Electronic Journal of Graph Theory and Applications

On open neighborhood locating-dominating in graphs

Mustapha Chellali ${ }^{\text {a }}$, Nader Jafari Rad ${ }^{\text {b }}$, Suk J. Seo ${ }^{\text {c }}$, Peter J. Slater ${ }^{\text {d }}$
${ }^{a}$ LAMDA-Laboratory, Department of Mathematics, University of Blida, B.P.270, Blida, Algeria
${ }^{b}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
${ }^{c}$ Computer Science Department, Middle Tennessee State University, Murfreesboro, TN 37132, U.S.A
${ }^{d}$ Mathematical Sciences Department and Computer Science Department, University of Alabama in Huntsville, Huntsville, AL 35899 USA

m_chellali@yahoo.com, n.jafarirad@gmail.com, sseo@mtsu.edu, slater@uah.edu, pslater@cs.uah.edu

Abstract

A set D of vertices in a graph $G=(V(G), E(G))$ is an open neighborhood locating-dominating set ($O L D$-set) for G if for every two vertices u, v of $V(G)$ the sets $N(u) \cap D$ and $N(v) \cap D$ are non-empty and different. The open neighborhood locating-dominating number $O L D(G)$ is the minimum cardinality of an $O L D$-set for G. In this paper, we characterize graphs G of order n with $O L D(G)=2,3$, or n and graphs with minimum degree $\delta(G) \geq 2$ that are C_{4}-free with $O L D(G)=n-1$.

Keywords: domination; open neighborhood locating-dominating
Mathematics Subject Classification : 05C69

1. Introduction

Various problems in which a graph G models a facility or multiprocessor network involve choosing a vertex set $S \subseteq V(G)$ for the graph $G=(V, E)$, where each $v \in S$ represents a detection device capable of determining if there is an intruder or malfunctioning device in its neighborhood. The open neighborhood of vertex v is $N(v)=\{w \in V(G): v w \in E(G)\}$, the set of vertices adjacent to v. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$.

Received: 17 March 2014, Revised: 15 July 2014, Accepted: 07 September 2014.

For a locating-dominating set $L \subseteq V(G)$ a detection device at $v \in L$ can determine if an intruder is at v or if the intruder is in $N(v)$, but which element of $N(v)$ can not be determined (that is, if an intruder is at distance zero or at distance one). As introduced in Slater [23, 24, 25], a vertex set $L \subseteq V(G)$ is locating-dominating if L dominates $V(G)$ (that is, $\cup_{v \in L} N[v]=V(G)$ so that every intruder can be detected) and for any two vertices x and y in $V(G)-L$ we have $N(x) \cap L \neq$ $N(y) \cap L$. Other works concerning locating-dominating sets include [1, 2, 3, 4, 7, 8, 10, 26, 27]. (Locating sets involving distances larger than one are defined in Slater [22] and Harary and Melter [6].)

If a detection device at v can determine whether there is an intruder in the closed neighborhood $N[v]$, but which vertex location in $N[v]$ cannot be determined, then one is interested in an identifying code, as introduced in Karpovsky, Chakrabarty and Levitin [12]. A vertex set $R \subseteq V(G)$ is an identifying code if R dominates $V(G)$ and for any two vertices x and y in $V(G)$ we have $N[x] \cap R \neq N[y] \cap R$. See, for example, [14].

When a detection device at v can determine if an intruder is in $N(v)$ but will not report if the intruder is at v, we are interested in open neighborhood locating-dominating sets as introduced for the k-cubes Q_{k} by Honkala, Laihonen and Ranto [11] (where they are called "identifying codes with non-transmitting faulty vertices") and for all graphs by Seo and Slater [15]. See also [$9,16,17,18,19,20,21]$. A vertex set $S \subseteq V(G)$ is an $O L D$-set if S dominates $V(G)$ and for any two vertices x and y in $V(G)$ we have $N(x) \cap S \neq N(y) \cap S$. We note that each stronglyidentifying code defined in [11] is both an identifying-code and an $O L D$-set. Every graph G has a locating-dominating set; G has an identifying code only when no two vertices have the same closed neighborhood; and G has an open neighborhood locating-dominating set only when no two vertices have the same open neighborhood.

