Electronic Journal of Graph Theory and Applications

Squared distance matrix of a weighted tree

Ravindra B. Bapat
Indian Statistical Institute, New Delhi, 110016, India

rbb@isid.ac.in

Abstract

Let T be a tree with vertex set $\{1, \ldots, n\}$ such that each edge is assigned a nonzero weight. The squared distance matrix of T, denoted by Δ, is the $n \times n$ matrix with (i, j)-element $d(i, j)^{2}$, where $d(i, j)$ is the sum of the weights of the edges on the $(i j)$-path. We obtain a formula for the determinant of Δ. A formula for Δ^{-1} is also obtained, under certain conditions. The results generalize known formulas for the unweighted case.

Keywords: tree, distance matrix, squared distance matrix, determinant, inverse Mathematics Subject Classification: 05C50, 15A15 DOI: 10.5614/ejgta.2019.7.2.8

1. Introduction

Let G be a connected graph with vertex set $V(G)=\{1, \ldots, n\}$. The distance between vertices $i, j \in V(G)$, denoted $d(i, j)$, is the minimum length (the number of edges) of a path from i to j (or an $i j$-path). We set $d(i, i)=0, i=1, \ldots, n$. The distance matrix $D(G)$, or simply D, is the $n \times n$ matrix with (i, j)-element $d_{i j}=d(i, j)$.

A classical result of Graham and Pollak [7] asserts that if T is a tree with n vertices, then the determinant of the distance matrix D of T is $(-1)^{n-1}(n-1) 2^{n-2}$. Thus the determinant depends only on the number of vertices in the tree and not on the tree itself. A formula for the inverse of the distance matrix of a tree was given by Graham and Lovász [6]. Several extensions and generalizations of these results have been proved (see, for example [1], [2], [5], [8], [9] and the references contained therein).

Received: 12 October 2018, Accepted: 12 May 2019.

Let T be a tree with vertex set $\{1, \ldots, n\}$ and let D be the distance matrix of T. The squared distance matrix Δ is defined to be the Hadamard product $D \circ D$, and thus has the (i, j)-element $d(i, j)^{2}$. A formula for the determinant of Δ was proved in [3], while the inverse and the inertia of Δ were considered in [4].

In this paper we consider weighted trees. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$ and edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. We assume that each edge is assigned a weight and let the weight assigned to e_{i} be denoted w_{i}, which is a nonzero real number (not necessarily positive).

For $i, j \in V(T), i \neq j$, the distance $d(i, j)$ is defined to be the sum of the weights of the edges on the (unique) $i j$-path. We set $d(i, i)=0, i=1, \ldots, n$. Let D be the $n \times n$ distance matrix with $d_{i j}=d(i, j)$.

The Laplacian of T is the $n \times n$ matrix defined as follows. The rows and the columns of L are indexed by $V(T)$. For $i \neq j$, the (i, j)-element is 0 if i and j are not adjacent. If i and j are adjacent, and if the edge joining them is e_{k}, then the (i, j)-element of L is set equal to $-1 / w_{k}$. The diagonal elements of L are defined so that L has zero row (and column) sums.

The paper is organized as follows. In this section we review some basic properties of the distance matrix of a tree such as formulas for its determinant and inverse. Some preliminary results are obtained in Section 2. Sections 3 and 4 are devoted to the determinant and the inverse of Δ, respectively.

Example. Consider the tree

The Laplacian of the tree is given by

$$
\left[\begin{array}{rrrrrrr}
1 / 2 & 0 & -1 / 2 & 0 & 0 & 0 & 0 \\
0 & -1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
-1 / 2 & 1 / 3 & 7 / 6 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 19 / 20 & -1 / 5 & 1 / 2 & -1 / 4 \\
0 & 0 & 0 & -1 / 5 & 1 / 5 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & -1 / 4 & 0 & 0 & 1 / 4
\end{array}\right] .
$$

We let Q be the $n \times(n-1)$ vertex-edge incidence matrix of the underlying unweighted tree, with an orientation assigned to each edge. Thus the rows and the columns of Q are indexed by $V(T)$ and $E(T)$ respectively. If $i \in V(T), e_{j} \in E(T)$, the (i, j)-element of Q is 0 if i and e_{j} are not incident, it is $1(-1)$ if i and e_{j} are incident and i is the initial (terminal) vertex of e_{j}. It is well-known [1] that Q has rank $n-1$ and any minor of Q is either 0 or ± 1 (thus Q is totally unimodular).

Let F be the $n \times n$ diagonal matrix with diagonal elements w_{1}, \ldots, w_{n-1}. It can be verified that $L=Q F^{-1} Q^{\prime}$.

Lemma 1.1. The following assertions are true:
(i) $Q^{\prime} D Q=-2 F$.
(ii) $L D L=-2 L$.

