

Electronic Journal of Graph Theory and Applications

The rainbow k-connectivity of the non-commutative graph of a finite group

Luis A. Dupont, Raquiel R. López Martínez, Miriam Rodríguez

Facultad de Matemáticas, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N; Zona Universitaria; Xalapa, Ver., México, CP 91090.

ldupont@uv.mx, ralopez@uv.mx, miriamrodriguezuv@gmail.com

Abstract

The non-commuting graph $\Gamma(G)$ of a non-abelian group G is defined as follows. The vertex set $V(\Gamma(G))$ of $\Gamma(G)$ is $G \setminus Z(G)$ where Z(G) denotes the center of G and two vertices x and y are adjacent if and only if $xy \neq yx$. We prove that the rainbow k-connectivity of $\Gamma(G)$ is equal to $\left\lceil \frac{k}{2} \right\rceil + 2$, for $3 \leq k \leq |Z(G)|$.

Keywords: non-commuting graph, non-abelian group, rainbow connectivity, rainbow path AMS Mathematics Subject Classification: 05C15, 05C25, 05C38 DOI: 10.5614/ejgta.2020.8.1.7

1. Introduction

Let G be a group and Z(G) be the center of G. The *non-commuting graph* $\Gamma(G)$ associated to G is the graph with vertex set $G \setminus Z(G)$ and such that two vertices x and y are adjacent whenever $xy \neq yx$. The non-commuting graph of a group was first considered by Paul Erdös in 1975, [6]. Subsequently, it was strongly developed in [1].

Let Γ be a connected graph with the vertex set $V(\Gamma)$ and the edge set $E(\Gamma)$. Define a coloring $\varphi : E(\Gamma) \to \{1, 2, \dots, t\}, t \in \mathbb{N}$, where adjacent edges may be colored the same. Given an edge coloring of Γ , a path P is *rainbow* if no two edges of P are colored the same. An edge-colored

Received: 6 November 2018, Revised: 12 May 2019, Accepted: 27 June 2019.

graph Γ is *rainbow connected* if every pair of vertices of Γ are connected by a rainbow. The *rainbow connection number* $\operatorname{rc}_1(\Gamma)$ of Γ is defined to be the minimum integer t such that there exists an edge-coloring of Γ with t colors that makes Γ rainbow connected.

From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edgecolored graph Γ is called *rainbow k*-*connected* if any two distinct vertices of Γ are connected by at least *k* internally disjoint rainbow paths. The *rainbow k*-*connectivity* of Γ , denoted by $\operatorname{rc}_k(\Gamma)$, is the minimum number of colors required to color the edges of Γ to make it rainbow *k*-connected, and φ is called a *rainbow k*-*coloring* of Γ . We usually denote $\operatorname{rc}_1(\Gamma)$ by $\operatorname{rc}(\Gamma)$.

The importance of rainbow connection number emerge from applications to the secure transfer of classified information between agencies [2]. Recently, Septyanto in [8], showed another form to see the application.

The *commutator* of an ordered pair g_1, g_2 of elements of G is the element

$$[g_1, g_2] = g_1^{-1} g_2^{-1} g_1 g_2 \in G$$

G is abelian if and only if $[g_1, g_2] = 1$

Let G(V, E), and let $a = (e_1, ..., e_j)$ be a path with $e_i \in E$. Then l(a) := j is called the *length* of a.

We denote by P(x, y) the set of all x, y paths in G. Then $d(x, y) := min\{l(a)|a \in P(x, y)\}$ is called the *distance* from x to y.

We call $diam(G) := max\{d(x, y)|x, y \in G\}$ the *diameter* of G. The length of a shortest cycle of G is called the *girth* of G.

When a pair of vertices g_i, g_j are joined, we denoted by $g_i \sim g_j$. In otherwise we denoted by $g_i \nsim g_j$.

A non–commutative graph $\Gamma(G)$ is connected and the diameter of $\Gamma(G)$ is 2, $diam(\Gamma(G)) = 2$.

Theorem 1.1. [1] For any non–abelian group G, $diam(\Gamma(G)) = 2$. In particular, $\Gamma(G)$ is connected.

In [9], it is shown that $rc(\Gamma(G)) = rc_2(\Gamma(G)) = 2$.

Theorem 1.2. [9] Let G be a finite non-abelian group. Then $rc(\Gamma(G)) = rc_2(\Gamma(G)) = 2$.

In the present article, we estimate $rc_k(\Gamma(G))$ for $3 \le k \le |Z(G)|$. Our main result is the following theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then $\operatorname{rc}_k(\Gamma(G)) \leq k$, for $3 \leq k \leq |Z(G)|$ with $|Z(G)| \geq 3$. Specifically $\operatorname{rc}_k(\Gamma(G)) = \lceil \frac{k}{2} \rceil + 2$.

The rainbow k-connectivity of the non-commutative graph of a finite group | *Luis A. Dupont et al.*

2. $\operatorname{rc}_{\mathbf{k}}(\Gamma(G))$ with $1 \leq k \leq |Z(G)|$

Let G be a finite non-abelian group, from now on we write the vertices of $\Gamma(G)$ as the partition

$$V(\Gamma(G)) = g_1 Z \dot{\cup} g_2 Z \dot{\cup} \cdots \dot{\cup} g_m Z,$$

with Z = Z(G), $g_i Z \neq Z$, m = [G : Z(G)] - 1 and where $g_i Z$ is an independent subset of $\Gamma(G)$.

Proposition 2.1. Let G be a finite non-abelian group. Then the m-partite graph $\Gamma(G)$ with partition $V(\Gamma(G)) = g_1 Z \cup g_2 Z \cup \cdots \cup g_m Z$, provides an adjacency by blocks.

Proof. Observe that every pair of vertices $g_i \sim g_j$, if and only if for all $x, y \in Z$ $g_i x \sim g_j y$. In addition, for each *i*, the vertex $g \in V(\Gamma(G))$ is adjacent to g_i if and only if it is adjacent to every element of the set $g_i Z$. In other words, it is an adjacency by blocks.

Definition 2.2. Let G be a non-commutative finite group, with m-partition

$$V(\Gamma(G)) = g_1 Z \,\dot{\cup} \, g_2 Z \,\dot{\cup} \cdots \dot{\cup} \, g_m Z$$

adjacency by blocks. We define the *skeleton* of the *m*-partition as the subgraph induced by $M = \{g_1, g_2, \ldots, g_m\}$. The skeleton is denoted by $S^M_{\Gamma(G)}$.

Remark 2.3. The graph $\Gamma(G)$ is not complete , however $S^M_{\Gamma(G)}$ can be complete, we can see this in the follow example: Let $G = D_{2\times 4} := \langle a, x : a^4 = x^2 = 1, xax = a^{-1} \rangle$, the dihedral group of order 8. Then $Z := Z(G) = \{1, a^2\}$, and we have

$$V(\Gamma(G)) = aZ \dot{\cup} xZ \dot{\cup} axZ.$$

Since each pair of $\{a, x, ax\}$ do not commute, we have $S^M_{\Gamma(D_{2\times 4})}$ is complete.

By Theorem 1.2, there is a coloration

$$\varphi: E(\Gamma(G)) \to \{1, 2\}$$

such that $rc(\Gamma) = rc_2(\Gamma) = 2$. Thus, the graph $\Gamma(G)$ is not complete, implies that $\varphi(E(S^M_{\Gamma(G)})) = \{1, 2\}$. Therefore, the coloration

$$\phi := \varphi|_{E(S^M_{\Gamma(G)})} : E(S^M_{\Gamma(G)}) \to \{1, 2\}$$

meets the 2-connectivity, that is to say, $\operatorname{rc}(S^M_{\Gamma(G)}) \leq 2$. Consider $Z(G) = \{e = z_1, z_2, z_3, \dots, z_s\}$ and define the following coloring of $\Gamma(G)$:

$$\psi: E(\Gamma(G)) \to \{1, 2\} \text{ given by}$$

$$\psi(\{g_i z_p, g_j z_p\}) = \phi(\{g_i, g_j\}) \text{ for } 1 \le i, j, p \le m; i \ne j;$$

$$\psi(\{g_i z_p, g_j z_q\}) \ne \phi(\{g_i, g_j\}) \text{ for } 1 \le i, j, p, q \le m; i \ne j; p \ne q.$$

In the next section we give a coloring for $3 \le k \le s$ with $p \ne q$. Moreover in section 6 we will proof that this coloring works.

