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Abstract

Let G be a simple graph with n vertices, m edges and having adjacency eigenvalues λ1, λ2, . . . ,
λn. The energy E(G) of the graph G is defined as E(G) =

∑n
i=1 |λi|. In this paper, we obtain the

upper bounds for the energy E(G) in terms of the vertex covering number τ , the clique number ω,
the number of edges m, maximum vertex degree d1 and second maximum vertex degree d2 of the
connected graph G. These upper bounds improve some of the recently known upper bounds.
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1. Introduction

Let G(V,E) be a finite and simple graph with n vertices and m edges and having vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix A = (aij)
of G is a (0, 1)-square matrix of order n whose (i, j)th-entry is equal to 1, if vi is adjacent to vj
and equal to 0, otherwise. The spectrum of the adjacency matrix is called the adjacency spectrum
of the graph G.

Let λ1, λ2, . . . , λn be the adjacency eigenvalues of G. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| be the

Received: 24 August 2018, Revised: 27 April 2019, Accepted: 21 May 2019.

315



www.ejgta.org

Bounds for graph energy in terms of vertex covering and clique numbers | Hilal A. Ganie et al.

absolute value eigenvalues of G. Gutman [17] of G defined the energy of G as

E(G) =
n∑
i=1

|λi|.

Among the pioneering results of the theory of graph energy are the lower and upper bounds for
energy, see [2, 5, 15, 16, 18, 19, 22, 26] and the references therein. For more information about
energy of graph see [1, 9, 10, 11, 12, 14, 23] and related results see [1, 24, 25].

A subset S of the vertex set V (G) is said to be a covering set ofG if every edge ofG is incident
to at least one vertex in S. A covering set with minimum cardinality among all covering sets is
called the minimum covering set of G and its cardinality, which is denoted by τ = τ(G) is called
the vertex covering number of the graph G. If H is a subgraph of the graph G, we denote the graph
obtained by removing the edges in H from G by G \H (that is, only the edges of H are removed
from G).

As usual Pn, Cn, Kn and Ks,t, respectively, denote the path on n vertices, the cycle on n
vertices, the complete graph on n vertices and the complete bipartite graph on s + t vertices. For
other undefined notations and terminology, the readers are referred to [4, 21].

The rest of the paper is organized as follows. In Section 2, we obtain some upper bounds for
E(G) in terms of the vertex covering number τ , the number of edges m, maximum vertex degree
d1 and second maximum vertex degree d2 of the connected graph G. In Section 3, we obtain the
upper bounds for the energy E(G) in terms of the vertex covering number τ , the number of edges
m and the adjacency rank r of the connected graph G. These upper bounds improve some of the
recently known upper bounds for the energy E(G) of a connected graph.

2. Upper bounds in terms of clique number and vertex covering number

Consider a real symmetric matrix M of order n. Let si(M), i = 1, 2, . . . , n, be the singular
values (the positive square roots of the eigenvalues of the matrix M∗M are called the singular
values of the matrix M ) and xi(M) be the eigenvalues of M . Then si(M) = |xi(M)|, for all
i = 1, 2, . . . , n. In the light of this definition, if λ1, λ2, . . . , λn are the adjacency eigenvalues of the
graph G, the energy E(G) [20] can also be defined as

E(G) =
n∑
i=1

si(A), (1)

where si(A) are the singular values of the adjacency matrix A of the graph G.

The following lemma can be found in [6].

Lemma 2.1. Let X , Y and Z be square matrices of order n such that Z = X + Y . Then
n∑
i=1

si(Z) ≤
n∑
i=1

si(X) +
n∑
i=1

si(Y ).

Moreover, equality holds if and only if there exists an orthogonal matrix P such that PX and PY
are both positive semi-definite matrices.
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Let G be a connected graph of order n having clique number ω. Then Kω is a subgraph of G.
Let S = {v1, v2, . . . , vω−1} be a minimum vertex covering set of Kω. Since any vertex covering
set C of G contains S as its part, so let C = S ∪ {vω, . . . , vτ} be a minimum vertex covering set
of G. We define Γ1 to be the family of all connected graphs of order n having clique number ω
except for the graphs G when the vertices in a vertex covering set S = {v1, v2, . . . , vω−1} of the
subgraph Kω have the property that there are pendent vertices incident at some vi ∈ S or any two
vertices of S form a triangle with a vertex v ∈ V (G) \ C, where C is the vertex covering set of
G. Let Γ