The minimum cardinality of an open neighborhood locating-dominating set is denoted here by $O L D(G)$ and an $O L D$-set S with $O L D(G)=|S|$ is called an $O L D(G)$-set. (In particular, every $O L D(G)$-set is an $O L D$-set for G.) Lobstein [13] maintains a bibliography, currently with more than 280 entries, for work on distinguishing sets.

2. Existence result

Clearly if $N(u)=N(v)$, then $N(u) \cap S=N(v) \cap S$ for every $S \subseteq V(G)$, so G could not have an $O L D$-set.

Observation 2.1 (Seo and Slater [15]). A graph G has an $O L D$-set if and only if G has no isolated vertex and $N(u) \neq N(v)$ for all pairs u, v of distinct vertices.

A vertex of degree one is called an endpoint, and its neighbor is called a support vertex. A strong support vertex x has two distinct endpoints in $N(x)$. By Observation 2.1, if G has a strong support vertex, then G does not have an $O L D$-set.

Proposition 2.1 (Seo and Slater [16]). For a tree T of order $n \geq 3, T$ has an $O L D$-set if and only if T does not contain a strong support vertex.

We can wonder if there is a forbidden induced subgraph characterization of graphs having $O L D$-sets. The answer is negative. Nor, in fact, is there a forbidden induced subgraph characterization of graphs which do not have $O L D$-sets.

Proposition 2.2. There is no forbidden induced subgraph characterization of the class S1 of graphs having OLD-sets nor of the class $S 2$ of graphs not having OLD-sets.

Proof. For any given graph G, select a vertex $v \in V(G)$ and add two new vertices v^{\prime} and $v^{\prime \prime}$ and edges $v v^{\prime}$ and $v v^{\prime \prime}$ to form a graph G^{*} of order $|V(G)|+2$. Because $N\left(v^{\prime}\right)=N\left(v^{\prime \prime}\right)=\{v\}$, G^{*} does not have an $O L D$-set, and G is an induced subgraph of G^{*}. It follows that no forbidden subgraph characterization of the class $S 2$ of graphs not having $O L D$-sets exists.

Given G, for each $v \in V(G)$ add two new vertices v^{\prime} and $v^{\prime \prime}$ and edges $v v^{\prime}, v v^{\prime \prime}$ and $v^{\prime} v^{\prime \prime}$ to form a graph $H=G \circ K_{2}$ (the corona of G with K_{2}) of order $3 \cdot|V(G)|$. Then H has an $O L D$-set $S=\left\{v^{\prime}, v^{\prime \prime} \mid v \in V(G)\right\}=V(H)-V(G)$ with $|S|=2 \cdot|V(G)|$, and G is an induced subgraph of H. Hence, there is no forbidden subgraph characterization of the class $S 1$ of graphs having $O L D$-sets.

It was shown in [15] that the order of a graph G having $O L D$-sets is bounded above by $2^{O L D(G)}-1$. We prove next the following interpolation result for the open neighborhood locatingdominating number of a graph. (Related results appear in Theorem 3.2 and Corollary 3.1.)

Figure 1. Graphs with $O L D(G)=3$.

Proposition 2.3. Assume (the number of detection devices available is) $k \geq 2$, and suppose $k+1 \leq$ $n \leq 2^{k}-1$, then there exists a connected graph G of order n with $\operatorname{OLD}(G)=k$.

On open neighborhood locating-dominating in graphs $\quad \mid \quad$ Mustapha Chellali et al.

Figure 2. (a) Graph H and (b) Graph G with $O L D(H)=O L D(G)=k$.