3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for $\Gamma(G)$, with $k \ge 3$. We may ask for the maximum number of paths from v_1 to v_2 vertices, no two of which have an edge in common (such paths are called *edge-disjoint paths*). As a consequence of Menger's theorem about max-flow and min-cut, Witney [10] presented that a graph is k-connected if and only if any two vertices are connected by k internally disjoint paths. With Whitney's result we can answer how many edge-disjoint paths are connecting a given pair of vertices on $\Gamma(G)$.

Definition 3.1. The *edge-connectivity* is the minimum size of a subset $C \subset E(G)$ for which G - C is not connected for a graph G. The edge-connectivity of G is denoted by $\lambda(G)$. If $\lambda(G) \ge k$ then G es called k-edge connected.

The next theorem is a result implied by Menger's theorem. This form can be found in [7, Chapter 15].

Theorem 3.2. An undirected graph G = (V, E) is k-edge-connected if and only if there exist k edge-disjoint paths between any two vertices s and t.

As we can obtain the rainbow-connectivity number of $\Gamma(G)$ and this graph is connected by blocks with s = |Z(G)| as size of each block, we have that the graph $\Gamma(G)$ is s-edge-connected and there exist s edge-disjoint paths in $\Gamma(G)$. Then, our problem now is coloring the s edge-disjoint paths of $\Gamma(G)$.

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for $g_i, g_j, g_k, g_l \in S_{\Gamma(G)}^M$ and $z_r, z_t, z_w, z_p \in Z(G)$. The first case is when $g_i z_r \sim g_j z_t$ which give us a bipartite complete graph in $\Gamma(G)$. The second case is when we have $g_i z_r \sim g_j z_t \sim g_k z_w$, but $g_i z_r \nsim g_k z_w$.

Remark 3.4. We note that $\lambda(G) \geq s$. Then, if we want a path between end vertices $g_i z_r$ and $g_j z_t$, without loss of generality we start with $g_i z_r$, necessarily, from 3.2, the edges $g_i z_r \sim g_j z_{t_b}$ with $t_b \in \{1, ..., s\}$, are in the set of edge-disjoint paths. The same happens for the edges $g_i z_{r_a} \sim g_j z_t$ with $r_a \in \{1, ..., s\}$ because we have s disjoint paths, therefore we need all outedge from $g_i z_r$, and all in-edge to $g_j z_t$, thus all our edge-disjoint paths have the following form: $(g_i z_r, g_j z_{t_b}, ..., g_i z_{r_a}, g_j z_t)$, with $t_a, r_b \in \{1, ..., s\}$.

4. Rainbow *k*-connectivity

4.1. Case when $g_i \sim g_j \in V(S^M_{\Gamma(G)})$

Let s = |Z(G)| and let $\bar{r} \equiv r \mod s$ with $1 \leq r \leq s$. If $g_i \sim g_j \in V(S^M_{\Gamma(G)})$, then the set of edges is given by

$$\begin{split} E_1 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1\} \bigcup \\ \{e \in E(\Gamma(G)) | \text{ for } g_i z_r \sim g_j z_{\overline{r+1}} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \text{ with } \\ 1 \leq i, j, p \leq m; i \neq j\} \\ E_2 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2\} \bigcup \\ \{e \in E(\Gamma(G)) | \text{ for } g_i z_r \sim g_j z_{\overline{r+1}} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \text{ with } \\ 1 \leq i, j, p \leq m; i \neq j\} \\ E_3 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+2}}\} \\ \vdots &\vdots \\ E_n &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+n-1}}\} \\ E_{n+1} &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+n-1}}\} \\ E_{n+2} &= E(\Gamma(G)) \setminus (E_1 \cup \dots \cup E_{n+1}) \\ \text{ with } n = \lfloor \frac{k}{2} \rfloor. \text{ The coloring given by:} \end{split}$$

$$\psi: E(\Gamma(G)) \longrightarrow \{1, \dots, n+2\}$$

$$f \mapsto i \quad \text{if } f \in E_i$$

For an easier study of this kind of graph we use a table called *rainbow table*, whose entries (r_a, t_b) are the color from edge $(g_i z_{r_a}, g_j z_{t_b})$. This table is the following form:

	$g_j z_1$	$g_j z_2$	$g_j z_3$		$g_j z_n$	$g_j z_{n+1}$	$g_j z_{n+2}$		$g_j z_s$
$g_i z_1$	[1	2	3	•••	n	n+1			-
$g_i z_2$		1	2	•••	n-1	n	n+1		
$g_i z_3$			1	•••	n-2	n-1	n	• • •	
÷					÷	:	÷		
$g_i z_n$					1	2	3		n + 1
$g_i z_{n+1}$	n+1					1	2	• • •	n
÷	$n+1$ \vdots								÷
$g_i z_s$	2	3	4		n+1				1
					, s = Z	Z(G) and	d $n = $	$\left\lfloor \frac{k}{2} \right\rfloor$.	_

The (n+2)-color in the table is given by white space.

4.2. Case when $g_i \sim g_j \sim g_l$ but $g_i \nsim g_l$ in $S^M_{\Gamma(G)}$

Let s = |Z(G)| and let $\bar{r} \equiv r \mod s$ with $1 \leq r \leq s$. If $g_i \sim g_j \in V(S^M_{\Gamma(G)})$, then the set of edges is given by

$$\begin{split} E_1 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1\} \bigcup \\ \{e \in E(\Gamma(G)) | \text{ for } g_i z_r \sim g_j z_{\overline{r+1}} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2 \text{ with } \\ 1 \leq i, j, p \leq m; i \neq j\} \\ E_2 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_r \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 2\} \bigcup \\ \{e \in E(\Gamma(G)) | \text{ for } g_i z_r \sim g_j z_{\overline{r+1}} \text{ such that } \psi(\{g_i z_p, g_j z_p\}) = 1 \text{ with } \\ 1 \leq i, j, p \leq m; i \neq j\} \\ E_3 &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+2}}\} \\ \vdots &\vdots &\vdots \\ E_n &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+n-1}}\} \\ E_{n+1} &= \{e \in E(\Gamma(G)) | g_i z_r \sim g_j z_{\overline{r+n}}\} \\ E_{n+2} &= E(\Gamma(G)) \setminus (E_1 \cup \cdots \cup E_{n+1}) \\ \text{with } n = \left\lceil \frac{k}{2} \right\rceil. \text{ The coloring given by:} \end{split}$$

$$\psi: E(\Gamma(G)) \longrightarrow \{1, ..., n+2\}$$

$$f \mapsto i \quad \text{if } f \in E_i$$

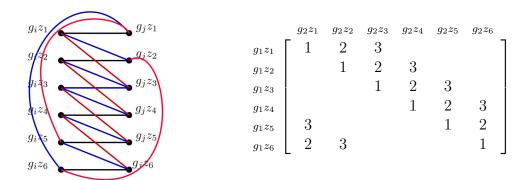
This give us a table as:

$g_j z_1 \ g_j z_2$	$\begin{bmatrix} g_i z_1 \\ 1 \\ 2 \end{bmatrix}$	$g_i z_2$	 $g_i z_n$ n+1	$n \\ n + 1$	 ${g_i z_s \atop 2 \atop 3}$	$\begin{vmatrix} g_l z_1 \\ 2 \end{vmatrix}$	${\displaystyle {1 \atop {2} \atop {2} \atop {2} \atop {2} \atop {2} }}$	 	$g_l z_{n-1}$ $n-1$ $n-2$	n	$n + 1 \\ n$	 	$g_l z_s$
÷	:	÷			÷			·	÷	÷			
$g_j z_{n-1} \ g_j z_n$		n-2 n-1	1		$n \\ n+1$	n+1			2	$\frac{1}{2}$	$\frac{3}{1}$	 	$\left. \begin{array}{c} n+1\\ n \end{array} \right $
$g_j z_{n+1} \ dots \ g_j z_s$	n+1	n	 $\vdots \\ \vdots \\ n$	$\begin{array}{c} 1\\ \vdots\\ n-1 \end{array}$	 1	$egin{array}{c} n \\ \vdots \\ 1 \end{array}$	n+1 \vdots 3		n	n + 1	2	···· ··.	$\begin{bmatrix} n-1\\ \vdots\\ 2 \end{bmatrix}$

Case when $g_i \sim g_j \sim g_l$ but $g_i \nsim g_l$ in $S^M_{\Gamma(G)}$ with $n = \left\lceil \frac{k}{2} \right\rceil$ and (n+2)-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when s = 6 and $g_1 \sim g_2$ in $S^M_{\Gamma(G)}$ with the coloring assigned before. Without loss of generality suppose that $\psi(\{g_1 z_p, g_2 z_p\}) = 1$, then the rainbow table is given by:



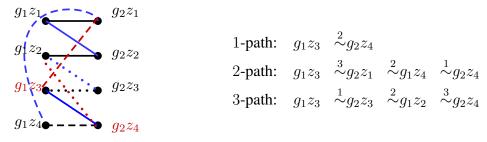
We can see that there is not exist a rainbow k-connectivity with 4 colors. To give s edge-disjoint paths with ends vertices g_1z_2 and g_2z_4 , the first path cross above g_2z_1 , then we start the path with $g_1z_2 \stackrel{4}{\sim} g_2z_1$. Now, we need move from g_2z_1 but our only options are $g_2z_1 \stackrel{1}{\sim} g_1z_1$, $g_2z_1 \stackrel{3}{\sim} g_1z_5$ and $g_2z_1 \stackrel{2}{\sim} g_1z_6$ and these edges can not arrive to g_2z_4 because all the in-edge repeat color 4. For this reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need to add one color more, and the table is given by

	$g_2 z_1$	$g_2 z_2$	$g_2 z_3$	$g_2 z_4$	$g_2 z_5$	$g_2 z_6$
$g_1 z_1$	1	2	3	4		1
$g_1 z_2$		1	2	3	4	
$g_1 z_3$			1	2	3	4
$g_1 z_4$	4			1	2	3
$g_1 z_5$	3	4			1	2
$g_1 z_6$	2	3	4			1

Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths with our table. Let $g_1 \sim g_2$ in $S_{\Gamma(G)}^M$ and |Z(G)| = 4. Then, we will build our rainbow table with 3 colors the following form.

	$g_2 z_1$	$g_2 z_2$	$g_2 z_3$	$g_2 z_4$
$g_1 z_1$	1	2		1
$g_1 z_2$		1	2	
$g_1 z_3$			1	2
$g_1 z_4$	2			1

From this table we can found $rc_3(\Gamma(G)) = 3$ for any vertices. For example, for end vertices g_1z_3, g_2z_4

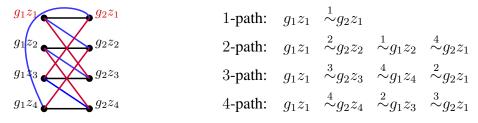


If we note, we can not find 4 edge-disjoint paths with 3 colors, because g_1z_1 to g_2z_1 passes through g_2z_3 , the paths are the followings: $g_1z_1 \stackrel{3}{\sim} g_2z_3 \stackrel{2}{\sim} g_1z_2 \stackrel{3}{\sim} g_2z_1$ or $g_1z_1 \stackrel{3}{\sim} g_2z_3 \stackrel{1}{\sim} g_1z_3 \stackrel{3}{\sim} g_2z_1$. Then, we need add another color, then the table is 4 colors the following form:

	$g_2 z_1$	$g_2 z_2$	$g_2 z_3$	$g_2 z_4$
$g_1 z_1$	1	2	3]
$g_1 z_2$		1	2	3
$g_1 z_3$	3		1	2
$g_1 z_4$	2	3		1

www.ejgta.org

Then, with all this 4 colors we found all 4 edge-disjoint paths from g_1z_1 to g_2z_1 , and they are the followings:



and the same is true for any pair of vertices.

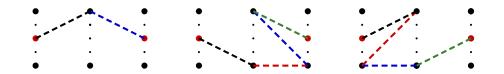
6. Proofs

6.1. *Case* 3-*partite* with |Z(G)| = 3

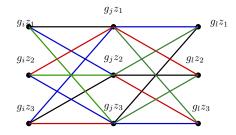
The coloring given before can not help us to find all the disjoint-edge paths for the case when $g_i \sim g_j \sim g_l$ but $g_i \nsim g_l$ in $S^M_{\Gamma(G)}$, for example, the rainbow table for this case is the next

	$g_i z_1$	$g_i z_2$	$g_i z_3$	$g_l z_1$	$g_l z_2$	$g_l z_3$	
$g_j z_1$	1		2	2	1]	
$g_j z_1$ $g_j z_2$	2	1			2	1	
$g_j z_3$	L	2	1	1		2	

But, we can see that for go from $g_i z_1$ to $g_l z_2$ we have same colors then, we need to do paths with length at least 4 like the following picture:



The coloring given for this specifical case is the following: The rainbow tables for each case



are the following:

	$g_i z_1$													$g_l z_3$
$g_j z_1$	1	3	2	2	3	4	$g_j z_1$	Γ	2	3	4	1	3	2
$g_j z_2$	2	4	1	4	1	3	$g_j z_2$		4	1	3	2	4	1
$g_j z_1 \ g_j z_2 \ g_j z_3$	4	2	3	1	4	2	$g_j z_3$		1	4	2	4	2	$\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$
	/ith ψ									$(\{g_j,$				

Theorem 6.1. Let G be a non–abelian group with |Z(G)| = 3 and $\Gamma(G)$ be the non-commutative graph associated to G, then $rc_3(\Gamma(G)) = 4$.

$$\begin{array}{ll} Proof. \text{ Let the set of edges be the following form:}} \\ E_1 &= \{e \in E(\Gamma(G)) | g_i z_{k_r} \sim g_j z_1 \text{ such that } \psi(\{g_i, g_j\}) = 1 \text{ for } g_i, g_j \in S^M_{\Gamma(G)} \text{ and } k_r = 1, 2, 3\} \\ & \bigcup \{e \in E(\Gamma(G)) | g_j z_2 \sim g_l z_2, g_j z_3 \sim g_l z_1 \text{ such that } \psi(\{g_j, g_l\}) = 2 \text{ for } g_j, g_l \in S^M_{\Gamma(S)}\} \\ E_2 &= \{e \in E(\Gamma(G)) | g_i z_{k_r} \sim g_j z_2 \text{ such that } \psi(\{g_i, g_j\}) = 1 \text{ for } g_i, g_j \in S^M_{\Gamma(G)} \text{ and } k_r = 1, 2, 3\} \\ & \bigcup \{e \in E(\Gamma(G)) | g_j z_{j_a} \sim g_l z_{j_a} \text{ such that } \psi(\{g_j, g_l\}) = 2 \text{ for } g_j, g_l \in S^M_{\Gamma(S)} \text{ and } j_a = 1, 2, 3\} \\ & U \{e \in E(\Gamma(G)) | g_j z_{k_r} \sim g_j z_3 \text{ such that } \psi(\{g_i, g_j\}) = 1 \text{ for } g_i, g_j \in S^M_{\Gamma(G)} \text{ and } k_r = 1, 2, 3\} \\ & U \{e \in E(\Gamma(G)) | g_j z_1 \sim g_l z_2, g_j z_2 \sim g_l z_3 \text{ such that } \psi(\{g_j, g_l\}) = 2 \text{ for } g_j, g_l \in S^M_{\Gamma(G)} \text{ and } k_r = 1, 2, 3\} \\ & U \{e \in E(\Gamma(G)) | g_j z_1 \sim g_l z_2, g_j z_2 \sim g_l z_3 \text{ such that } \psi(\{g_j, g_l\}) = 2 \text{ for } g_j, g_l \in S^M_{\Gamma(G)} \text{ and } k_r = 1, 2, 3\} \\ & U \{e \in E(\Gamma(G)) | g_j z_1 \sim g_l z_2, g_j z_2 \sim g_l z_3 \text{ such that } \psi(\{g_j, g_l\}) = 2 \text{ for } g_j, g_l \in S^M_{\Gamma(G)} \} \\ & E_4 = E \setminus (E_1 \cup E_2 \cup E_3) \end{array}$$