′
1 be the family of all connected graphs having clique number ω such that the vertices in

the vertex covering set S = {v1, v2, . . . , vω−1} of the subgraph Kω have the property that there are
a ≥ 1 pendent vertices incident at each vi ∈ S, i = 1, 2, . . . , t where 1 ≤ t ≤ ω. Similarly, let Γ

′′
1

be the family of all connected graphs having clique number ω such that the vertices in the vertex
covering set S = {v1, v2, . . . , vω−1} of the subgraph Kω have the property that there are ai ≥ 1
pendent vertices incident at each vi ∈ S, for i = 1, 2, . . . , t where 1 ≤ t ≤ ω.

The adjacency matrix of a graph with some symmetry can be put in the form

M =


X β . . . β β
βᵀ B . . . C C
...

... . . .
...

...
βᵀ C . . . B C
βᵀ C . . . C B

 , (2)

where X ∈ Rt×t, β ∈ Rt×s and B,C ∈ Rs×s, such that n = t + cs, where c is the number of
copies of B. Let σ(k)(Y ) indicate the multi-set formed by k copies of the spectrum of Y , denoted
by σ(Y ).

Lemma 2.2. [7] If M is a matrix as in (2) having c ≥ 1 copies of the block B, then

(i) σ[c−1](B − C) ⊆ σ(M);
(ii) σ(M) \ σ[c−1](B − C) = σ(M

′
) is the set of the remaining t + s eigenvalues of M , where

M
′

=

(
X

√
cβ√

cβᵀ B + (c− 1)C

)
and σ[c−1](X) means that the spectrum of matrix X is

repeated c− 1 times.

Let Sω(a1, a2, . . . , aω), ai ≥ 0, 1 ≤ i ≤ ω, be the family of connected graphs of order
n =

∑ω
i=1(ai + 1) with m edges having ai pendent vertices attached at the ith vertex of the clique

Kω. For the family of graphs Sω(a1, a2, . . . , aω), we have the following result.

Lemma 2.3. Let G be a connected graph of order n having m edges which belongs to the family
Sω(a1, a2, . . . , aω) with ai = a ≥ 1, for 1 ≤ i ≤ t and ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω. Then

E(G) =

{
2ω − t− 3 + (t− 1)

√
4a+ 1− 2b3, if 1 ≤ t ≤ ω − 1,

(ω − 1)
√

4a+ 1 +
√

(ω − 1)2 + 4a, if t = ω,

where b3 is the smallest root of the polynomial g(a, x) = x3−(ω−2)x2−(a+ω−1)x+a(ω−t−1).
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Proof. Let G be the given graph in the family Sω(a1, a2, . . . , aω) with ai = a, for 1 ≤ i ≤ t and
ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω. We first suppose that 1 ≤ t ≤ ω − 1.

Let Na =


0 1 . . . 1
1 0 . . . 0
...

... . . .
...

1 0 . . . 0
1 0 . . . 0


a+1

and Cq×q =


1 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 0


a+1

, where q = a+ 1.

By suitably labelling the vertices of G, it can be seen that the adjacency matrix of G can be written
as

A(G) =



Na Cq×q . . . Cq×q Cq×1 . . . Cq×1
Cq×q Na . . . Cq×q Cq×1 . . . Cq×1

...
... . . .

... . . .
...

Cq×q Cq×q . . . Na Cq×1 . . . Cq×1
C1×q C1×q . . . C1×q [0] . . . [1]

...
... . . .

... . . .
...

C1×q C1×q . . . C1×q [1] . . . [1]
C1×q C1×q . . . C1×q [1] . . . [0]


ω

.

Taking X =


Na Cq×q . . . Cq×q
Cq×q Na . . . Cq×q

...
... . . .

...
Cq×q Cq×q . . . Na


t

, β =


Cq×1
Cq×1

...
Cq×1

, B = [0] and C = [1] in (2), so from

Lemma 2.2, it follows that σ(A(G)) = σ[ω−t−1]([−1]) ∪ σ(N
′
a), where

N
′

a =


Na . . . Cq×q

√
ω − tCq×1

Cq×q . . . Cq×q
√
ω − tCq×1

... . . .
...

...
Cq×q . . . Na

√
ω − tCq×1√

ω − tC1×q . . .
√
ω − tC1×q [ω − t− 1]

 .

