x^{2} & a x^{2} b & a^{2} b^{2} & a x^{2} b^{3} & a x^{2} b^{4} \\ 1 & 2 & 3 & & \\ & 1 & 2 & 3 & \\ & & 1 & 2 & 3 \\ 3 & & & 1 & 2 \\ 2 & 3 & & & 1\end{array}\right]$

Rainbow table for $x \sim a x^{2} \in S_{\Gamma(G)}^{M}$

Then, the 5 edge-disjoin paths are given by:

$$
\begin{array}{ll}
x \stackrel{1}{\sim} a x^{2} \\
x \stackrel{2}{\sim} a x^{2} b \stackrel{1}{\sim} & x b^{4} \stackrel{4}{\sim} a x^{2} \\
x \stackrel{3}{\sim} a x b^{2} \stackrel{1}{\sim} & x b^{2} \stackrel{4}{\sim} a x^{2} \\
x \stackrel{4}{\sim} a x^{2} b^{3} \stackrel{1}{\sim} & x b^{3} \stackrel{3}{\sim} a x^{2} \\
x \stackrel{4}{\sim} a x^{2} b^{4} \stackrel{1}{\sim} & x b^{4} \stackrel{2}{\sim} a x^{2}
\end{array}
$$

We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices $x^{4}, x^{3} b^{3}$ are the following
a^{3}
$a^{3} b$
$a^{3} b^{2}$
$a^{3} b^{3}$
$a^{3} b^{4}$$\left[\begin{array}{cccccccccc}x^{4} & x^{4} b & x^{4} b^{2} & x^{4} b^{3} & x^{4} b^{4} & x^{3} & x^{3} b & x^{3} b^{2} & x^{3} b^{3} & x^{3} b^{4} \\ 1 & & & 3 & 2 & 2 & 1 & 3 & & \\ 2 & 1 & & & 3 & & 2 & 1 & 3 & \\ 3 & 2 & 1 & & & & & 2 & 1 & 3 \\ & 3 & 2 & 1 & & 3 & & & 2 & 1 \\ & & 3 & 2 & 1 & 1 & 3 & & & 2\end{array}\right] \quad x^{4} \stackrel{1}{\sim} a^{3} \stackrel{4}{\sim} \quad x^{3} b^{3}$

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end vertices $x^{4} b^{4}$ and $x^{3} b^{2}$ we have the following paths:

Start with color 1		Start with color 2
$\begin{aligned} & x^{4} b^{4} \stackrel{1}{\sim} a^{3} b^{4} \stackrel{4}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{\sim}{\sim} a^{3} b^{4} \stackrel{\sim}{\sim} x^{4} b^{2} \stackrel{2}{\sim} a^{3} b^{3} \stackrel{4}{\sim} \\ & x^{4} b^{4} \stackrel{1}{\sim} a^{3} b^{4} \stackrel{4}{\sim} x^{4} \stackrel{3}{\sim} a^{3} b^{2} \underset{\sim}{\sim} x^{3} \\ & x^{4} b^{4} \stackrel{1}{\sim} a^{3} b^{4} \stackrel{2}{\sim} x^{3} b^{3} \stackrel{4}{\sim} a^{3} \stackrel{3}{\sim} x^{3} \end{aligned}$	$\begin{aligned} & x^{4} b^{4} \stackrel{\sim}{\sim} a^{3} \stackrel{\sim}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{\sim}{\sim} a^{3} \stackrel{\sim}{\sim} x^{4} b^{3} \stackrel{4}{\sim} a^{3} b \stackrel{1}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{2}{\sim} a^{3} \stackrel{3}{\sim} x^{4} b^{3} \stackrel{1}{\sim} a^{3} b^{3} \stackrel{4}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{2}{\sim} a^{3} \stackrel{1}{\sim} x^{3} b \stackrel{3}{\sim} a^{3} b^{4} \stackrel{4}{\sim} x^{3} b^{2} \end{aligned}$	
Start with color 3	Start with color $x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{2}$	Start with color 4 from $x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{3}$
$\begin{aligned} & x^{4} b^{4} \stackrel{3}{\sim} a^{3} b \stackrel{1}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{3}{\sim} a^{3} b \stackrel{4}{\sim} x^{4} b^{2} \stackrel{1}{\sim} a^{3} b^{2} \stackrel{2}{\sim} \\ & x^{3} b^{2} \end{aligned}$	$\begin{aligned} & x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{2} \stackrel{2}{\sim} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{2} \stackrel{3}{\sim} x^{4} \stackrel{2}{\sim} a^{3} b \stackrel{1}{\sim} \\ & x^{3} b^{2} \end{aligned}$	$\begin{aligned} & x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{3} \stackrel{1}{\sim} x^{3} b^{4} \stackrel{3}{\sim} \\ & x^{3} b^{2} x^{3} b^{2} \\ & x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{3} \stackrel{2}{\sim} x^{3} b^{3} \stackrel{3}{\sim} x^{3} b \stackrel{1}{\sim} \\ & x^{3} b^{2} \end{aligned}$
Color 3 can not came to color 4	Color 4 can not came to color $a^{3} \stackrel{3}{\sim} x^{3} b^{2}$	Color $x^{4} b^{4} \stackrel{4}{\sim} a^{3} b^{3}$ can not came to color $a^{3} \stackrel{3}{\sim} x^{3} b^{2}$