And the coloring is given by

$$\begin{array}{rcl} \psi: E(\Gamma(G)) & \longrightarrow & \{1,2,3,4\} \\ f & \mapsto & i & \text{if } i \in E_i. \end{array}$$

$g_j z_1 \stackrel{3}{\sim} g_l z_2$	$ g_j z_1 \stackrel{4}{\sim} g_l z_3$
$g_j z_1 \stackrel{2}{\sim} g_l z_1 \stackrel{1}{\sim} g_j z_3 \stackrel{4}{\sim} g_l z_2$	$g_j z_1 \stackrel{2}{\sim} g_l z_1 \stackrel{4}{\sim} g_j z_2 \stackrel{3}{\sim} g_l z_3$
4 9 1	$g_j z_1 \stackrel{3}{\sim} g_l z_2 \stackrel{4}{\sim} g_j z_3 \stackrel{2}{\sim} g_l z_3$
1	$g_j z_2 \stackrel{3}{\sim} g_l z_3$
· · · · · · · · · · · · · · · · · · ·	$\begin{vmatrix} g_{j}z_{2} & g_{l}z_{3} \\ g_{j}z_{2} & \overset{4}{\sim} g_{l}z_{1} & \overset{1}{\sim} g_{j}z_{3} & \overset{2}{\sim} g_{l}z_{3} \end{vmatrix}$
2 2 4	1 0 1
$g_j z_2 \sim g_l z_3 \sim g_j z_3 \sim g_l z_2$	$g_j z_2 \stackrel{1}{\sim} g_l z_2 \stackrel{3}{\sim} g_j z_1 \stackrel{4}{\sim} g_l z_3$
$g_j z_3 \stackrel{4}{\sim} g_l z_2$	$g_j z_3 \stackrel{_\sim}{\sim} g_l z_3$
$g_j z_3 \stackrel{\scriptscriptstyle 1}{\sim} g_l z_1 \stackrel{\scriptscriptstyle 2}{\sim} g_j z_1 \stackrel{\scriptscriptstyle 3}{\sim} g_l z_2$	$g_j z_3 \stackrel{4}{\sim} g_l z_2 \stackrel{1}{\sim} g_j z_2 \stackrel{3}{\sim} g_l z_3$
$g_j z_3 \stackrel{2}{\sim} g_l z_3 \stackrel{3}{\sim} g_j z_2 \stackrel{1}{\sim} g_l z_2$	$g_j z_3 \stackrel{1}{\sim} g_l z_1 \stackrel{2}{\sim} g_j z_1 \stackrel{4}{\sim} g_l z_3$
	$\begin{array}{c} g_{j}z_{1} \stackrel{2}{\sim} g_{l}z_{1} \stackrel{1}{\sim} g_{j}z_{3} \stackrel{4}{\sim} g_{l}z_{2} \\ g_{j}z_{1} \stackrel{4}{\sim} g_{l}z_{3} \stackrel{3}{\sim} g_{j}z_{2} \stackrel{1}{\sim} g_{l}z_{2} \\ g_{j}z_{2} \stackrel{1}{\sim} g_{l}z_{2} \\ g_{j}z_{2} \stackrel{4}{\sim} g_{l}z_{1} \stackrel{2}{\sim} g_{j}z_{1} \stackrel{3}{\sim} g_{l}z_{2} \\ g_{j}z_{2} \stackrel{3}{\sim} g_{l}z_{3} \stackrel{2}{\sim} g_{j}z_{3} \stackrel{4}{\sim} g_{l}z_{2} \\ g_{j}z_{3} \stackrel{4}{\sim} g_{l}z_{1} \stackrel{2}{\sim} g_{j}z_{1} \stackrel{3}{\sim} g_{l}z_{2} \end{array}$

The following are all the 3 edge-disjoint paths for each pair of vertices when $\phi(\{g_j, g_l\}) = 2$

All the edge-disjoint paths when $\phi(\{g_i, g_j\}) = 2$, $\phi(\{g_j, g_l\}) = 2$ and $g_i \sim g_j \sim g_l$ but $g_i \nsim g_l$

$g_i z_1 \sim g_l z_1$	$g_i z_1 \sim g_l z_2$	$g_i z_1 \sim g_l z_3$
$\begin{array}{c} g_{i}z_{1} \stackrel{1}{\sim} g_{j}z_{1} \stackrel{2}{\sim} g_{l}z_{1} \\ g_{i}z_{1} \stackrel{2}{\sim} g_{j}z_{2} \stackrel{4}{\sim} g_{l}z_{1} \\ g_{i}z_{1} \stackrel{4}{\sim} g_{j}z_{3} \stackrel{1}{\sim} g_{l}z_{2} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 3

$g_i z_2 \sim g_l z_1$	$g_i z_2 \sim g_l z_2$	$g_i z_2 \sim g_l z_3$
$ \begin{array}{ c c c c c c c c }\hline g_{i}z_{2} \stackrel{3}{\sim} g_{j}z_{1} \stackrel{2}{\sim} g_{j}z_{1} \\ g_{i}z_{2} \stackrel{2}{\sim} g_{j}z_{3} \stackrel{3}{\sim} g_{i}z_{3} \stackrel{1}{\sim} g_{j}z_{2} \stackrel{4}{\sim} g_{l}z_{1} \\ g_{i}z_{2} \stackrel{4}{\sim} g_{j}z_{2} \stackrel{3}{\sim} g_{l}z_{3} \stackrel{2}{\sim} g_{j}z_{3} \stackrel{1}{\sim} g_{j}z_{1} \end{array} $	$ \begin{array}{c} g_{i}z_{2} \stackrel{2}{\sim} g_{j}z_{3} \stackrel{4}{\sim} g_{l}z_{2} \\ g_{i}z_{2} \stackrel{4}{\sim} g_{j}z_{2} \stackrel{1}{\sim} g_{i}z_{3} \stackrel{2}{\sim} g_{j}z_{1} \stackrel{3}{\sim} g_{l}z_{2} \\ g_{i}z_{2} \stackrel{3}{\sim} g_{j}z_{1} \stackrel{2}{\sim} g_{l}z_{1} \stackrel{4}{\leftarrow} g_{j}z_{2} \stackrel{1}{\sim} g_{l}z_{2} \end{array} $	$\begin{array}{c} g_{i}z_{2} \stackrel{3}{\sim} g_{j}z_{2} \stackrel{4}{\sim} g_{l}z_{3} \\ g_{i}z_{2} \stackrel{4}{\sim} g_{j}z_{2} \stackrel{1}{\sim} g_{i}z_{3} \stackrel{3}{\sim} g_{j}z_{3} \stackrel{2}{\sim} g_{l}z_{3} \\ g_{i}z_{2} \stackrel{2}{\sim} g_{j}z_{3} \stackrel{4}{\sim} g_{l}z_{2} \stackrel{1}{\sim} g_{j}z_{2} \stackrel{3}{\sim} g_{l}z_{3} \end{array}$