Interchanging first row with last row and then first column with last column, we obtain a matrix
permutation similar to N ′a. Since the similar matrices have same spectrum, therefore, from the
resulting matrix, taking X = [ω − t− 1], β = [

√
ω − tC1×q], B = Na, C = Cq×q, in (2), from

Lemma 2.2, it follows that σ(N
′
a) = σ[t−1]([Na − Cq×q]) ∪ σ(N

′′
a ), where

N
′′

a =


ω − t− 1

√
tω − t2 0 . . . 0√

tω − t2 t− 1 1 . . . 1
0 1 0 . . . 0
...

...
... . . .

...
0 1 0 . . . 0


a+2

.
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Taking

X =

(
ω − t− 1

√
tω − t2√

tω − t2 t− 1

)
, β =

(
0
1

)
, B = [0], C = [0],

in (2), from Lemma 2.2, it follows that σ(N
′′
a ) = σ[a−1]([0]) ∪ σ(N

(iv)
a ), where

N (iv)
a =

ω − t− 1
√
tω − t2 0√

tω − t2 t− 1
√
a

0
√
a 0

 .

For the matrix Na − Cq×q, taking X = [−1], β = [1], B = [0], C = [0] in (3), by Lemma 2.2, it
can be seen that σ(Na − Cq×q) = {0[a−1], a1, a2}, where a1 = −1+

√
4a+1

2
, a2 = −1−

√
4a+1

2
. Thus

the spectrum of the matrix A(G) is

{b1, b2, a[t−1]1 ,−1[ω−t−1], 0[t(a−1)], a
[t−1]
2 , b3},

where b1 ≥ b2 ≥ b3 are the zeros of the polynomial g(a, x) = x3 − (ω − 2)x2 − (a + ω − 1)x +

a(ω − t− 1) and a1 = −1+
√
4a+1

2
, a2 = −1−

√
4a+1

2
.

It is clear that b1 +b2 +b3 = ω−2, b1b2 +b2b3 +b3b1 = −(a+ω−1), b1b2b3 = −a(ω− t−1).
g(a, x) = 0 is a polynomial equation with real coefficients, it follows by Descarte’s rule of signs
that g(a, x) has either two positive roots or no positive roots. Since ω ≥ 2 implies b1 + b2 + b3 =
ω − 2 ≥ 0, it follows that g(a, x) = 0 must have exactly two positive root say b1 and b2. By using
b1b2b3 = −a(ω − t − 1), this implies that the third root b3 should be negative for 1 ≤ t ≤ ω − 1.
Thus, for 1 ≤ t ≤ ω − 1, we have

E(G) = (ω − t− 1)| − 1|

+ (t− 1)
(∣∣∣−1 +

√
4a+ 1

2

∣∣∣+
∣∣∣−1−

√
4a+ 1

2

∣∣∣)+ |b1|+ |b2|+ |b3|

= 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3, as b1 + b2 + b3 = ω − 2.

If t = ω, then proceeding similarly as above it can be seen that the spectrum of the matrix
A(G) is

{b1, b2, a[ω−1]1 , 0[ω(a−1)], a
[ω−1]
2 },

where b1 =
(ω−1)+

√
(ω−1)2+4a

2
, b2 =

(ω−1)−
√

(ω−1)2+4a

2
and a1 = −1+

√
4a+1

2
, a2 = −1−

√
4a+1

2
.

Therefore, for t = ω, we have E(G) = (ω − 1)
√

4a+ 1 +
√

(ω − 1)2 + 4a, completing the
proof.

The next observation is for the family of graphs Sω(a1, a2, . . . , aω), when the non-zero numbers
ai are not equal.

Lemma 2.4. Let G be a connected graph of order n having m edges which belongs to the family
Sω(a1, a2, . . . , aω) with ai ≥ 1, for 1 ≤ i ≤ t and ai = 0 for i ≥ t + 1, 1 ≤ t ≤ ω. Then

E(G) ≤ 2ω − 2 + 2
t∑
i=1

√
ai.
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Proof. Let G be the given graph from the family Sω(a1, a2, . . . , aω) with ai ≥ 1, for 1 ≤ i ≤ t and
ai = 0 for i ≥ t + 1, 1 ≤ t ≤ ω. Since the clique number of G is ω ≥ 2, it follows that Kω is a
subgraph of G. The adjacency spectrum of Kω is {ω − 1,−1[ω−1]}. Therefore, E(Kω) = 2ω − 2.
If we remove the edges of Kω from G, then the adjacency matrix of G can be decomposed as
A(G) = A(Kω ∪ (n − ω)K1) + A(H), where H = G \ Kω is the graph obtained from G by
removing the edges ofKω. Applying Lemma 2.1 and using the factE(Kω∪(n−ω)K1) = E(Kω),
we have