Proof. (i). The result follows from the following observation which is easily verified: If $e_{p}=\{i, j\}$ and $e_{q}=\{k, \ell\}$ are edges of T, then

$$
d(i, k)+d(j, \ell)-d(i, \ell)-d(j, k)
$$

equals 0 if e_{p} and e_{q} are distinct, and equals $-2 w_{p}$, if $e_{p}=e_{q}$.
(ii). We have

$$
\begin{aligned}
L D L & =Q F^{-1} Q^{\prime} D Q F^{-1} Q^{\prime} \\
& =Q F^{-1}(-2 F) F^{-1} Q^{\prime} \text { by }(\mathrm{i}) \\
& =-2 Q F^{-1} Q^{\prime} \\
& =-2 L
\end{aligned}
$$

and the proof is complete.

Let δ_{i} denote the degree of the vertex $i, i=1, \ldots, n$, and let δ be the $n \times 1$ vector with components $\delta_{1}, \ldots, \delta_{n}$. We set $\tau_{i}=2-\delta_{i}, i=1, \ldots, n$, and let τ be the $n \times 1$ vector with components $\tau_{1}, \ldots, \tau_{n}$.

Theorem 1.1. The following assertions are true:
(i) $\operatorname{det} D=(-1)^{n-1} 2^{n-2}\left(\sum_{i} w_{i}\right)\left(\prod_{i} w_{i}\right)$.
(ii) If $\sum_{i} w_{i} \neq 0$, then D is nonsingular and

$$
D^{-1}=-\frac{1}{2} L+\frac{1}{2 \sum_{i} w_{i}} \tau \tau^{\prime}
$$

(iii) $D \tau=\left(\sum_{i} w_{i}\right) 1$.

Proof. Parts (i) and (ii) are well-known, see for example, [2]. To prove (iii), note that from (ii),

$$
D^{-1} \mathbf{1}=\frac{1}{2 \sum_{i} w_{i}} \tau \tau^{\prime} \mathbf{1}=\frac{1}{\sum_{i} w_{i}} \tau
$$

since $\mathbf{1}^{\prime} \tau=2$. It follows that $D \tau=\left(\sum_{i} w_{i}\right) \mathbf{1}$ and the proof is complete.

2. Preliminary results

We now turn to the main results for the case of a weighted tree. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$ and edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. Let w_{1}, \ldots, w_{n-1} be the edge-weights. Recall that δ_{i} is the degree of vertex i and $\tau_{i}=2-\delta_{i}$. We write $j \sim i$ if vertex j is adjacent to vertex i. We let $\hat{\delta}_{i}$ be the weighted degree of i, which is defined as

$$
\hat{\delta}_{i}=\sum_{j: j \sim i} w(\{i, j\}), i=1, \ldots, n
$$

Let $\hat{\delta}$ be the $n \times 1$ vector with components $\hat{\delta}_{1}, \ldots, \hat{\delta}_{n}$.
Let Δ be the squared distance matrix of T, which is the $n \times n$ matrix with its (i, j)-element equal to $d_{i j}^{2}$ or equivalently, $d(i, j)^{2}$. The next result was obtained in [4] for the unweighted case,

Lemma 2.1. $\Delta \tau=D \hat{\delta}$.
Proof. Let $i \in\{1, \ldots, n\}$ be fixed. For $j \neq i$, let $\gamma(j)$ be the predecessor of j on the $i j$-path (in the underlying unoriented tree). Let e^{j} be the edge $\{\gamma(j), j\}$ and set $\theta^{j}=\hat{\delta}_{j}-w\left(e^{j}\right)$. We have

$$
\begin{align*}
& 2 \sum_{j=1}^{n} d(i, j)^{2} \\
= & \sum_{j=1}^{n} d(i, j)^{2}+\sum_{j \neq i}\left(d(i, \gamma(j))+w\left(e^{j}\right)\right)^{2} \\
= & \sum_{j=1}^{n} d(i, j)^{2}+\sum_{j \neq i} d(i, \gamma(j))^{2}+2 \sum_{j \neq i} d(i, \gamma(j)) w\left(e^{j}\right)+\sum_{j \neq i} w\left(e^{j}\right)^{2} . \tag{1}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sum_{j \neq i} d(i, \gamma(j))^{2}=\sum_{j=1}^{n}\left(\delta_{j}-1\right) d(i, j)^{2} \tag{2}
\end{equation*}
$$

since vertex j serves as a predecessor of $\delta_{j}-1$ vertices in paths from i. Also note that

$$
\begin{equation*}
\sum_{j \neq i} w\left(e^{j}\right)^{2}=\sum_{k=1}^{n-1} w\left(e_{k}\right)^{2} \tag{3}
\end{equation*}
$$