$g_i z_3 \sim g_l z_1$	$g_i z_3 \sim g_l z_2$	$g_i z_3 \sim g_l z_3$
$g_i z_3 \stackrel{3}{\sim} g_j z_3 \stackrel{1}{\sim} g_l z_1$	$g_i z_3 \stackrel{2}{\sim} g_j z_1 \stackrel{3}{\sim} g_l z_2$	$g_i z_3 \stackrel{2}{\sim} g_j z_1 \stackrel{4}{\sim} g_l z_3$
$\left g_i z_3 \stackrel{2}{\sim} g_j z_1 \stackrel{3}{\sim} g_l z_2 \stackrel{1}{\sim} g_j z_2 \stackrel{4}{\sim} g_l z_1 \right $	$g_i z_3 \stackrel{1}{\sim} g_j z_2 \stackrel{3}{\sim} g_l z_3 \stackrel{2}{\sim} g_j z_3 \stackrel{4}{\sim} g_l z_2$	$g_i z_3 \stackrel{1}{\sim} g_j z_2 \stackrel{3}{\sim} g_l z_3$
$g_i z_3 \stackrel{1}{\sim} g_j z_2 \stackrel{4}{\sim} g_i z_2 \stackrel{3}{\sim} g_j z_1 \stackrel{2}{\sim} g_l z_1$	$g_i z_3 \stackrel{3}{\sim} g_j z_3 \stackrel{2}{\sim} g_i z_2 \stackrel{4}{\sim} g_j z_2 \stackrel{1}{\sim} g_l z_2$	$g_i z_3 \stackrel{3}{\sim} g_j z_3 \stackrel{2}{\sim} g_l z_3$

All the edge-disjoint paths when $\psi(\{g_i, g_j\}) = 1$

$g_i z_1 \stackrel{1}{\sim} g_j z_1$	$g_i z_1 \stackrel{2}{\sim} g_j z_2$	$g_i z_1 \stackrel{4}{\sim} g_j z_3$
$g_i z_1 \stackrel{2}{\sim} g_j z_2 \stackrel{4}{\sim} g_i z_2 \stackrel{3}{\sim} g_j z_1$	$g_i z_1 \stackrel{4}{\sim} g_j z_3 \stackrel{3}{\sim} g_i z_3 \stackrel{1}{\sim} g_j z_2$	$g_{i}z_{1} \stackrel{2}{\sim} g_{j}z_{2} \stackrel{1}{\sim} g_{i}z_{3} \stackrel{3}{\sim} g_{j}z_{3}$
$g_i z_1 \stackrel{4}{\sim} g_j z_3 \stackrel{3}{\sim} g_i z_3 \stackrel{2}{\sim} g_j z_1$	$g_i z_1 \stackrel{1}{\sim} g_j z_1 \stackrel{3}{\sim} g_i z_2 \stackrel{4}{\sim} g_j z_2$	$g_i z_1 \stackrel{1}{\sim} g_j z_1 \stackrel{3}{\sim} g_i z_2 \stackrel{2}{\sim} g_j z_3$
$g_i z_2 \stackrel{3}{\sim} g_j z_2$	$g_i z_2 \stackrel{4}{\sim} g_j z_2$	$g_i z_2 \stackrel{2}{\sim} g_j z_3$
$g_i z_2 \stackrel{4}{\sim} g_j z_2 \stackrel{1}{\sim} g_i z_3 \stackrel{2}{\sim} g_j z_1$	$g_i z_2 \stackrel{3}{\sim} g_j z_1 \stackrel{1}{\sim} g_i z_1 \stackrel{2}{\sim} g_j z_2$	$g_i z_2 \stackrel{3}{\sim} g_j z_1 \stackrel{1}{\sim} g_i z_1 \stackrel{4}{\sim} g_j z_3$
$g_i z_2 \stackrel{2}{\sim} g_j z_3 \stackrel{4}{\sim} g_i z_1 \stackrel{1}{\sim} g_j z_1$	$g_i z_2 \stackrel{2}{\sim} g_j z_1 \stackrel{3}{\sim} g_i z_3 \stackrel{1}{\sim} g_j z_2$	$g_i z_2 \stackrel{4}{\sim} g_j z_2 \stackrel{1}{\sim} g_i z_3 \stackrel{3}{\sim} g_j z_3$
$g_i z_3 \stackrel{2}{\sim} g_j z_1$	$g_i z_3 \stackrel{1}{\sim} g_j z_2$	$g_i z_3 \stackrel{3}{\sim} g_j z_3$
$g_i z_3 \stackrel{1}{\sim} g_j z_2 \stackrel{4}{\sim} g_i z_2 \stackrel{3}{\sim} g_j z_1$	$g_i z_3 \stackrel{3}{\sim} g_j z_3 \stackrel{4}{\sim} g_i z_1 \stackrel{2}{\sim} g_j z_2$	$g_i z_3 \stackrel{1}{\sim} g_j z_2 \stackrel{4}{\sim} g_i z_2 \stackrel{2}{\sim} g_j z_3$
$g_i z_3 \stackrel{3}{\sim} g_j z_3 \stackrel{4}{\sim} g_i z_1 \stackrel{1}{\sim} g_j z_1$	$g_i z_3 \stackrel{2}{\sim} g_j z_1 \stackrel{3}{\sim} g_i z_2 \stackrel{4}{\sim} g_j z_2$	$g_i z_3 \stackrel{2}{\sim} g_j z_1 \stackrel{1}{\sim} g_i z_1 \stackrel{4}{\sim} g_j z_3$

Theorem 6.2. Let G be a finite non-abelian group. Then $\operatorname{rc}_{k}(\Gamma(G)) \leq \lceil \frac{k}{2} \rceil + 2$, for $3 \leq k \leq s = |Z(G)|$ with $|Z(G)| \geq 4$.

Proof. We will proof that 4 is a coloring works for our graph.

1. Case $\mathbf{g}_{i} \sim \mathbf{g}_{j}$ Let $g_{i}z_{i_{a}}, g_{j}z_{j_{b}}$ be the end vertices. We want to find the edge-disjoint paths between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that the first path is given by $g_{i}z_{i_{a}} \stackrel{(i_{a},j_{b})}{\sim} g_{j}z_{b}$ with color (i_{a}, j_{b}) .

Let j_1 be the column assigned to the row i_a such that $(i_a, j_1) = f_1$ then, we remove the entries with color f_1 to the column $g_j z_{j_1}$ and, the same happen to column $g_j z_{j_b}$.

Remark 6.3. When we say *remove the entry* we say that entry is not consider to form the rainbow path.

Thus, the path for this case is

$$g_i z_{i_a} \stackrel{f}{\sim} g_j z_{j_1} \stackrel{(i_{a_1}, j_1)}{\sim} g_i z_{i_{a_1}} \stackrel{(i_{a_1}, j_b)}{\sim} g_j z_{j_b}$$
(1)

with $(i_{a_1}, j_1) \neq f_1 \neq (i_{a_1}, j_b)$ the colors assigned to remaining entries and $g_j z_{j_1}, g_i z_{i_{a_1}}$ the respective vertices from remaining entries.

