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Abstract

We revisit Hoffman relation involving chromatic number χ and eigenvalues. We construct some
graphs and weighted graphs such that the largest and smallest eigenvalues λ dan µ satisfy λ =
(1 − χ)µ. We study in particular the eigenvalues of the integer simplex T 2

m, a 3-chromatic graph
on
(
m+2
2

)
vertices.
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1. Chromatic number and eigenvalues

Proposition 1.1. (a variant of Hoffman’s [4]) Let G be a connected graph, whose edges may have
positive weights, endowed with a proper coloration using χ colors. Let Gij be the bipartite graph
induced in G by the two color classes i and j. Let K1 ≥ K2 ≥ · · · ≥ Kχ(χ−1)/2 be the largest
eigenvalues of the χ(χ − 1)/2 bipartite graphs Gij. The largest adjacency eigenvalue λ of G is
at most the sum

∑χ−1
i=1 Ki of the χ − 1 largest eigenvalues of the bipartite graphs. As a corollary,

λ ≤ −(χ−1)µ, where µ is the smallest eigenvalue of G. Moreover, if λ = −(χ−1)µ, all bipartite
graphs defined by two colors have extremal eigenvalues µ and −µ.

Proof. Various proofs for unweighted graphs were given by Godsil ([2], p. 1733) and Haemers [3].
The inequality admits refinements: 2λ is at most the sum of the χ largest singular values (see [7]).
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We will use only singular values (see [6]), interlacing of adjacency values (see [3]) and Gershgorin
inequalities (see [5]).

Consider a partition of the vertices in χ coloration classes. Consider the blocks Ai,j induced
by the color partition in the adjacency matrix of the graph G. Thus each diagonal block Ai,i is null
because the coloration classes are stable subsets.

Let us use the norms defined as the highest singular value of the matrices (or rows, or columns),
in other words the Ky Fan norm ‖ · ‖F1. For rows and columns, it coincides with the euclidian
norm: for matrices it coincides with the corresponding matrix norm. For symmetric real matrices:
it is the highest eigenvalue (see [6] p. 171).

The largest eigenvalue λ of G defines a unit length eigenvector with only positive components,
also partitioned into blocks Vi.We have then

∑
|Vi|2 = 1 and λ =

∑
i,j V

t
i Ai,jVj. Thus |V t

i | = |Vi|
and |V t

i Ai,jVj| ≤ |Vi||Ai,j||Vj| and therefore we have λ ≤
∑

i,j |V t
i ||Ai,j||Vj|.

We consider the square matrix of size χ and entries |Ai,j|. According to Gershgorin method,
the largest eigenvalue is at most the largest sum of entries in a row (recall that the entries are ≥ 0).
Thus it is at most

∑χ−1
i=1 Ki. On the other hand, K1 is the maximum eigenvalue of some induced

bipartite graph Gij induced by classes i and j, and thus −K1 is the smallest eigenvalue of Gij :
then interlacing ensures µ ≤ −K1. Clearly 0 < K1 ≤ −µ and 0 < λ ≤ (χ − 1)K1 imply
λ ≤ −µ(χ−1). More precisely, if λ = (1−χ)µ, we see from Gershgorin method that all bipartite
subgraphs defined by pairs of colors have the same largest and smallest eigenvalue, namely −µ
and µ and that all vectors Vi have the same norm. Thus, if λ = (1− χ)µ then µ has multiplicity at
least χ− 1 in the spectrum of G (see also [4]).

Example 1. Both inequalities µ ≤ −K1 and λ ≤ K1 + K2 for 3-colorable graphs could be
equalities or strict inequalities. Here are four examples with planar and uniquely 3-colorable
graphs, that is, there is only one partition of the vertices into three stable sets. See Figure 1.

Figure 1. Four uniquely 3-colorable graphs

The octahedron has −2 = µ = −K1 = −K2 = −λ/2. More generally, the regular complete
tripartite graph Km,m,m has −m = µ = −K1 = −K2 = −λ/2 and all other eigenvalues are null.