Proof. For $k=2, O L D\left(K_{3}\right)=2$. For $k=3$, there is a graph of order $n, 4 \leq n \leq 7$ as shown in Figure 1.

Let k and n be integers with $k \geq 4$ and $k+1 \leq n \leq 2^{k}-1$. Let us consider the following two situations.
Case 1: $k+1 \leq n \leq 2 k-1$.
Let H be the graph obtained from a star $K_{1,\lceil k / 2\rceil}$ by subdividing exactly $\lfloor k / 2\rfloor$ edges as shown in Figure 2(a). Clearly, H has order $k+1$ and $O L D(H)=k$. We denote by $s_{1}, \ldots, s_{\lfloor k / 2\rfloor}$ the support vertices of degree two of H and by $w_{1}, \ldots, w_{\lfloor k / 2\rfloor}$ their leaf neighbors, respectively. If $n \leq$ $\lceil 3 k / 2\rceil$, then we add $n-(k+1)$ endpoints among $\left\{w_{i}: i=1,2, \ldots,\lceil k / 2\rceil-1\right\}$ to obtain a graph G. One can easily check that G has order n and $O L D(G)=k$. Now suppose that $n>\lceil 3 k / 2\rceil$. Let G be the graph obtained from H by adding each an endpoint y_{i} to each w_{i} except $w_{k / 2}$ if k is even, and then we add $n-\lceil 3 k / 2\rceil$ new vertices $z_{1}, z_{2}, . ., z_{n-\lceil 3 k / 2\rceil}$ by joining z_{i} to s_{i} and w_{i}, for $i=1,2, \ldots, n-\lceil 3 k / 2\rceil$ as shown in Figure 2(b). Then G is a graph of order n and $O L D(G)=k$. Case 2: $2 k \leq n \leq 2^{k}-1$.

Let G_{k} be the corona of a complete graph K_{k} and let $S=V\left(K_{k}\right)$. We note that S has $2^{k}-1-2 k$ distinct subsets of size i, where $2 \leq i \leq k$, and $i \neq k-1$. For such subsets of S, select $n-2 k$ distinct subsets, and let G be the graph obtained from G_{k} by adding $n-2 k$ new vertices and attaching each new vertex to only one of these selected subsets so that no two new vertices are adjacent to the same subset. Then, it is easy to see that G has order n and $O L D(G)=|S|=k$.

For the special case of trees we have the following. Note that for path P_{4} we have $O L D\left(P_{4}\right)=4$.
Theorem 2.2 (Seo and Slater [16]). If tree T of order $n \geq 5$ has an $O L D$-set, then $\lceil n / 2\rceil+1 \leq$ $O L D(T) \leq n-1$.

Theorem 2.3 (Seo and Slater [20]). For $n \geq 5$ and $\lceil n / 2\rceil+1 \leq j \leq n-1$ there is a tree $T_{n, j}$ of order n with $O L D\left(T_{n, j}\right)=j$.

As expected, determining the value of $O L D(G)$ is difficult, and the associated decision problem is NP-complete.

Open Neighborhood Locating-Dominating (OLD)

INSTANCE: Graph $G=(V, E)$ and positive integer $K \leq|V|$.
QUESTION: Is $O L D(G) \leq K$?

Theorem 2.4 (Seo and Slater [15]). Problem OLD is NP-complete.

Figure 3. The three graphs G with $O L D(G)=|V(G)|, P_{2}, P_{4}$, and H.

3. Graphs G with small or large $O L D(G)$

Obviously, if a graph G has an $O L D$-set, then $2 \leq O L D(G) \leq n$. In this section, we characterize graphs G with $O L D(G)=2,3$ or n.

Observation 3.1. For a graph $G, O L D(G)=2$ if and only if $G=K_{2}$ or K_{3}.
Proof. Let S be an $O L D$-set of G of size two. Then, clearly no vertex of S has external private neighbor in $V(G)-S$. Hence $|V(G)-S| \leq 1$ and the result follows.