E(G) ≤ E(Kω) + E(H) = 2ω − 2 + E(H). (3)

From the hypothesis of the theorem, it is clear thatH = G\Kω is a forest having t ≥ 1 components
each of which is a star. For 1 ≤ t ≤ ω, let Ti = Kai,1, i = 1, 2, . . . , t be the ith component of H .
It is clear that H = T1 ∪ T2 ∪ · · · ∪ Tt. Therefore, by Lemma 2.1 and the fact E(Ti) = E(Kai,1) =
2
√
ai, we have

E(H) ≤ E(T1) + E(T2) + · · ·+ E(Tt) = 2
t∑
i=1

√
ai.

Using this in (3), the result follows.

The following result gives an upper bound for the energy E(G) in terms of the vertex covering
number τ , the clique number ω and the number of edges m of the graph G.

Theorem 2.5. Let G be a connected graph of order n ≥ 2 with m edges having clique number
ω ≥ 2 and vertex covering number τ ≥ 2. If G ∈ Γ1, then

E(G) ≤ 2

√
(τ − ω + 1)(m− ω(ω − 1)

2
) + 2ω − 2, (4)

with equality if τ = ω − 1 and G ∼= Kω. If G ∈ Γ
′
1, then

E(G) ≤ 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3 + 2

√
(τ − ω + 1)(m− at− ω(ω − 1)

2
), (5)

where b3 is the smallest root of the polynomial g(a, x) = x3−(ω−2)x2−(a+ω−1)x+a(ω−t−1).
Equality occurs in (5) if τ = ω − 1 and G ∼= Sω(a1, a2, . . . , aω) with ai = a ≥ 1, for 1 ≤ i ≤ t
and ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω − 1. And, if G ∈ Γ

′′
1 , then

E(G) ≤ 2ω − 2 + 2
t∑
i=1

√
ai + 2

√√√√(τ − ω + 1)(m−
t∑
i=1

√
ai −

ω(ω − 1)

2
).

Proof. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =
{e1, e2, . . . , em}. Let τ be the vertex covering number and C be the minimum vertex covering set
of G. With out loss of generality let C = {v1, v2, . . . , vτ}. Since the clique number of G is ω, so
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Kω is a subgraph of G. Using a well known fact that the vertex covering number of a complete
graph on ω vertices is ω− 1, let v1, v2, . . . , vω−1 be the vertices in C, which belong to V (Kω). The
adjacency spectrum of Kω is {ω − 1,−1[ω−1]}. Thus, E(Kω) = 2ω − 2. We first suppose that
G ∈ Γ1. If we remove the edges of Kω from G, the adjacency matrix of G can be decomposed
as A(G) = A(Kω ∪ (n − ω)K1) + A(G \ Kω), where G \ Kω is the graph obtained from G by
removing the edges of Kω. So, using Lemma 2.1 and the fact E(Kω ∪ (n − ω)K1) = E(Kω), we
get

E(G) ≤ E(Kω) + E(G \Kω). (6)

To complete the proof in this case, we need to estimate E(G \Kω), which is done as follows.
Let Gω, Gω+1, . . . , Gτ be the spanning subgraphs of H = G \ Kω corresponding to the vertices
vω, vω+1, . . . , vτ of C, having vertex set same as H and edge sets defined as

E(Gω) = {vωvt : vt ∈ N(vω)},
E(Gω+1) = {vω+1vt : vt ∈ N(vω+1) \ {vω}}
...
E(Gτ ) = {vτvt : vt ∈ N(vτ ) \ {vω, vω+1, . . . , vτ−1}}.