The suspension of a 6-cycle has eigenvalues (with multiplicities) in decreasing order {1 +√
7, 1[2], (−1)[2], 1 −

√
7,−2}. The bipartite graphs are the 6-cycle with eigenvalues {2, 1[2],-

(−1)[2],−2} and two copies of K1,3 with eigenvalues {
√
3, 0[2],−

√
3}. Thus µ = −K1 = −2

and λ = 1 +
√
7 < K1 +K2 = 2 +

√
3.

The antiprism on a 9-gon has spectrum {2 cos(kπ
9
)+ 2 cos(2kπ

9
), k = 0..17} (not ordered). The

largest eigenvalue is λ = 4, the smallest is 2 cos(5π
9
) + 2 cos(10π

9
) < −2. The bipartite graphs
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are 12-cycles, with smallest eigenvalue −2. Hence µ = 2 cos(5π
9
) + 2 cos(10π

9
) < −2 = −K1 =

−K2 = −λ/2.
Even if the three bipartite graphs are isomorphic and connected, we may find µ < K1 < −λ/2,

as shown in the last example. The bipartite graphs are paths on 4 vertices with the smallest
eigenvalue (−1 −

√
5)/2 ' −1.618. But the characteristic polynomial of the graphs is (X3 −

X2− 6X− 3)(X3+X2− 2X− 1), its smallest root is µ ' −1.80 < (−1−
√
5)/2 and its largest

λ ' 3.18 < 1 +
√
5.

Remark 1.1. It is not surprising that the inequality is also obtained for some graphs, even connected
ones, that are not 3-colorable. For example, the antiprism on a 5-gon has spectrum {4, (

√
5)[2], 0,-

(−1)[4], (−
√
5)[2]}; thus µ < −λ/2, but the graph is not 3-colorable.

Even unique colorability does not help: the join of Kq and Kp (with p and q ≥ 2) is uniquely

(q + 1)-colorable, but the largest eigenvalue is λ =
q−1+
√

(q−1)2+4pq

2
and the smallest µ =

q−1−
√

(q−1)2+4pq

2
. (The other eigenvalues are 0 and −1 with multiplicities p − 1 and q − 1). The

ratio λ/µ tends to −1 when p→∞.

2. Weighted graphs with λ = (1 − χ)µ

2.1. General constructions
Obviously, multiplication by a positive real of all weights preserve the property. We observe

that if we cut a symmetric matrix into blocks, say

M =

[
M11 M12

M21 M22

]
,

with M11 and M22 square, of sizes n1 and n2, the matrix of size n1 + nn2
M11 M12/

√
n M12/

√
n · · · M12/

√
n

M21/
√
n M22 0 · · · 0

M21/
√
n 0

. . . . . . ...
...

... . . . M22 0
M21/

√
n 0 · · · 0 M22


has spectrum the multiset union of the spectrum of M and n − 1 copies of the spectrum of M22.
Thus replication of parts of a (weighted) graph with λ = (1 − χµ) and appropriate modifications
of weights give new weighted graphs with the same property.

Using these two methods we obtain from the unweightedK3 some 3-colorable weighted graphs
with λ = −2µ (Figure 2). The unmarqued edges have weight 1.

The graph of order 4 has λ = 2
√
2; the ones of order 5 have (from left to right) λ = 2

√
2, λ =

2
√
3, λ = 4, and λ = 2

√
3. However the last graphs is not obtained by the same method. We

now give some other graphs where Hoffman’s inequality becomes an equality. If G has chromatic
number χ and satisfies λG = (1−χ)µG; and if H is a connected graph with at least a loop and two
vertices, such that µH(χ − 1) ≤ λH , then the categorical product G × H (called product in ([1],
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Figure 2. Some weighted 3-colorable graphs with λ = −2µ

p. 66) has also chromatic number χ and satisfies λG×H = (1 − χ)µG×H . Morever, with the same
condition on H, if G is uniquely χ-colorable, then G×H is also uniquely χ-colorable.

As an example, we show the product with G a triangle and H a path of length 2 with a loop at
each vertex (λH =

√
2 + 1, µH = 1−

√
2), (Figure 3 left) or a path of lengt h 2 with a loop at the

central vertex (λH = 2, µH = 1), (Figure 3 right).

Figure 3. Two uniquely 3-colorable products with λ = −2µ

The case of G and H complete graphs, with a loop at each vertex of H gives again the regular
multipartite complete graphs. Some Cayley graphs have the property. For example the ones built
on the groups Z/3pZ × Z/3pqZ with generator {±(1, 0),±(0, 1),±(1, 1)} and parameters λ =
6, µ = −3, and χ = 3.