Let \mathcal{E}_{1} be the class of all graphs obtained from the corona of $K_{3} \circ K_{1}$ by removing at most two leaves and possibly adding edges between remaining leaves. Let \mathcal{E}_{2} be the class of all graphs obtained from a corona of $K_{4} \circ K_{1}$ by removing at least one pendant edge and possibly adding edges between the remaining leaves.

Proposition 3.1. For a graph $G, O L D(G)=3$ if and only if $G \in \mathcal{E}_{1} \cup \mathcal{E}_{2}$.

Proof. First it is a routine matter to check that $O L D(G)=3$ for every graph G in $\mathcal{E}_{1} \cup \mathcal{E}_{2}$.
Now let G be a graph with $O L D(G)=3$, and let S be a minimum cardinality $O L D$-set of G. The subgraph induced by S, denoted $G[S]$, must be complete because it can not contain an isolated vertex or be the path P_{3}. Thus $G[S] \cong K_{3}$. Also $V(G)-S \neq \emptyset$ for otherwise $G=K_{3}$ and by Observation 3.1, $O L D\left(K_{3}\right)=2$. Now since any vertex of S has two neighbors in S, every vertex of $V(G)-S$ has either one or three neighbors in S. Moreover, there is at most one vertex in $V(G)-S$, say v^{*}, adjacent to all S. Note that $V(G)-S$ may contain adjacent vertices. Now it is straightforward to see that if v^{*} does not exist, then $G \in \mathcal{E}_{1}$, and if such a vertex v^{*} exists, then $G \in \mathcal{E}_{2}$.

Let H be the graph of order 6 in Figure 3.

Theorem 3.2. For a graph G of order $n, O L D(G)=n$ if and only if any component of G is a P_{2}, P_{4} or H.

Proof. Let G be a graph of order n and $O L D(G)=n$. Without loss of generality, we assume that G is connected. It is easy to see that if $n \leq 4$, then $G=P_{2}$ or P_{4}. Thus assume that $n \geq 5$. Clearly, $G \neq K_{n}$ since $O L D\left(K_{n}\right)=n-1$. For a vertex $r \in V(G)$, let $V_{r}=V(G)-\{r\}$ and G_{r} the subgraph of G induced by V_{r}.

Let v be a vertex of minimum degree in $G, \operatorname{deg}_{G}(v)=\delta(G)$. Note that G_{v} has no isolated vertices. Since V_{v} is not an $O L D$-set of G, there exist two non-adjacent vertices x and y, where $x \in N(v)$ and $y \notin N(v)$ such that $N(x)=N(y) \cup\{v\}$. Observe that G_{y} has no isolated vertices. Thus since V_{y} is not an $O L D$-set, there exist two non-adjacent vertices $z \in N(y)$ and $w \notin N(y)$ such that $N(z)=N(w) \cup\{y\}$. Because $y \in N(z)$, we have $x \in N(z)$ and $x \neq w$. We need to prove the following claims.
Claim 1: $w=v$.
Proof of Claim 1. Suppose to the contrary that $w \neq v$. Since $z \in N(y)$ and $N(x)=N(y) \cup\{v\}$, then $x z \in E(G)$. Also since $N(z)=N(w) \cup\{y\}$ we have $x \in N(w)$. But then $w y \in E$ since $N(x)=N(y) \cup\{v\}$, a contradiction.
Hence $w=v$ and so $N(z)=N(v) \cup\{y\}$.
Claim 2: $d_{G}(v)=1$.
Proof of Claim 2. Assume that $d_{G}(v) \geq 2$. If $d_{G}(x)=2$, then $d_{G}(y)=1$, contradicting the fact that v is a vertex of minimum degree. Thus $d_{G}(x) \geq 3$, and so $d_{G}(y) \geq 2$. Because $\delta(G) \geq 2, G_{z}$ has no isolated vertices. Since V_{z} is not an $O L D$-set of G, there exist two non-adjacent vertices $a \in N(z)$ and $b \notin N(z)$ such that $N(a)=N(b) \cup\{z\}$. Let us suppose that $a \neq y$. Then $a \in N(v)$, since $N(z)=N(v) \cup\{y\}$. Now since $N(a)=N(b) \cup\{z\}$, we have $b \in N(v)$ and so $b \in N(z)$, a contradiction. Hence $a=y$, implying that $N(y)=N(b) \cup\{z\}$. Recall that $N(x)=N(y) \cup\{v\}$ and $d_{G}(y) \geq 2$. Since G_{b} has no isolated vertices, V_{b} is not an $O L D$-set and so there are two non-adjacent vertices $\alpha \in N(b)$ and $\beta \notin N(b)$ such that $N(\alpha)=N(\beta) \cup\{b\}$. Since $\alpha \in N(b)$, it is clear that α is adjacent to y and x, that is $x, y \in N(\alpha)$. It follows that $x, y \in N(\beta)$ since $N(\alpha)=N(\beta) \cup\{b\}$. Hence $\beta \in N(x) \cap N(y)$, implying that $\beta \in N(b)$, a contradiction. We deduce that $d_{G}(v)=1$.