For i = ω, ω+ 1, . . . , τ, let mi = |E(Gi)|. Clearly E(H) = E(Gω)∪E(Gω+1)∪ · · · ∪E(Gτ ) and
Gi = K1,mi

∪ (n(H)−mi − 1)K1, for all i = ω, ω + 1, . . . , τ . Also, it is clear that

A(H) = A(Gω) + A(Gω+1) + · · ·+ A(Gτ ). (7)

The adjacency spectrum of Gi = K1,mi
∪ (n(H)−mi − 1)K1 is {±√mi, 0

[n(H)−2]}. Therefore,

E(Gi) = E(K1,mi
∪ (n(H)−mi − 1)K1) = 2

√
mi, for all i = 1, 2, . . . , τ . (8)

Using Lemma 2.1 to equation (7) and applying (8) and Cauchy-Schwarz’s inequality, we get

E(G \Kω) = E(H) ≤ E(Gω) + E(Gω+1) + · · ·+ E(Gτ )

= 2
√
mω + 2

√
mω+1 + · · ·+ 2

√
mτ = 2

τ∑
i=ω

√
mi

≤ 2

√√√√(τ − ω + 1)
τ∑
i=ω

mi = 2

√
(τ − ω + 1)(m− ω(ω − 1)

2
),

where
τ∑
i=ω

mi = number of edges of H = m− ω(ω−1)
2

.

This shows that

E(G \Kω) ≤ 2

√
(τ − ω + 1)(m− ω(ω − 1)

2
).

321



www.ejgta.org

Bounds for graph energy in terms of vertex covering and clique numbers | Hilal A. Ganie et al.

Thus, from (6), we have

E(G) ≤ E(Kω) + E(G \Kω) ≤ 2ω − 2 + 2

√
(τ − ω + 1)(m− ω(ω − 1)

2
),

proving the first inequality. If equality holds in (4), all the inequalities above occurs as equalities.
Clearly equality occurs in (5) if and only if G ∼= Kn, as G is connected. Since equality occurs in
Cauchy-Schwarz’s inequality if and only if m1 = m2 = · · · = mτ , so equality occurs in (4) if and
only if τ = ω − 1 and G ∼= Kω. Conversely, if τ = ω − 1 and G ∼= Kω, then it is easy to see that
equality holds in (4).

Next, suppose that G ∈ Γ
′
1, then H = Sω(a1, a2, . . . , aω) with ai = a ≥ 1, for 1 ≤ i ≤ t and

ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω− 1 is a subgraph of G. If we remove the edges of H from G, then
the adjacency matrix of G can be decomposed as A(G) = A(H ∪ (n− ω − at)K1) + A(G \H),
where G \H is the graph obtained from G by removing the edges of H . Applying Lemma 2.1 and
using the fact E(H ∪ (n− ω − at)K1) = E(H), we have

E(G) ≤ E(H ∪ (n− ω − at)K1) + E(G \H) = E(H) + E(G \H). (9)

Since 1 ≤ t ≤ ω − 1, from Lemma 2.3, it follows that

E(H) = 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3,

where b3 is defined in Lemma 2.3. To estimate E(H
′
) = E(G \H), we can proceed similarly as in

the above case to obtain

E(G \H) = E(H
′
) ≤ 2

√
(τ − ω + 1)(m− at− ω(ω − 1)

2
).

Therefore from (9), we have

E(G) ≤E(H) + E(G \H)

≤ 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3 + 2

√
(τ − ω + 1)(m− at− ω(ω − 1)

2
),

completing the proof of the second inequality. Equality case for this inequality can be discussed
similarly as in the above case.

Lastly, suppose that G ∈ Γ
′′
1 , then H = Sω(a1, a2, . . . , aω) with ai ≥ 1, for 1 ≤ i ≤ t and

ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω− 1 is a subgraph of G. If we remove the edges of H from G, then
the adjacency matrix ofG can be decomposed asA(G) = A(H∪(n−ω−

∑t
i=1 ai)K1)+A(G\H),

where G \ H is the graph obtained from G by removing the edges of H . Applying Lemmas 2.1
and 2.4 and proceeding similarly as in above cases, we obtain

E(G) ≤ 2ω − 2 + 2
t∑
i=1

√
ai + 2

√√√√(τ − ω + 1)(m−
t∑
i=1

ai)−
ω(ω − 1)

2
),

which completes the proof of the theorem.
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Now, we obtain the following upper bound for the energy E(G).