Let (i_a, j_2) be the entry with $j_2 \neq j_1$, such that $(i_a, j_2) = f_2$ then, we remove the entries with same color as f_2 in column $g_j z_{j_2}$. We can not use the entry $(g_i z_{a_1}, g_j z_{j_b})$ because is an edge for 1, moreover we remove all the entries with same color as f_2 in column $g_j z_{j_b}$. Thus, the path is the following:

$$g_i z_{i_a} \overset{(i_a,j_2)}{\sim} g_j z_{j_2} \overset{(i_a,j_2)}{\sim} g_i z_{i_{a_2}} \overset{(i_a,j_b)}{\sim} g_j z_{j_b}$$
(2)

with $(i_{a_2}, j_2), (i_{a_2}, j_b)$ the colors assigned to remaining entries and $g_j z_{j_2}, g_i z_{i_{a_2}}$ the respective vertices from remaining entries.

$$g_j z_{j_b} \qquad g_j z_{j_1}$$

$$g_i z_{i_{a_1}} \left[\begin{array}{cccc} \vdots & \vdots \\ \cdots & f & & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & f & \cdots \\ \vdots & \vdots & \vdots \end{array} \right]$$

Under the conditions stated above we apply the same to all the colors assigned to i_a -raw. We take edges from remaining entries to form the rest paths with the same method. Let j'_1 such that $f' = (i_a, j'_1)$ from j_b -column we remove the row with entry same color like f'. The new path is the following:

$$g_{i}z_{i_{a}} \overset{(i_{a},j_{1}')}{\sim} g_{j}z_{j_{1}'} \overset{(i_{a_{1}'},j_{1}')}{\sim} g_{i}z_{i_{a_{1}'}} \overset{(i_{a_{1}'},j_{b})}{\sim} g_{j}z_{j_{b}}$$
(3)

Take (i_a, j'_1) , $(i_{a'_1}, j'_1)$ as remaining entries from all the entries do not removed before with a dofferent color as f'.

Remark 6.4. Suppose that we can coloring with only $\lfloor \frac{k}{2} \rfloor + 1$ colors. Let $g_i z_{i_m}$ any start vertex, then there exists a pair of vertices $g_j z_{j_n}, g_j z_{j_{n'}}$ such that $\{(a_{i_r}, b_{j_n}) | (a_{i_r}, b_{j_n}) - \text{color} \neq (\lfloor \frac{k}{2} \rfloor + 1) - \text{color}\}$ identify with $\{(a_{i_r}, b_{j_{n'}}) | (a_{i_r}, b_{j_n}) - \text{color} = \text{the last color}\}$, therefore is impossible to built k paths between any end vertices $g_i z_{i_m}, g_j z_{j_n}$ passes through $g_j z_{j_{n'}}$, just like 5.1.

2. Case: $\mathbf{g}_{\mathbf{i}} \sim \mathbf{g}_{\mathbf{j}} \sim \mathbf{g}_{\mathbf{l}}$ with $\mathbf{g}_{\mathbf{i}} \nsim \mathbf{g}_{\mathbf{l}}$ in $S_{\Gamma(G)}^{M}$.

(a) **Repetition of different color to the last color**

Case: repetition of one color between columns. Suppose that f is the repeated color between the columns assigned to the end vertices $g_i z_{i_a}$ and $g_l z_{l_b}$ i.e. $f = (j_c, i_a) = (j_c, l_b)$ in the rainbow table, for some $c = \{1, ..., |Z(G)|\}$, with $l_b \in g_l Z$ and $i_a \in g_i Z$. Suppose that f is in the path passes through $g_j z_{j_c}$, thus for do the rainbow path we need to find another row $j_{c'}$ such that $(j_{c'}, l_b) = f' \neq f$ then for do the rainbow path, to the row $j_{c'}$ we remove the columns with color f (i.e. 2 columns) and one of color f'. To row j_c remove 2 columns for color f' and 2 columns assigned for i_a and l_b . Then we remove a total of 7 columns. There are in total 2|Z(G)| columns in our rainbow table, then it remains 2|Z(G)| - 7 columns with $|Z(G)| \ge 4$, leaving at least one column for do the path without similar colors. The path is $g_i z_{i_a} \stackrel{f}{\sim} g_j z_{j_c} \stackrel{f_1}{\sim} g(j_c) \stackrel{f_2}{\sim} g(j_{c'}) \stackrel{f'}{\sim} g_l z_{l_b}$ with f_1, f_2 colors assigned to left column and $g(j_c), g(j_{c'})$ vertices in column assigned to above column.

Now we make the path who starts in $g_i z_{i_a} \sim g_j z_{j_{a'}}$

When $g \neq f$ and $g \neq f'$. As written above we remove the columns in row $j_{c'}$ with color f and one of color g, i.e. 3 columns, and in the row j_c remove the columns assigned with color g and two of columns i_a and l_b , in total we remove 7 columns and leaving 2|Z(G)| - 7 columns where we can find the desired path.

Case: repetition of two colors between columns with $\mathbf{g} = \mathbf{f}'$. We remove 2 columns with color f' to j_c -row and 2 columns assigned to i_a and l_b . In row $j_{c'}$ remove 2 columns assigned with color f. There are in total 2|Z(G)| - 6 free columns to find rainbow paths.

Case: repetition of 3 colors Suppose that there are 3 repeated colours between the columns for do the paths with end vertices $g_i z_{i_a}$ and $g_l z_{l_b}$ passes through $g_j z_{j_c}$, $g_j z_{j_{c'}}$ and $g_j z_{j_{c''}}$. For do the paths passes through $g_j z_{j_c}$, just like the first case, we remove columns with color f' to j_c -row and, to row j'_c remove the 2 columns with color f minus the rows assigned i_a and l_b , then for $|Z(G)| \ge 4$ there are 2|Z(G)| - 6 free columns for do the rainbow path with end vertices $g_i z_{i_a}$ and $g_l z_{l_b}$ cross above $g_j z_{j_c}$ and $g_j z_{j_{c''}}$. The same happens for rainbow path passes through $g_j z_{j_{c'}}$, $g_j z_{c''}$ and $g_j z_{j_{c''}}$, $g_j z_{j_c}$. The paths have the following form:

$$\begin{split} g_i z_{i_a} &\stackrel{f}{\sim} g_j z_{j_c} \stackrel{g_1}{\sim} g_1(j_c) \stackrel{g_2'}{\sim} g_2'(j_{c'}) \stackrel{f'}{\sim} g_l z_{l_b}, \\ g_i z_{i_a} \stackrel{f'}{\sim} g_j z_{j_{c'}} \stackrel{g_1'}{\sim} g_1'(j_{c'}) \stackrel{g_2''}{\sim} g_2''(j_{c''}) \stackrel{f''}{\sim} g_l z_{l_b} \\ g_i z_{i_a} \stackrel{f''}{\sim} g_j z_{j_{c''}} \stackrel{g_1''}{\sim} g_1''(j_{c''}) \stackrel{g_2}{\sim} g_2(j_c) \stackrel{f}{\sim} g_l z_{l_b} \end{split}$$

www.ejgta.org

Note that g_1, g'_2 ; g'_1, g''_2 and g''_1, g_2 are the colors between free columns with colors assigned f, f'; f', f'' and f'', f respectively, and $g_1(j_c), g_2(j_c); g'_1(j_{c'}), g'_2(j_{c'}); g''_1(j_{c''}), g''_2(j_{c''}); g''_2(j_{c''}$

(b) Repetition of last color between columns

Case: repeat the last color $\lceil \frac{k}{2} \rceil + 2$ **one time.** Let $g_i z_{i_a}$ and $g_l z_{l_b}$ be the end vertices and suppose that only is repeated the last color $\lceil \frac{k}{2} \rceil + 2$ only one time. Let $f = \lceil \frac{k}{2} \rceil + 2$ be the last color and let $B = 2[k - (\lceil \frac{k}{2} \rceil + 1)]$ be the number of entries with the last color in each row of the rainbow table. Let $j_{c'}$ be a row associated with different color to f in the entries $(j_{c'}, i_a)$ and $(j_{c'}, l_b)$.