We have

$$
\begin{align*}
& \sum_{j=1}^{n} d(i, j) \hat{\delta}_{j} \\
= & \sum_{j \neq i}\left(d\left(i, \gamma(j)+w\left(e^{j}\right)\right)\left(w\left(e^{j}\right)+\theta^{j}\right)\right. \\
= & \sum_{j \neq i} d(i, \gamma(j)) w\left(e^{j}\right)+\sum_{j \neq i} w\left(e^{j}\right)^{2}+\sum_{j \neq i}\left(d(i, \gamma(j))+w\left(e^{j}\right)\right) \theta^{j} . \tag{4}
\end{align*}
$$

Observe that θ^{j} is the sum of the weights of all the edges incident to j, except the edge e^{j}, which is on the $i j$-path. Thus $\left(d(i, \gamma(j))+w\left(e^{j}\right)\right) \theta^{j}$ equals $\sum d(i, \gamma(\ell)) w\left(e^{\ell}\right)$, where the summation is over all vertices adjacent to j, except i. Therefore it follows that

$$
\begin{equation*}
\sum_{j \neq i} d(i, \gamma(j)) w\left(e^{j}\right)=\sum_{j \neq i}\left(d(i, \gamma(j))+w\left(e^{j}\right)\right) \theta^{j} \tag{5}
\end{equation*}
$$

From (1)-(5) we get

$$
2 \sum_{i=1}^{n} d(i, j)^{2}=\sum_{j=1}^{n} d(i, j)^{2} \delta_{j}+\sum_{j=1}^{n} d(i, j) \hat{\delta}_{j},
$$

which is equivalent to

$$
\sum_{i=1}^{n} d(i, j)^{2} \tau_{j}=\sum_{j=1}^{n} d(i, j) \hat{\delta}_{j}
$$

and the proof is complete.

Next we define the edge orientation matrix of T. We assign an orientation to each edge of T. Let $e_{i}=(p, q) ; e_{j}=(r, s)$ be edges of T. We say that e_{i} and e_{j} are similarly oriented, denoted by $e_{i} \Rightarrow e_{j}$, if $d(p, r)=d(q, s)$. Otherwise e_{i} and e_{j} are said to be oppositely oriented, denoted by $e_{i} \rightleftharpoons e_{j}$. For example, in the following diagram e_{i} and e_{j} are similarly oriented.

$$
\circ p \longrightarrow o q---o r \longrightarrow o s
$$

The edge orientation matrix of T is the $(n-1) \times(n-1)$ matrix H having the rows and the columns indexed by the edges of T. The (i, j)-element of H, denoted by $h(i, j)$ is defined to be $1(-1)$ if the corresponding edges e_{i}, e_{j} of T are similarly (oppositely) oriented. The diagonal elements of H are set to be 1 . We assume that the same orientation is used while defining the matrix H and the incidence matrix Q.

If the tree T has no vertex of degree 2 , then we let $\hat{\tau}$ be the diagonal matrix with diagonal elements $1 / \tau_{1}, \ldots, 1 / \tau_{n}$. We state some basic properties of H next, see [3].

Theorem 2.1. Let T be a directed tree on n vertices, let H and Q be the edge orientation matrix and the vertex-edge incidence matrix of T, respectively. Then $\operatorname{det} H=2^{n-2} \prod_{i=1}^{n} \tau_{i}$. Furthermore, if T has no vertex of degree 2 , then H is nonsingular and $H^{-1}=\frac{1}{2} Q^{\prime} \hat{\tau} Q$.

Let w_{1}, \ldots, w_{n-1} be the edge-weights. Recall that F be the diagonal matrix with diagonal elements w_{1}, \ldots, w_{n-1}.

Also note that,

$$
(F H F)_{i j}= \begin{cases}w_{i} w_{j}, & \text { if } e_{i} \Rightarrow e_{j} \\ -w_{i} w_{j}, & \text { if } e_{i} \rightleftharpoons e_{j}\end{cases}
$$

Lemma 2.2. $Q^{\prime} \Delta Q=-2 F H F$.
Proof. For $i, j \in\{1, \ldots, n-1\}$, let the edge e_{i} be from p to q and the edge e_{j} be from r to s. Then

$$
\left(Q^{\prime} \Delta Q\right)_{i j}= \begin{cases}d(p, r)^{2}+d(q, s)^{2}-d(p, s)^{2}-d(q, r)^{2}, & \text { if } e_{i} \Rightarrow e_{j} \tag{6}\\ d(p, s)^{2}+d(q, r)^{2}-d(p, r)^{2}-d(q, s)^{2}, & \text { if } e_{i} \rightleftharpoons e_{j}\end{cases}
$$