Theorem 2.6. Let G be a connected graph of order n ≥ 2 with m edges having clique number
ω ≥ 2 and vertex covering number τ ≥ 2. Let d1 and d2 be the maximum and second maximum
degree of the graph G. If G ∈ Γ1, then

E(G) ≤ 2ω − 2 + 2
√
d1 + 2(τ − ω)

√
d2,

with equality if τ = ω − 1 and G ∼= Kω. If G ∈ Γ
′
1, then

E(G) ≤ 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3 + 2
√
d1 + 2(τ − ω)

√
d2, (10)

where b3 is the smallest root of the polynomial g(a, x) = x3−(ω−2)x2−(a+ω−1)x+a(ω−t−1).
Equality occurs in (10) if τ = ω − 1 and G ∼= Sω(a1, a2, . . . , aω) with ai = a ≥ 1, for 1 ≤ i ≤ t
and ai = 0 for i ≥ t+ 1, 1 ≤ t ≤ ω − 1. And, if G ∈ Γ

′′
1 , then

E(G) ≤ 2ω − 2 + 2
t∑
i=1

√
ai + 2

√
d1 + 2(τ − ω)

√
d2.

Proof. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =
{e1, e2, . . . , em}. Let τ be the vertex covering number and C be the minimum vertex covering set
of G. With out loss of generality, let C = {v1, v2, . . . , vτ}. Since clique number of G is ω, it
follows that Kω is a subgraph of G. If G ∈ Γ1, then proceeding similarly as in the proof of the
Theorem 2.5, we arrive at

E(G) ≤ E(Kω) + E(G \Kω)

≤ 2ω − 2 + E(Gω) + E(Gω+1) + · · ·+ E(Gτ )

= 2ω − 2 + 2
√
mω + 2

√
mω+1 + · · ·+ 2

√
mτ .

Let d1 ≥ d2 ≥ d3 ≥ · · · ≥ dn be the degree sequence of the graph G, where di = d(vi), for all i.
As the cardinality of C is minimum, the vertices in C can be picked as follows.

If vω has the maximum degree in graph H = G \ Kω, we pick vω as the ωth vertex in C.
If all the edges of graph H are incident to vω, then C = {v1, v2, . . . , vω−1, vω} is the minimum
vertex covering set, otherwise, if vω+1 has the maximum degree in graph H − {vω}, we pick vω+1

as the ω + 1th vertex in C. If all the edges of graph H − {vω} are incident to vω+1, then C =
{v1, v2, . . . , vω−1, vω, vω+1} is the minimum vertex covering set, otherwise, we proceed similarly,
to obtain the other elements vω+2, vω+3, . . . , vτ of the minimum vertex covering set C.

Let C = {v1, v2, . . . , vω−1, vω, . . . , vτ} be the minimum vertex covering set obtained in this
way. It is clear that degree of vω in G1 = Km1,1 ∪ (n−m1 − 1)K1 is at most d1, giving m1 ≤ d1.
Also, degree of vω+1 in G1 = Km2,1 ∪ (n − m2 − 1)K1 is either at most d2 or at most d2 − 1,
depending on whether vω and vω+1 are non-adjacent or adjacent in H , which gives m2 ≤ d2.
Similarly, it can be seen that mi ≤ d2, for all i = ω + 2, . . . , τ . With this it follows that

E(G) ≤ 2ω − 2 + 2
√
mω + 2

√
mω+1 + · · ·+ 2

√
mτ

≤ 2ω − 2 + 2
√
d1 + 2(τ − ω)

√
d2.

323



www.ejgta.org

Bounds for graph energy in terms of vertex covering and clique numbers | Hilal A. Ganie et al.

This completes the proof of the first inequality. Equality case can be discussed similar to Theorem
2.5. The cases when G ∈ Γ

′ or when G ∈ Γ
′′ can be discussed similarly.

Wang [26] proved that

E(G) ≤ 2τ
√
d1, (11)

with equality if and only if G is the disjoint union of τ copies of K1,d1 together with some isolated
vertices.

Remark 2.7. Let G be a connected graph of order n ≥ 2 with m edges having clique number
ω ≥ 2, vertex covering number τ ≥ 2, maximum degree d1 and second maximum degree d2. If
G ∈ Γ1, then the upper bound given by Theorem 2.5 always improves the upper bound (11) as

2ω − 2 + 2
√
d1 + 2(τ − ω)

√
d2 ≤ 2ω − 2 + 2(τ − ω + 1)

√
d1 ≤ 2τ

√
d1,

implies that
√
d1 ≥ 0, which is always true.