For make the rainbow path passes through j_c , to row $j_{c'}$ remove B columns associated to the last color f and one column designated to color f', i.e., we remove B+1 columns. Further in row j_c we remove B-2 columns associated to f, 2 columns associated to color f' and 2 columns for columns associated to i_a and l_b , thus we remove from row $j_c B + 2$ columns. If the columns removed are all different from each other then we keep C = 2k - (2B+3) free columns, in the extreme case that we eliminate the same columns for each case, evaluate in f and f', thus we would have 2k - (B+2) free columns, then the value of free columns is $2k - (2B+3) \le C \le 2k - (B+2)$ for $k \le 4$. The same happens to do a path passes through $g_j z_{j_{c'}}$. Thus, we have enough free columns to do the rainbow path.

$$j_{c} \begin{bmatrix} i_{a} & l_{b} \\ \vdots & \vdots \\ \cdots & f & f & \cdots \\ \vdots & \vdots \\ \vdots & \vdots \\ \cdots & g & f' & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Later, for make the rainbow path from $g_i z_{i_a} \approx g_j z_{z_{j_{c'}}}$ we remove 2 columns assigned to color g to j_c -row, B-2 columns assigned to color f and 2 for the columns i_a, l_b ,

i.e., remove B + 2 columns. Moreover from $j_{c'}$ -row remove B columns for last color f plus 1 column for color g, i.e. B + 1 columns. In total the amount of free columns is between:

 $2k - (2B + 3) \le C \le 2k - (B + 2) \qquad k \ge 4 \tag{4}$

Then, there are enough free columns for do the rainbow path.

Case: repeat two colors, one of them the last color, i.e., $\mathbf{g} = \mathbf{f}' \neq \mathbf{f}$. To the row $j_{c'}$ we remove B columns associated to last color f and the row j_c we remove B - 2 columns associated to last color f, 2 columns associated to color f' and 2 columns associated to columns i_a and l_b , i.e. we remove B + 2 columns. In total there are $2k - (2B + 2) \leq C \leq 2k - (B + 2)$

$$2(k - B - 1) \le C \le 2k - (B + 2) \qquad \text{for } k \ge 4 \tag{5}$$

Since k - B - 1 > 0 for all k we always have a minimum, two columns to form two paths.

Case: repeat at most $\frac{\mathbf{B}}{2}$ **entries between columns.** Suppose that between columns i_a and l_b assigned to end vertices $g_i z_{i_a}, g_l z_{l_b}$ there are, at most $D = k - (\lceil \frac{k}{2} \rceil + 1)$ entries with the last color f in each column, since $D < \lceil \frac{k}{2} \rceil + 1$ we can proceed like the previous cases.

3. Case: any vertices of same class We can do the paths directly, if we want to go from g_iz_{i_a} to g_iz_{i_b} the paths are of the following form g_iz_{i_a} ^(i_a,p) ∼ g_jz_p ^(i_j,p) ∼ g_iz_{i_b} for p = {1,...,s = |Z(G)|}. We note that we can only find up to ([^k/₂] + 2) edge disjoint paths for any pair of vertices.

$$\begin{array}{c} g_{j}z_{1} & g_{j}z_{2} & \cdots & \cdots & g_{j}z_{s} \\ g_{i}z_{i_{a}} & \left[\begin{array}{cccc} (i_{a},j_{1}) & (i_{a},j_{2}) & \cdots & \cdots & (i_{a},j_{s}) \\ | & | & & | \\ (i_{b},j_{1}) & (i_{b},j_{2}) & \cdots & \cdots & (i_{b},j_{s}) \end{array} \right]$$

Corollary 6.5. Let G be a finite non-abelian group. If $g_i \sim g_j$ then $\left|\frac{k}{2}\right| + 1 < \operatorname{rc}_k(\Gamma(G))$.

Proof. From 6.4.

Corollary 6.6. Let G be a finite non-abelian group. If $g_i \sim g_j \sim g_l$ with $g_i \nsim g_l$ then $\lceil \frac{k}{2} \rceil + 1 < \operatorname{rc}_k(\Gamma(G))$.

Proof. Suppose that $B = 2(k - \lfloor \frac{k}{2} \rfloor)$ then, for any value of k, B = 2m $(k = \{2m, 2m + 1\})$. For the case where only repeat one time the last color f, from 4

$$\begin{array}{l} -3 \leq C \leq 2m-2 \quad \ \ \text{for } k=2m \\ -1 \leq C \leq 2m \quad \ \ \text{for } k=2m+1 \end{array}$$

Thus, there are cases when we have not free columns for do the rainbow paths. The same happens for case 5:

$$-2 \le C \le 2m - 2 \quad \text{for } k = 2m$$
$$0 \le C \le 2m - 1 \quad \text{for } k = 2m + 1$$

Therefore, we can not form k rainbow paths with $\left\lfloor \frac{k}{2} \right\rfloor + 1$ different colors.

Theorem 1.3 Let G be a finite non-abelian group. Then $\operatorname{rc}_k(\Gamma(G)) = \lceil \frac{k}{2} \rceil + 2$, for $3 \le k \le s = |Z(G)|$ with $|Z(G)| \ge 4$.

Proof. From 6.2, 6.5 and 6.6.

Given the structure of $\Gamma(G)$, it could be considered a generalization of study in [5] to find the Harary index of $\Gamma(G)$.

Example 6.7. Let G be the Heisenberg group for p = 3 with presentation

$$\langle x, a, b | x^3 = a^3 = b^3 = 1, ab = ba, xax^{-1} = ab, xbx^{-1} = b \rangle.$$

We know that |G| = 27, $|G \setminus Z(G)| = 24$ and |G/Z(G)| = 9, i.e. the partition for $V(\Gamma(G)) = \{Z, aZ, a^2Z, xZ, axZ, a^2xZ, x^2Z, ax^2Z, a^2x^2Z\}$ by [x, a] = b we have xa = bax, then xaZ = axZ. The following is the graph for $S_{\Gamma(G)}^M$

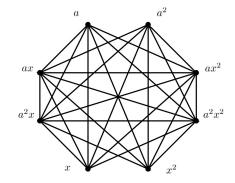
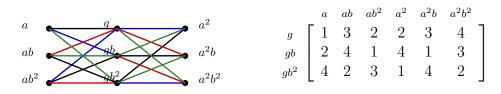


Figure 1. Heisenberg skeleton graph for p = 3.

In $S^M_{\Gamma(G)}$ the only vertices with distance 2 are a with a^2 and x with x^2 . Suppose without loss of generality that $\psi(\{g, a\}) = 1$. The edge-disjoint paths for end vertices a and a^2 are the following



And all the paths are given in 6.1.

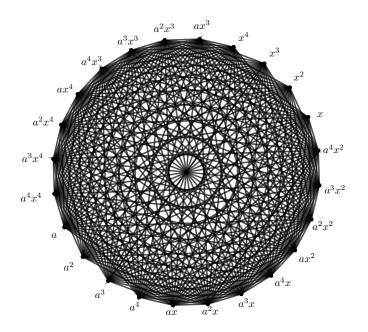


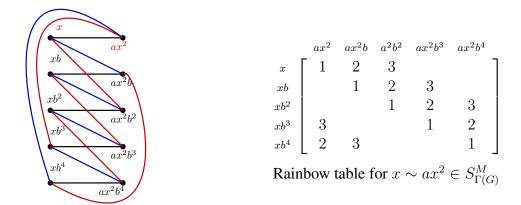
Figure 2. Heisenberg skeleton graph for p = 5.