Let $d(r, s)=\alpha$. It follows from (6) that

$$
\begin{aligned}
\left(Q^{\prime} \Delta Q\right)_{i j} & = \begin{cases}\left(w_{i}+\alpha\right)^{2}+\left(w_{j}+\alpha\right)^{2}-\left(w_{i}+w_{j}+\alpha\right)^{2}-\alpha^{2}=-2 w_{i} w_{j}, & \text { if } e_{i} \Rightarrow e_{j} \\
\left(w_{i}+w_{j}+\alpha\right)^{2}+\alpha^{2}-\left(w_{i}+\alpha\right)^{2}-\left(w_{j}+\alpha\right)^{2}=2 w_{i} w_{j}, & \text { if } e_{i} \rightleftharpoons e_{j}\end{cases} \\
& =-2(F H F)_{i j},
\end{aligned}
$$

and the proof is complete.

Let $\tilde{\tau}$ be the diagonal matrix with diagonal elements $\tau_{1}, \ldots, \tau_{n}$.
Lemma 2.3. $\Delta L=2 D \tilde{\tau}-\mathbf{1} \hat{\delta}^{\prime}$.
Proof. Let $i, j \in\{1, \ldots, n\}$ be fixed. Let vertex j have degree p. Suppose j is adjacent to vertices u_{1}, \ldots, u_{p} and let $e_{\ell_{1}}, \ldots, e_{\ell_{p}}$ be the corresponding edges with weights $w_{\ell_{1}}, \ldots, w_{\ell_{p}}$, respectively. We consider two cases.
Case 1. $i=j$. We have

$$
\begin{aligned}
(\Delta L)_{j j} & =\sum_{k=1}^{n} d(j, k)^{2} \ell_{k j} \\
& =w_{\ell_{1}}^{2}\left(-w_{\ell_{1}}\right)^{-1}+\cdots+w_{\ell_{p}}^{2}\left(-w_{\ell_{p}}\right)^{-1} \\
& =-\left(w_{\ell_{1}}+\cdots+w_{\ell_{p}}\right) \\
& =-\hat{\delta}_{j} .
\end{aligned}
$$

Since the (j, j)-element of $2 D \tilde{\tau}-\mathbf{1} \hat{\delta}^{\prime}$ is $-\hat{\delta}_{j}$, the proof is complete in this case.
Case 2. $i \neq j$. We assume, without loss of generality, that the $i j$-path passes through u_{1} (it is possible that $\left.i=u_{1}\right)$. Let $d(i, j)=\alpha$. Then $d\left(i, u_{1}\right)=\alpha-w_{\ell_{1}}, d\left(i, u_{2}\right)=\alpha+w_{\ell_{2}}, \ldots, d\left(i, u_{p}\right)=$
$\alpha+w_{\ell_{p}}$. We have

$$
\begin{aligned}
(\Delta L)_{i j} & =\sum_{k=1}^{n} d(i, k)^{2} \ell_{k j} \\
& =d\left(i, u_{1}\right)^{2}\left(-w_{\ell_{1}}\right)^{-1}+\cdots+d\left(i, u_{p}\right)^{2}\left(-w_{\ell_{p}}\right)^{-1}+d(i, j)^{2} \ell_{j j} \\
& =\left(\alpha-w_{\ell_{1}}\right)^{2}\left(-w_{\ell_{1}}\right)^{-1}+\left(\alpha+w_{\ell_{2}}\right)^{2}\left(-w_{\ell_{2}}\right)^{-1}+\cdots+\left(\alpha+w_{\ell_{p}}\right)^{2}\left(-w_{\ell_{p}}\right)^{-1} \\
& +\alpha^{2}\left(\left(w_{\ell_{1}}\right)^{-1}+\cdots+\left(w_{\ell_{p}}\right)^{-1}\right) \\
& =\left(-2 \alpha w_{\ell_{1}}+w_{\ell_{1}}^{2}\right)\left(-w_{\ell_{1}}\right)^{-1}+\left(2 \alpha w_{\ell_{2}}+w_{\ell_{2}}^{2}\right)\left(-w_{\ell_{2}}\right)^{-1}+\cdots \\
& +\left(2 \alpha w_{\ell_{p}}+w_{\ell_{p}}^{2}\right)\left(-w_{\ell_{p}}\right)^{-1} \\
& =2 \alpha-2 \alpha(p-1)-\left(w_{\ell_{1}}+\cdots+w_{\ell_{p}}\right) \\
& =2 \alpha \tau_{j}-\left(w_{\ell_{1}}+\cdots+w_{\ell_{p}}\right)
\end{aligned}
$$

which is the (i, j)-element of $2 D \tilde{\tau}-\mathbf{1} \hat{\delta}^{\prime}$ and the proof is complete.