Claim 3: $d_{G}(y)=2$.
Proof of Claim 3. By Claim 2, $d_{G}(v)=1$, and since $N(z)=N(v) \cup\{y\}$, we obtain that $d_{G}(z)=2$. If $d_{G}(y)=1$, then G is path of order $n=4$, a contradiction. Thus $d_{G}(y) \geq 2$, and so $d_{G}(x) \geq 3$. Assume now that $d_{G}(y) \geq 3$. Since $N(x)=N(y) \cup\{v\}$, it follows that every vertex in $N(y)$ has degree at least two. Since $N(z)=\{x, y\}$, we have that G_{z} has no isolated vertices and so V_{z} is not an $O L D$-set of G. Thus there exists a vertex b not adjacent to y and z such that $N(y)=N(b) \cup\{z\}$. Note that $|N(b)| \geq 2$ since $d_{G}(y) \geq 3$. Now G_{b} has no isolated vertices and V_{b} is not an $O L D$-set. Thus there exist two non-adjacent vertices $\alpha \in N(b)$ and $\beta \notin N(b)$ such that $N(\alpha)=N(\beta) \cup\{b\}$. By using an argument similar to the one that is used in the proof of Claim 2, we arrive at $\beta \in N(b)$, which is a contradiction.

We deduce that $d_{G}(y)=2$.
Now by Claims 2 and 3 we have $d_{G}(v)=1, d_{G}(y)=2$. It follows that $d_{G}(x)=3$. Let y^{\prime} be the second neighbor of y. Clearly $d_{G}\left(y^{\prime}\right) \geq 2$ since $y^{\prime} \in N(x)$. Since G_{z} has no isolated vertices and V_{z} is not an $O L D$-set of G, there is a vertex u such that $N(y)=N(u) \cup\{z\}$. It is clear that such a vertex u is adjacent to y^{\prime} and so has degree one. Consequently, $G=H$.

The converse is easy to show.

Using Proposition 2.3 and Theorem 3.2 we have the following.
Corollary 3.1. If $k \geq 7$, then there exists a graph $G_{n, k}$ of order n with $\operatorname{OLD}\left(G_{n, k}\right)=k$ if and only if $k+1 \leq n \leq 2^{k}-1$.

A cycle on n vertices is denoted by C_{n}. Next, we characterize graphs G of order n with minimum degree $\delta(G) \geq 2$ and C_{4}-free having $O L D(G)=n-1$. Note that C_{4}-free graphs are the graphs with no cycle C_{4} (not necessarily induced).