Thus, we have not columns for do the rainbow path from $x^{4} b^{4} \stackrel{3}{\sim} a^{3} b$ to $a^{3} b^{3} \stackrel{4}{\sim} x^{3} b^{2}$
a^{3}
$a^{3} b$
$a^{3} b^{2}$
$a^{3} b^{3}$
$a^{3} b^{4}$$\left[\begin{array}{cccccccccc}x^{4} & x^{4} b & x^{4} b^{2} & x^{4} b^{3} & x^{4} b^{4} & x^{3} & x^{3} b & x^{3} b^{2} & x^{3} b^{3} & x^{3} b^{4} \\ 1 & & & 3 & 2 & 2 & 1 & 3 & & \\ 2 & 1 & / & / & 3 & / & 2 & 1 & \not 2 & / \\ 3 & 2 & 1 & & & & & 2 & 1 & 3 \\ / & \not 3 & 2 & 1 & & \not 2 & / & & 2 & 1 \\ & & 3 & 2 & 1 & 1 & 3 & & & 2\end{array}\right]$

Then, we can not find a path from $x^{4} b^{4}$ to $x^{3} b^{2}$ passes through $a^{3} b$, because the last color from $x^{4} b^{4}$ only can came to $x^{3} b^{2}$ passes through $a^{3} b$ and $a^{3} b^{2}$. Then we need one more color.

Figure 3. Graph in $\Gamma(G)$
a^{3}
$a^{3} b$
$a^{3} b^{2}$
$a^{3} b^{3}$
$a^{3} b^{4}$$\left[\begin{array}{cccccccccc}x^{4} & x^{4} b & x^{4} b^{2} & x^{4} b^{3} & x^{4} b^{4} & x^{3} & x^{3} b & x^{3} b^{2} & x^{3} b^{3} & x^{3} b^{4} \\ 1 & & 4 & 3 & 2 & 2 & 1 & 3 & 4 & \\ 2 & 1 & & 4 & 3 & & 2 & 1 & 3 & 4 \\ 3 & 2 & 1 & & 4 & 4 & & 2 & 1 & 3 \\ 4 & 3 & 2 & 1 & & 3 & 4 & & 2 & 1 \\ & 4 & 3 & 2 & 1 & 1 & 3 & 4 & & 2\end{array}\right]$

Rainbow table for found the 5 edge-disjoin paths between x^{4} and x^{3}
With the given structure, we could ask about the meaning of d-coloring redundant as a generalization of [4]. For example, in Figure 3 we could considered a particular case of Turán graph with $T(m|Z|, m)$.

Acknowledgements

This work was partially supported by CONACYT. We highly appreciate the valuable comments on our manuscript and the great editing.

The rainbow k-connectivity of the non-commutative graph of a finite group $\mid \quad$ Luis A. Dupont et al.

References

[1] A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2) (2006), 468-492.
[2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009), 75-81.
[3] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math. 157 (2009), 833-837.
[4] B. Demoen, N. Phuong-Lan, Graphs with coloring redundant edges, Electron. J. Graph Theory Appl. 4 (2) (2016), 223-230.
[5] H. Deng, S. Balachandran, S. Elumalai, T. Mansour, Harary index of bipartite graphs Electron. J. Graph Theory Appl. 7 (2) (2019), 365-372.
[6] B. H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc. 21(Series A) (1976), 467-472.
[7] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Volume 24, Springer-Verlag, Heidelberg, 2003.
[8] F. Septyanto, K. A. Sugeng, Color code techniques in rainbow connection, Electron. J. Graph Theory Appl. 6 (2) (2018), 347-361.
[9] Y. Wei, X. Ma and K. Wang, Rainbow connectivity of the non-commuting graph of a finite group, J. Algebra Appl. 15 (6) (2016), 1-8.
[10] H. Whitney, Congruent graphs and the connectivity of graphs, American Journal of Matematics 54 (1) (1932), 150-168.