Example 6.8. Let G be the Heisenberg group for p = 5 with presentation

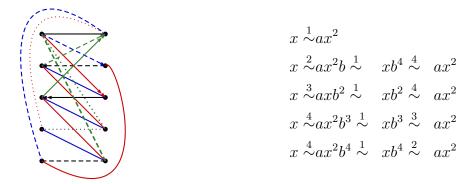
$$\langle x, a, b | x^5 = a^5 = b^5 = 1, ab = ba, xax^{-1} = ab, xbx^{-1} = b \rangle.$$

We know that |G| = 125, $|G \setminus Z(G)| = 120$ and |G/Z(G)| = 25. Since [x, a] = b we have xa = bax, then xaZ = axZ. The graph 2 is the skeleton $S^M_{\Gamma(G)}$ of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without loss of generality we give the 5 edge-disjoint paths for end vertices $x, ax^2 \in S^M_{\Gamma(G)}$. By 1.3 we know that we need $(\lfloor \frac{5}{2} \rfloor + 2)$ -color. The rainbow table is given below



Then, the 5 edge-disjoin paths are given by:



We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices x^4, x^3b^3 are the following

	x^4	x^4b	x^4b^2	x^4b^3	x^4b^4	x^3	x^3b	x^3b^2	x^3b^3	x^3b^4	
a^3	[1			3	2	2	1	3		-	$x^4 \stackrel{1}{\sim} a^3 \stackrel{4}{\sim} x^3 b^3$
a^3b	2	1			3		2	1	3	3	$x^4 \stackrel{2}{\sim} a^3 b \stackrel{3}{\sim} x^3 b^3$
a^3b^2	3	2	1					2	1	3	
a^3b^3		3	2	1		3			2	1	$x^4 \stackrel{3}{\sim} a^3 b^2 \stackrel{1}{\sim} x^3 b^3$
a^3b^4			3	2	1	1	3			2	$ \qquad \qquad$

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end vertices x^4b^4 and x^3b^2 we have the following paths:

Start with color 1		Start with color 2						
$x^4 b^4 \stackrel{1}{\sim} a^3 b^4 \stackrel{4}{\sim} x^3 b^2$		$x^4b^4 \stackrel{2}{\sim} a^3 \stackrel{3}{\sim} x^3b^2$						
$x^{4}b^{4} \stackrel{1}{\sim} a^{3}b^{4} \stackrel{3}{\sim} x^{4}b^{2} \stackrel{2}{\sim} a^{3}b^{3} \stackrel{4}{\sim} x^{4}b^{2}$	$^{3}b^{2}$	$x^4 b^4 \stackrel{2}{\sim} a^3 \stackrel{3}{\sim} x^4 b^3 \stackrel{4}{\sim} a^3 b \stackrel{1}{\sim} x^3 b^2$						
$x^{4}b^{4} \stackrel{1}{\sim} a^{3}b^{4} \stackrel{4}{\sim} x^{4} \stackrel{3}{\sim} a^{3}b^{2} \stackrel{2}{\sim} x^{3}b^{2}$	2	$x^4 b^4 \stackrel{2}{\sim} a^3 \stackrel{3}{\sim} x^4 b^3 \stackrel{1}{\sim} a^3 b^3 \stackrel{4}{\sim} x^3 b^2$						
$x^{4}b^{4} \stackrel{1}{\sim} a^{3}b^{4} \stackrel{2}{\sim} x^{3}b^{3} \stackrel{4}{\sim} a^{3} \stackrel{3}{\sim} x^{3}b^{3}$	2	$x^4 b^4 \stackrel{2}{\sim} a^3 \stackrel{1}{\sim} x^3 b \stackrel{3}{\sim} a^3 b^4 \stackrel{4}{\sim} x^3 b^2$						
Start with color 3	Start with col	or $x^4b^4 \stackrel{4}{\sim} a^3b^2$	Start with color 4 from					
			$x^4b^4 \stackrel{4}{\sim} a^3b^3$					
$x^4b^4 \stackrel{3}{\sim} a^3b \stackrel{1}{\sim} x^3b^2$	$x^4 b^4 \stackrel{4}{\sim} a^3 b^2 \stackrel{7}{\sim}$	$\sim^2 x^3 b^2$	$x^4b^4 \stackrel{4}{\sim} a^3b^3 \stackrel{1}{\sim} x^3b^4 \stackrel{3}{\sim}$					
			$x^3b^2 \stackrel{2}{\sim} x^3b^2$					
$x^{4}b^{4} \stackrel{3}{\sim} a^{3}b \stackrel{4}{\sim} x^{4}b^{2} \stackrel{1}{\sim} a^{3}b^{2} \stackrel{2}{\sim}$	$x^4b^4 \stackrel{4}{\sim} a^3b^2$	$\stackrel{3}{\sim} x^4 \stackrel{2}{\sim} a^3 b \stackrel{1}{\sim}$	$x^{4}b^{4} \stackrel{4}{\sim} a^{3}b^{3} \stackrel{2}{\sim} x^{3}b^{3} \stackrel{3}{\sim} x^{3}b \stackrel{1}{\sim}$					
x^3b^2	x^3b^2		x^3b^2					
Color 3 can not came to color 4	Color 4 can ne	ot came to color	Color $x^4b^4 \stackrel{4}{\sim} a^3b^3$ can not					
	$a^3 \stackrel{3}{\sim} x^3 b^2$		came to color $a^3 \stackrel{3}{\sim} x^3 b^2$					

Thus, we have not columns for do the rainbow path from $x^4b^4 \stackrel{3}{\sim} a^3b$ to $a^3b^3 \stackrel{4}{\sim} x^3b^2$

										x^3b^4
a^3	1			3	2	2	1	3		/ 3
a^3b	2	1	/	/	3	/	2	1	Z	/
a^3b^2	3	2	1					2	1	3
a^3b^3		3	2	1		3	/		2	1
a^3b^4			3	2	1	1	3			2

Then, we can not find a path from x^4b^4 to x^3b^2 passes through a^3b , because the last color from x^4b^4 only can came to x^3b^2 passes through a^3b and a^3b^2 . Then we need one more color.

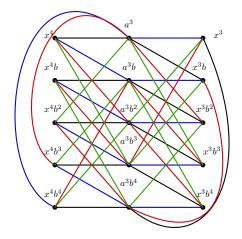


Figure 3. Graph in $\Gamma(G)$

									x^3b^3		
a^3	1		4	3	2	2	1	3	4		
a^3b	2	1		4	3		2	1	3	4	
a^3b^2	3	2	1		4	4		2	1	3	
a^3b^3	4	3	2	1		3	4		2	1	
a^3 a^3b a^3b^2 a^3b^3 a^3b^4		4	3	2	1	1	3	4		2	

Rainbow table for found the 5 edge-disjoin paths between x^4 and x^3

With the given structure, we could ask about the meaning of *d*-coloring redundant as a generalization of [4]. For example, in Figure 3 we could considered a particular case of Turán graph with T(m|Z|, m).

Acknowledgements

This work was partially supported by CONACYT. We highly appreciate the valuable comments on our manuscript and the great editing.

References

- [1] A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, *J. Algebra* **298** (2) (2006), 468–492.
- [2] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, The rainbow connectivity of a graph, *Networks* **54** (2009), 75–81.
- [3] M. R. Darafsheh, Groups with the same non-commuting graph, *Discrete Appl. Math.* 157 (2009), 833–837.
- [4] B. Demoen, N. Phuong-Lan, Graphs with coloring redundant edges, *Electron. J. Graph Theory Appl.* **4** (2) (2016), 223–230.
- [5] H. Deng, S. Balachandran, S. Elumalai, T. Mansour, Harary index of bipartite graphs *Electron. J. Graph Theory Appl.* **7** (2) (2019), 365–372.
- [6] B. H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc. 21(Series A) (1976), 467–472.
- [7] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Volume 24, Springer-Verlag, Heidelberg, 2003.
- [8] F. Septyanto, K. A. Sugeng, Color code techniques in rainbow connection, *Electron. J. Graph Theory Appl.* 6 (2) (2018), 347–361.
- [9] Y. Wei, X. Ma and K. Wang, Rainbow connectivity of the non-commuting graph of a finite group, *J. Algebra Appl.* **15** (6) (2016), 1–8.
- [10] H. Whitney, Congruent graphs and the connectivity of graphs, *American Journal of Matematics* **54** (1) (1932), 150–168.