Theorem 3.3. Let G be a connected graph of order n with minimum degree $\delta(G) \geq 2$ that is C_{4}-free. Then $\operatorname{OLD}(G)=n-1$ if and only if G is the cycle C_{5} or the graph $K_{1}+t \cdot P_{2}$ (illustrated in Figure 5a).

Proof. Clearly $O L D\left(C_{5}\right)=4$. For $G=K_{1}+t \cdot P_{2}$ as in Figure 5a, either $V(G)-z_{1}$ or $V(G)-z_{2}$ is an $O L D(G)$-set, and $O L D\left(K_{1}+t \cdot P_{2}\right)=2 t=n-1$.

Note that $G-z_{2}$ is the even ordered graph in Figure 5a with $O L D\left(G-z_{2}\right)=n-2$, but $O L D\left(G-z_{1}\right)=O L D\left(t \cdot P_{2}\right)=2 t=\left|V\left(G-z_{1}\right)\right|$. For the converse it will be shown that every $C_{4}{ }^{-}$ free graph G of order n with no C_{4} contains a vertex z such that $O L D(G-z)=n-1=|V(G-z)|$.

Letting G be C_{4}-free with minimum degree $\delta(G) \geq 2$ and G of order n, assume $O L D(G)=$ $n-1$. Assume vertex x is such that $V(G)-x$ is an $O L D(G)$-set. Note that $V(G)-x$ is also an $O L D$-set for $G-x$, so $O L D(G-x)$ is defined. Assume that $O L D(G-x) \leq n-2$, and let D be an $O L D(G-x)$-set.

Suppose first that $|D| \leq n-3$. Because D is an $O L D(G-x)$-set but not an $O L D$-set for G, there is a vertex x_{1} such that $N(x) \cap D=N\left(x_{1}\right) \cap D$. If $N(x) \subseteq D$, then, because $d_{G}(x) \geq 2, x_{1}$ and x have two common neighbors and G contains a 4-cycle, a contradiction.

Thus, there is a vertex $w \in N(x)$ with $w \notin D$. Consider $D \cup\{w\}$. If $y \in V(G-x)$ and $N(y) \cap(D \cup\{w\})=N(x) \cap(D \cup\{w\})$, then $N(y) \cap D \neq \emptyset$ implies that y and x have two common neighbors, implying that we have a C_{4}, a contradiction. Any two vertices in $G-x$ are distinguished by D, so $D \cup\{w\}$ is an $O L D$-set of G with $|D \cup\{w\}|<n-1$, a contradiction.

Suppose that $|D|=n-2$. Let $V(G)-D=\{x, a\}$. Because D is an $O L D(G-x)$-set, but D is not an $O L D$-set for G, there is a vertex y such that $N(x) \cap D=N(y) \cap D$. If $|N(x) \cap D| \geq 2$, then x and y have two common neighbors and there is a C_{4}, a contradiction. Thus $d_{G}(x)=2$ and $N(x)=\{a, b\}$ where $b \in D$. Because $a y \in E(G)$ implies we have a 4-cycle x, a, y, b, we have ay $\notin E(G)$. But now if $y \neq a$, then $d_{G}(y) \geq 2$ implies that y and x have two common neighbors in D, a contradiction. Thus $y=a$ and $N(a)=\{x, b\}$. If $d_{G}(b)=2$, then $n=3$ and $G=K_{1}+P_{2}$. We can assume $d_{G}(b)>2$. We claim that $V(G)-b=D^{*}$ is also an $O L D(G)$-set. Clearly a is the only vertex w with $N(w) \cap D^{*}=\{x\}, x$ is the only vertex w with $N(w) \cap D^{*}=\{a\}$, and b is the only vertex w with $N(w) \cap D^{*}$ containing $\{a, x\}$. Suppose y_{1} and y_{2} have $N\left(y_{1}\right) \cap D^{*}=N\left(y_{2}\right) \cap D^{*}$. Because $N\left(y_{1}\right) \cap D \neq N\left(y_{2}\right) \cap D$, exactly one of y_{1} and y_{2} is adjacent to b, say it is y_{1}. Now $d_{G}\left(y_{2}\right) \geq 2$ implies that y_{1} and y_{2} have two common neighbors and there is a C_{4}, a contradiction.