3. Determinant

Our next objective is to obtain a formula for the determinant of the squared distance matrix. We first consider the case when the tree has no vertex of degree 2 .

Theorem 3.1. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$, edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, and edge weights w_{1}, \ldots, w_{n-1}. Suppose T has no vertex of degree 2 . Then

$$
\begin{equation*}
\operatorname{det} \Delta=(-1)^{n-1} \frac{4^{n-2}}{2} \prod_{i=1}^{n} \tau_{i} \prod_{i=1}^{n-1} w_{i}^{2} \sum_{i=1}^{n} \frac{\hat{\delta}_{i}^{2}}{\tau_{i}} \tag{7}
\end{equation*}
$$

Proof. We assign an orientation to the edges of the tree and let H and Q be, respectively, edge orientation matrix and the vertex-edge incidence matrix of T.

Let Δ_{i} denote the i-th column of Δ, and let t_{i} be the column vector with 1 at the i-th place and zeros elsewhere, $i=1, \ldots, n$. Then

$$
\left[\begin{array}{c}
Q^{\prime} \tag{8}\\
t_{1}^{\prime}
\end{array}\right] \Delta\left[\begin{array}{ll}
Q & t_{1}
\end{array}\right]=\left[\begin{array}{cc}
Q^{\prime} \Delta Q & Q^{\prime} \Delta_{1} \\
\Delta_{1}^{\prime} Q & 0
\end{array}\right]
$$

Since $\operatorname{det}\left[\begin{array}{c}Q^{\prime} \\ t_{1}^{\prime}\end{array}\right]= \pm 1$, it follows from (8) that

$$
\begin{align*}
\operatorname{det} \Delta & =\left[\begin{array}{cc}
Q^{\prime} \Delta Q & Q^{\prime} \Delta_{1} \\
\Delta_{1}^{\prime} Q & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2 F H F & Q^{\prime} \Delta_{1} \\
\Delta_{1}^{\prime} Q & 0
\end{array}\right] \text { by Lemma } 2.1 \\
& =(\operatorname{det}(-2 F H F))\left(-\Delta_{1}^{\prime} Q(-2 F H F)^{-1} Q^{\prime} \Delta_{1}\right) \\
& =(-2)^{n-1} \prod_{i=1}^{n-1} w_{i}^{2}(\operatorname{det} H) 2 \Delta_{1}^{\prime} Q F^{-1} H^{-1} F^{-1} Q^{\prime} \Delta_{1} \\
& =(-1)^{n-1} 2^{n} \prod_{i=1}^{n-1} w_{i}^{2}(\operatorname{det} H) \Delta_{1}^{\prime} Q F^{-1} Q^{\prime} \hat{\tau} Q F^{-1} Q^{\prime} \Delta_{1} \tag{9}
\end{align*}
$$

in view of Theorem 2.1.
By Lemma 2.2 we have

$$
\begin{align*}
\Delta_{1}^{\prime} Q F^{-1} Q^{\prime} \hat{\tau} Q F^{-1} Q^{\prime} \Delta_{1} & =\sum_{i}\left(2 d_{1 i} \tau_{i}-\hat{\delta}_{i}\right)^{2} \frac{1}{\tau_{i}} \\
& =\sum_{i}\left(4 d_{1 i}^{2} \tau_{i}^{2}+\hat{\delta}_{i}^{2}-4 d_{1 i} \tau_{i} \hat{\delta}_{i}\right) \frac{1}{\tau_{i}} \\
& =\sum_{i} 4 d_{1 i}^{2} \tau_{i}+\sum_{i} \frac{\hat{\delta}_{i}^{2}}{\tau_{i}}-4 \sum_{i} d_{1 i} \hat{\delta}_{i} \tag{10}
\end{align*}
$$

It follows from (10) and Lemma 2.1 that

$$
\begin{equation*}
\Delta_{1}^{\prime} Q F^{-1} Q^{\prime} \hat{\tau} Q F^{-1} Q^{\prime} \Delta_{1}=\sum_{i} \frac{\hat{\delta}_{i}^{2}}{\tau_{i}} \tag{11}
\end{equation*}
$$

Also by Theorem 2.1,

$$
\begin{equation*}
\operatorname{det} H=2^{n-2} \prod_{i=1}^{n} \tau_{i} \tag{12}
\end{equation*}
$$

The proof is complete by substituting (11) and (12) in (9).
Corollary 3.1. [3] Let T be an unweighted tree with vertex set $V(T)=\{1, \ldots, n\}$. Suppose T has no vertex of degree 2. Then

$$
\begin{equation*}
\operatorname{det} \Delta=(-1)^{n} 4^{n-2}\left(2 n-1-2 \sum_{i} \frac{1}{\tau_{i}}\right) \prod_{i=1}^{n} \tau_{i} \tag{13}
\end{equation*}
$$