If G ∈ Γ
′
1, then the upper bound given by Theorem 2.5 is better than the upper bound (11) for

ω ≥ (t−1)
√
4a+1+2

√
d1−t−3−2b3

2
√
d1−1

, d1 6= 1. As

2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3 + 2
√
d1 + 2(τ − ω)

√
d2

≤ 2ω − t− 3 + (t− 1)
√

4a+ 1− 2b3 + 2(τ − ω + 1)
√
d1

≤ 2τ
√
d1,

if ω ≥ (t− 1)
√

4a+ 1 + 2
√
d1 − t− 3− 2b3

2
√
d1 − 2

. (12)

In particular, if G ∼= Sω(a1, a2, . . . , aω) with ai = a ≥ 1, for 1 ≤ i ≤ t and ai = 0 for i ≥ t + 1,
1 ≤ t ≤ ω − 1. Then it can be seen that (12) always holds.

If G ∈ Γ
′′
1 , then proceeding similarly as in above cases, we note that the upper bound given by

Theorem 2.5 is better than the upper bound (11) for ω ≥ 1 +
∑t

i=1 ai√
d1−1

, d1 6= 1.

3. Upper bounds in terms of vertex covering number and adjacency rank

We start with the following lemma [27].

Lemma 3.1. Let X and Y be Hermitian matrices of order n such that Z = X + Y . Then

λk(Z) ≤ λj(X) + λk−j+1(Y ), n ≥ k ≥ j ≥ 1,

λk(Z) ≥ λj(X) + λk−j+n(Y ), n ≥ j ≥ k ≥ 1,

where λi(M) is the ith largest eigenvalue of the matrix M .

The following observation follows from the definition of E(G) and the fact tr(A) = 0.
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Lemma 3.2. Let G be a graph with n vertices and m edges. Let ν+ and ν− be respectively, the
number of positive and number of negative adjacency eigenvalues of graph G. Then

E(G) = 2

ν+∑
i=1

λi = −2

ν−∑
i=1

λn−i+1 = 2 max
1≤k≤n

(
k∑
i=1

λi

)
.

The following upper bound for the sum of the k largest Laplacian eigenvalues Sk(G) of graph
G can be found in [3, 13]:

Sk(G) ≤ k(τ + 1) +m− ω(ω − 1)

2
, k = 1, 2, . . . , n, (13)

with equality if k ≤ ω − 1 and G ∼= KSn,ω.

Now, we obtain an upper bound for the energy E(G) of a connected bipartite graph G.

Theorem 3.3. Let G be a connected bipartite graph of order n ≥ 2 with m edges having vertex
covering number τ and adjacency rank r. Then

E(G) ≤ r(τ + 1)

2
+m− 1.

Proof. We have

Q(G) = D(G) + A(G) = D(G)− A(G) + 2A(G) = L(G) + 2A(G).

Using Lemma 3.1 with k = i and j = n, we obtain

qi ≥ 2λi, for i = 1, 2, . . . , n.

Taking sum from 1 to ν+ and using Lemma 3.2, we have

E(G) = 2

ν+∑
i=1

λi ≤
ν+∑
i=1

qi = S+
ν+

(G).

Since G is a bipartite graph, therefore S+
ν+

(G) = Sν+(G). Now, using inequality (13) with
k = ν+, we have

E(G) ≤ Sν+(G) ≤ ν+(τ + 1) +m− ω(ω − 1)

2
,

that is,

E(G) ≤ ν+(τ + 1) +m− ω(ω − 1)

2
, (14)

Again, using Lemma 3.1 to Q(G) = L(G) + 2A(G), with k = n and j = i, we obtain

µi ≥ qn − 2λn−i+1, for i = 1, 2, . . . , n.
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Taking sum from 1 to ν− and using Lemma 3.2, we have

ν−∑
i=1

µi ≥ qnν− − 2

ν−∑
i=1

λn−i+1 = qnν− + E(G),

that is

E(G) ≤ Sν−(G)− qnν−. (15)

Since G is a bipartite graph, therefore µn = qn = 0. Using inequality (3.1) with k = ν−, from
(15), it follows that

E(G) ≤ Sν−(G) ≤ ν−(τ + 1) +m− ω(ω − 1)

2
. (16)

Adding (14) and (16) and using the fact that ν+ + ν− = r and ω = 2 for a bipartite graph G, we
obtain

E(G) ≤ r(τ + 1)

2
+m− 1,

completing the proof.
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