Because $d_{G}(b) \geq 3$ and $V(G)-b$ is an $O L D(G)$-set, the above argument shows that $O L D(G-$ $b)=n-1=|V(G)-b|$. By Theorem 3.2 each component of the C_{4}-free graph $G-b$ is P_{2} or P_{4}, and $\delta(G) \geq 2$ implies that $N(b)$ contains all endpoints in each component of $G-b$. Because G is C_{4}-free, no vertex of degree two in a P_{4}-component of $G-b$ is adjacent to b. If some component of $G-b$ is a P_{4}, let a_{1} and a_{2} be the endpoints of the P_{4}. Then $G-a_{1}-a_{2}$ is an $O L D$-set of G unless $n=5$ and $G=C_{5}$, completing the proof.

Corollary 3.2. If G is a connected graph of order n with $\delta(G) \geq 2$, girth $g(G) \geq 5$, and $O L D(G)=n-1$, then G is C_{5}.

Figure 4 shows all trees of order n with $O L D(G)=n-1$ and Figure 5 shows some infinite families of graphs with $O L D(G)=n-1$.

Figure 4. $O L D\left(T_{n}\right)$-sets where $O L D\left(T_{n}\right)=n-1$.

Figure 5. Infinite families of graphs with $O L D(G)=n-1$.

4. Bounds

We first relate $O L D(G)$ to the packing number $\rho(G)$ [5], the maximum number of vertices which are pairwise at distance at least three.

Theorem 4.1. Let G be a connected graph with minimum degree $\delta(G) \geq 3$ and $C_{4}-$ free. Then $O L D(G) \leq n-\rho(G)$.

Proof. Let P be a maximum packing set of G. Observe that since every vertex not in P has at most one neighbor in P, the subgraph induced by $V(G)-P$ has minimum degree at least two. Thus the subgraph induced by $V(G)-P$ has no isolated vertices. Now assume that $S=V(G)-P$ is not an $O L D$-set of G. Hence there are two vertices x, y such that $N(x) \cap S=N(y) \cap S$. Since $N[u] \cap N[v]=\emptyset$ for every pair $u, v \in P$, at most one of x and y belongs to P, implying that $x y \notin E$. Each of x and y has at least two neighbors in S. But then the subgraph induced by $N[x] \cup N[y]$ contains a cycle C_{4} (not necessarily induced), a contradiction. Therefore S is an $O L D$-set for G implying that $O L D(G) \leq|V(G)-P|=n-\rho(G)$.

As in Theorem 12 of Seo and Slater [15], using a "share"argument we obtain the next result.
Theorem 4.2 (Seo and Slater [15]). For a graph G of order n and maximum degree $\Delta(G)$, If G has an $O L D$-set, then $O L D(G) \geq \frac{2 n}{1+\Delta}$.

Note that if G is a cubic graph, then $O L D(G) \geq n / 2$.
Henning and Yeo [9] investigated the problem of determining the upper bound on $O L D(G)$ for a cubic graph G. To that end, they use an interplay between distinguishing-transversals in hypergraphs and identifying open codes in graphs. They first showed that identifying open codes in graphs can be translated to the problem of finding distinguishing-transversal in hypergraphs, and then using the result on the distinguishing-transversal problem they showed the following result.

Theorem 4.3 (Henning and Yeo [9]). If G is a cubic graph of order n, then $O L D(G) \leq 3 n / 4$.
We note that this bound is achieved, for example, by the cube Q_{3} of order 8 . To date, the largest known value of k for which there is an infinite family of cubic graphs G with $O L D(G)=k|V(G)|$ is $k=3 / 5$. Henning and Yeo show such a family in [9].