Proof. We set $w_{i}=1, i=1, \ldots, n-1$ in Theorem 3.1. Then $\hat{\delta}_{i}=\delta_{i}=2-\tau_{i}, i=1, \ldots, n$. We have

$$
\begin{align*}
\sum_{i} \frac{\delta_{i}^{2}}{\tau_{i}} & =\sum_{i} \frac{\left(2-\tau_{i}\right)^{2}}{\tau_{i}} \\
& =\sum_{i} \frac{4+\tau_{i}^{2}-4 \tau_{i}}{\tau_{i}} \\
& =4 \sum_{i} \frac{1}{\tau_{i}}+\sum_{i} \tau_{i}-4 n \\
& =4 \sum_{i} \frac{1}{\tau_{i}}+2-4 n \\
& =-2\left(2 n-1-2 \sum_{i} \frac{1}{\tau_{i}}\right) \tag{14}
\end{align*}
$$

The proof is complete by substituting (14) in (7).

We turn to the case when there is a vertex of degree 2 .
Theorem 3.2. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$, edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, and edge weights w_{1}, \ldots, w_{n-1}. Let q be a vertex of degree 2 and let p and r be neighbors of q. Let $e_{i}=(p q), e_{j}=(q r)$. Then

$$
\begin{equation*}
\operatorname{det} \Delta=(-1)^{n-1} 2^{2 n-5}\left(w_{i}+w_{j}\right)^{2} \prod_{s=1}^{n-1} w_{s}^{2} \prod_{k \neq q} \tau_{k} \tag{15}
\end{equation*}
$$

Proof. We assume, without loss of generality, that e_{i} is directed from p to q and e_{j} is directed from q to r.

$$
\circ p \xrightarrow{e_{i}} \circ q \xrightarrow{e_{j}} \circ r
$$

Let z_{q} be the $n \times 1$ unit vector with 1 at the q-th place and zeros elsewhere. Let Δ_{q} be the q-th column of Δ. We have

$$
\left[\begin{array}{c}
Q^{\prime} \tag{16}\\
z_{q}^{\prime}
\end{array}\right] \Delta\left[\begin{array}{ll}
Q & z_{q}
\end{array}\right]=\left[\begin{array}{cc}
Q^{\prime} \Delta Q & Q^{\prime} \Delta_{q} \\
\Delta_{q}^{\prime} Q & 0
\end{array}\right]=\left[\begin{array}{cc}
-2 F H F & Q^{\prime} \Delta_{q} \\
\Delta_{q}^{\prime} Q & 0
\end{array}\right],
$$

in view of Lemma 2.2. It follows from (16) that

$$
\left[\begin{array}{cc}
F^{-1} & 0 \tag{17}\\
0 & 1
\end{array}\right]\left[\begin{array}{c}
Q^{\prime} \\
z_{q}^{\prime}
\end{array}\right] \Delta\left[\begin{array}{ll}
Q & z_{q}
\end{array}\right]\left[\begin{array}{cc}
F^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 H & F^{-1} Q^{\prime} \Delta_{q} \\
\Delta_{q}^{\prime} Q F^{-1} & 0
\end{array}\right] .
$$

Taking determinants of matrices in (17) we get

$$
\left(\operatorname{det} F^{-1}\right)^{2} \operatorname{det} \Delta=\operatorname{det}\left[\begin{array}{cc}
-2 H & F^{-1} Q^{\prime} \Delta_{q} \tag{18}\\
\Delta_{q}^{\prime} Q F^{-1} & 0
\end{array}\right] .
$$

Note that the i-th and the j-th columns of H are identical.
Let $H(j \mid j)$ denote the submatrix obtained by deleting row j and column j from H.
In $\left[\begin{array}{cc}-2 H & F^{-1} Q^{\prime} \Delta_{q} \\ \Delta_{q}^{\prime} Q F^{-1} & 0\end{array}\right]$, subtract column i from column j, row i from row j, and then expand the determinant along column j. Then we get

$$
\begin{align*}
\operatorname{det}\left[\begin{array}{cc}
-2 H & F^{-1} Q^{\prime} \Delta_{q} \\
\Delta_{q}^{\prime} Q F^{-1} & 0
\end{array}\right] & \left.=-\left(\left(\Delta_{q}^{\prime} Q F^{-1}\right)\right)_{j}-\left(\Delta_{q}^{\prime} Q F^{-1}\right)_{j}\right)^{2} \operatorname{det}(-2 H(j \mid j)) \\
& =-(-2)^{n-2} \operatorname{det} H(j \mid j)\left(-w_{j}-w_{i}\right)^{2} \tag{19}
\end{align*}
$$