Acknowledgement

This research is supported by Shahrood University of Technology.

References

[1] N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European Journal of Combinatorics 25 (2004), 969-987.
[2] M. Blidia, M. Chellali, R. Lounes and F. Maffray, Characterizations of trees with unique minimum locating-dominating sets, Journal of Combinatorial Mathematics and Combinatorial Computing 76 (2011), 225-232.
[3] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian Journal of Combinatorics 39 (2007), 219-232.
[4] G. Exoo, V. Junnila and T. Laihonen, Locating-dominating codes in cycles, Australasian Journal of Combinatorics 49 (2011), 177-194.
[5] R. Gallant, G. Gunther, B. Hartnell and D. Rall, Limited packings in graphs. Discrete Applied Mathematics 158 (2010), 1357-1364.
[6] F. Harary and R. Melter, On the metric dimension of a graph. Ars Combinatoria 2 (1976), 191-195.
[7] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[8] T. W. Haynes, M. A. Henning, and J. Howard, Locating and total dominating sets in trees. Discrete Applied Math. 154 (2006), 1293-1300.
[9] M. A. Henning and A. Yeo, Distinguishing-transversal in hypergraphs and identifying open codes in cubic graphs. Graphs and Combinatorics Published online: 30 March 2013.
[10] C. Hernando, M. Mora, and I. M. Pelayo, Nordhaus-Gaddum bounds for locating domination. European Journal of Combinatorics 36 (2014), 1-6.
[11] I. Honkala, T. Laihonen, and S. Ranto, On strongly identifying codes. Discrete Mathematics 254 (2002), 191-205.
[12] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying vertices in graphs. IEEE Transactions on Information Theory IT-44 (1998), 599-611.
[13] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs. http://www.infres.enst.fr/ lobstein/debutBIBidetlocdom.pdf
[14] J. Moncel, On graphs on n vertices having an identifying code of cardinality $\left\lceil\log _{2}(n+1)\right\rceil$. Discrete Applied Mathematics 154 (2006), 2032-2039.
[15] S. J. Seo and P. J. Slater, Open neighborhood locating-dominating sets. Australasian Journal of Combinatorics 46 (2010), 109-120.
[16] S. J. Seo and P. J. Slater, Open neighborhood locating-dominating in trees. Discrete Applied Mathematics 159 (2011), 484-489.
[17] S. J. Seo and P. J. Slater, Open Neighborhood Locating-Domination for Infinite Cylinders. Proceedings of ACM SE (2011), 334-335.
[18] S. J. Seo and P. J. Slater, Open Neighborhood Locating-Domination for Grid-like Graphs. Bulletin of the Institute of Combinatorics and its Applications 65 (2012), 89-100.
[19] S. J. Seo and P. J. Slater, Graphical Parameters for Classes of Tumbling Block Graphs. Congressus Numerantium 213 (2012), 155-168.
[20] S. J. Seo and P. J. Slater, Open Locating-Dominating Interpolation for Trees. Congressus Numerantium 215 (2013), 145-152.
[21] S. J. Seo and P. J. Slater, OLD Trees with Maximum Degree Three, Utilitas Mathematica 94 (2014), 361-380.
[22] P. J. Slater, Leaves of trees. Congressus Numerantium 14 (1975), 549-559.
[23] P. J. Slater, Domination and location in graphs. National University of Singapore, Research Report No. 93 (1983).
[24] P. J. Slater, Dominating and location in acyclic graphs. Networks 17 (1987), 55-64.
[25] P. J. Slater, Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988), 445-455.
[26] P. J. Slater, Locating dominating sets and locating-dominating sets. In: Graph Theory, Combinatorics, and Applications: Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995), 1073-1079.
[27] P. J. Slater, Fault-tolerant locating-dominating sets. Discrete Mathematics 249 (2002), 179189.