Note that $H(j \mid j)$ is the edge orientation matrix of the tree obtained by deleting vertex q and replacing edges e_{i} and e_{j} by a single edge directed from p to r in the tree. Hence by Theorem 2.1,

$$
\begin{equation*}
\operatorname{det} H(j \mid j)=2^{n-3} \prod_{k \neq q} \tau_{k} \tag{20}
\end{equation*}
$$

It follows from (17),(18) and (19) that

$$
\begin{align*}
\operatorname{det} \Delta & =-(\operatorname{det} F)^{2}(-1)^{n} 2^{n-2} 2^{n-3}\left(\prod_{k \neq q} \tau_{k}\right)\left(w_{i}+w_{j}\right)^{2} \\
& =(-1)^{n-1} 2^{2 n-5}\left(w_{i}+w_{j}\right)^{2} \prod_{s=1}^{n-1} w_{s}^{2} \prod_{k \neq q} \tau_{k}, \tag{21}
\end{align*}
$$

and the proof is complete.

Corollary 3.2. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$, edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, and edge weights w_{1}, \ldots, w_{n-1}. Suppose T has at least two vertices of degree 2 . Then $\operatorname{det} \Delta=0$.

Proof. The result follows from Theorem 3.2 since $\tau_{i}=0$ for at least two values of i.

4. Inverse

We now turn to the inverse of Δ, when it exists. When the tree has no vertex of degree 2 , we can give a concise formula for the inverse. We first prove some preliminary results.

Lemma 4.1. Let the tree have no vertex of degree 2. Then

$$
\begin{equation*}
\Delta(2 \tau-L \hat{\tau} \hat{\delta})=\left(\hat{\delta}^{\prime} \hat{\tau} \hat{\delta}\right) \mathbf{1} \tag{22}
\end{equation*}
$$

Proof. By Lemma 2.3, $\Delta L=2 D \tilde{\tau}-\mathbf{1} \hat{\delta}^{\prime}$. Hence

$$
\begin{equation*}
\Delta L \hat{\tau} \hat{\delta}=2 D \hat{\delta}-\left(\hat{\delta}^{\prime} \hat{\tau} \hat{\delta}\right) \mathbf{1} \tag{23}
\end{equation*}
$$

Since by Lemma 2.1, $\Delta \tau=D \hat{\delta}$, we obtain the result from (23).

For a square matrix A, we denote by $\operatorname{cof} A$, the sum of the cofactors of A.
Lemma 4.2. Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$, edge set $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, and edge weights w_{1}, \ldots, w_{n-1}. Suppose T has no vertex of degree 2 . Then

$$
\begin{equation*}
\operatorname{cof} \Delta=(-1)^{n-1} 2^{2 n-3} \prod_{k=1}^{n-1} w_{k}^{2} \prod_{i=1}^{n} \tau_{i} \tag{24}
\end{equation*}
$$

Proof. By Lemma 2.2, $Q^{\prime} \Delta Q=-2 F H F$. Taking determinant of both sides and using CauchyBinet formula, we get

$$
\begin{align*}
\operatorname{cof} \Delta & =(-2)^{n-1}(\operatorname{det} F)^{2} \operatorname{det} H \\
& =(-2)^{n-1} \prod_{k=1}^{n-1} w_{k}^{2} 2^{n-2} \prod_{i=1}^{n} \tau_{i} \text { by Theorem } 2.1 \\
& =(-1)^{n-1} 2^{2 n-3} \prod_{k=1}^{n-1} w_{k}^{2} \prod_{i=1}^{n} \tau_{i}, \tag{25}
\end{align*}
$$

and the proof is complete.
Corollary 4.1. Let the tree have no vertex of degree 2 and let $\beta=\hat{\delta}^{\prime} \hat{\tau} \hat{\delta}$. If $\beta \neq 0$, then Δ is nonsingular and

$$
\begin{equation*}
\mathbf{1}^{\prime} \Delta^{-1} \mathbf{1}=\frac{4}{\beta} . \tag{26}
\end{equation*}
$$

Proof. Observe that $\beta=\sum_{i=1}^{n} \frac{\hat{\delta}_{i}^{2}}{\tau_{i}}$. By Theorem 3.1,

$$
\begin{equation*}
\operatorname{det} \Delta=(-1)^{n-1} \frac{4^{n-2}}{2} \prod_{i=1}^{n} \tau_{i} \prod_{i=1}^{n-1} w_{i}^{2} \sum_{i=1}^{n} \frac{\hat{\delta}_{i}^{2}}{\tau_{i}} \tag{27}
\end{equation*}
$$

If $\beta \neq 0$, then Δ is nonsingular by (27). Note that $\mathbf{1}^{\prime} \Delta^{-1} \mathbf{1}=\frac{\operatorname{cof} \Delta}{\operatorname{det} \Delta}$. The proof is complete using Lemma 4.2 and (27).

Theorem 4.1. Let the tree have no vertex of degree 2 and let $\beta=\hat{\delta}^{\prime} \hat{\tau} \hat{\delta}$. Let $\eta=2 \tau-L \hat{\tau} \hat{\delta}$. If $\beta \neq 0$, then Δ is nonsingular and

$$
\begin{equation*}
\Delta^{-1}=-\frac{1}{4} L \hat{\tau} L+\frac{1}{4 \beta} \eta \eta^{\prime} \tag{28}
\end{equation*}
$$

Proof. Let $X=-\frac{1}{4} L \hat{\tau} L+\frac{1}{4 \beta} \eta \eta^{\prime}$. Then

$$
\begin{equation*}
\Delta X=-\frac{1}{4} \Delta L \hat{\tau} L+\frac{1}{4 \beta} \Delta \eta \eta^{\prime} \tag{29}
\end{equation*}
$$

By Lemma 2.3, $\Delta L=2 D \tilde{\tau}-\mathbf{1} \hat{\delta}^{\prime}$. Hence

$$
\begin{equation*}
\Delta L \hat{\tau} L=2 D L-\mathbf{1} \hat{\delta}^{\prime} \hat{\tau} L \tag{30}
\end{equation*}
$$

Using Theorem 1.1, we can see that

$$
\begin{equation*}
D L=-2 I+\mathbf{1} \tau^{\prime} \tag{31}
\end{equation*}
$$

Finally, by Lemma 4.1, $\Delta \eta=\beta$. This fact and (29), (30) and (31) lead to

$$
\begin{equation*}
\Delta X=I-\frac{1}{2} \mathbf{1} \tau^{\prime}+\frac{1}{4} \hat{\delta}^{\prime} \hat{\tau} L+\frac{1}{4 \beta} \mathbf{1} \eta^{\prime} \tag{32}
\end{equation*}
$$

Since $\eta=2 \tau-L \hat{\delta} \hat{\delta}$, it follows from (32) that $\Delta X=I$ and the proof is complete.

We conclude with an example to show that the condition $\beta \neq 0$ is necessary in Theorem 4.1.
Example Consider the tree

The distance matrix of the tree is given by

$$
D=\left[\begin{array}{rrrrr}
0 & 1 & 1 & \gamma & 1 \\
1 & 0 & 2 & 1+\gamma & 2 \\
1 & 2 & 0 & 1+\gamma & 2 \\
\gamma & 1+\gamma & 1+\gamma & 0 & 1+\gamma \\
1 & 2 & 2 & 1+\gamma & 0
\end{array}\right]
$$

It can be checked that det $\Delta=-32 \gamma^{2}\left(\gamma^{2}-6 \gamma-3\right)$. Thus Δ is singular if $\gamma=3+2 \sqrt{3}$. Note that $\hat{\delta}^{\prime}=[\gamma+3,1,1, \gamma, 1], \tau^{\prime}=[-2,1,1,1,1]$ and hence, if $\gamma=3+2 \sqrt{3}$, then $\sum_{i=1}^{4} \frac{\hat{\delta}^{2}}{\tau_{i}}=0$.

Acknowledgement

I sincerely thank Ranveer Singh for a careful reading of the manuscript. Support from the JC Bose Fellowship, Department of Science and Technology, Government of India, is gratefully acknowledged.
[1] R.B. Bapat, Graphs and Matrices. Universitext. Springer, London; Hindustan Book Agency, New Delhi, 2010.
[2] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005), 193-209.
[3] R.B. Bapat and S. Sivasubramanian, Product distance matrix of a graph and squared distance matrix of a tree, Appl. Anal. Discrete Math. 7 (2013), no. 2, 285-301.
[4] R.B. Bapat and S. Sivasubramanian, Squared distance matrix of a tree: inverse and inertia, Linear Algebra Appl. 491 (2016), 328-342.
[5] R.B. Bapat, A.K. Lal and Sukanta Pati, A q-analogue of the distance matrix of a tree, Linear Algebra Appl. 416 (2006), 799-814.
[6] R.L. Graham and L. Lovász, Distance matrix polynomials of trees, Adv. Math. 29 (1978), 60-88.
[7] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971), 2495-2519.
[8] Weigen Yan and Yeong-Nan Yeh, The determinants of q-distance matrices of trees and two quantities relating to permutations, Adv. in Appl. Math. 39 (2007), 311-321.
[9] Hui Zhou and Qi Ding, The distance matrix of a tree with weights on its arcs, Linear Algebra Appl. 511 (2016), 365-377.