2.2. Particular graphs
The two graphs of Figure 4 satisfy also the conditions
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• uniquely 3-colorable,

• λ = −2µ (here λ = 4),

• the bipartite graphs have smallest eigenvalue µ.

Figure 4. Two cospectral planar uniquely 3-colorable graphs with λ = −2µ

Both graphs have spectrum {4,
√
2
[2]
, 0[2], (−

√
2)[2], (−2)[2]}. In the first graph the bipartite

graphs are a 8-cycle and 2 copies of the extended Dynkin diagram D̃4 (alias K1,4). In the second
graph they are a 4-cycle and 2 copies of D̃6 (on 7 vertices).

In the same vein, we have a graph T 2
3 (that will appear in Section 3) decomposable into C6 and

two copies of Ẽ6. The cartesian product of two graphs of chromatic number χ has also chromatic
number χ. The condition λ = (1−χ)µ is also preserved by cartesian product, as well as connexity,
but the unicity of the χ-coloration is not (unless χ ≤ 2).

3. Integer simplexes of dimension 2

Here we describe a family of non-regular graphs with the property λ = −2µ, the integer
simplexes of dimension 2, denoted T 2

m, that are not regular if m ≥ 2 (see [8]).

Definition 1. The graph T 2
m is made from the

(
m+2
2

)
ordered triples of nonnegative integers with

sum m. The edges connect vertices that differ by 1 in two places.

These graphs are uniquely 3-colorable for m ≥ 1; it suffices to give color (u + 2v) mod 3 to
the vertex [m− u− v, u, v] and there is no other choice up to permutation of colors.

As a consequence, the isomorphism [x, y, z] 7→ [y, z, x] permutes the color classes if m is not
multiple of 3, and stabilizes them if 3|m. Similarly, the isomorphism [x, y, z] 7→ [x, z, y] permutes
the parts with colors 1 and 2 and stabilizes the part with color 0.

3.1. Relations
We will prove that the eigenvalues of these graphs satisfy not only the inequalities given in

Section 1, but the equality λ = −2µ, and that µ, −µ are the largest and smallest eigenvalues of the
three bipartite graphs, even if m is multiple of 3, where the class of color 0 gives a bipartite graph
with order

(
2 +

(
m+2
2

))
/3 and two (isomorphic) ones of order

(
−1 +

(
m+2
2

))
/3.
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Proposition 3.1. The largest adjacency eigenvalue of T 2
m is λ = 2 + 4 cos( 2π

m+3
), and −λ/2 =

−1− 2 cos( 2π
m+3

) is an eigenvalue of T 2
m.

Proof. We will consider the polynomials Ui defined by U0 = 1, U1 = X and Un+2 = XUn+1−Un.
They satisfy the equalities of rational fractions (X−1/X)Un(X+1/X) = Xn+1−X−n−1 and thus
the equalities Un(2 cos θ) sin θ = sin((n + 1)θ). They are of course closely related to Chebyshev
polynomials of second kind.

We consider also the polynomials Pj,i where i, j are integers with 0 ≤ i ≤ j defined for
0 ≤ i ≤ j/2 by Pj,i =

∑
i≤k≤j−i(i+ 1)Uk +

∑
0≤k≤i−1(k + 1)(Uk + Uj−k) and if j/2 ≤ i ≤ j by

Pj,i = Pj,j−i. For convenience, we add Pj,−1 = Pj,j+1 = 0 for j ≥ −1. They satisfy for j ≥ 0 and
0 ≤ i ≤ j the equalities

(1 +X)Pj,i = Pj,i+1 + Pj−1,i−1 + Pj+1,i+1 = Pj,i−1 + Pj−1,i + Pj+1,i

and therefore

(2 + 2X)Pj,i = Pj,i+1 + Pj,i−1 + Pj−1,i−1 + Pj−1,i + Pj+1,i+1 + Pj+1,i.

They also satisfy Pm+1,i(2 cos(
2tπ
m+3

)) = 0 for 0 ≤ i ≤ m + 1 and 1 ≤ t ≤ (m + 3)/2, t integer.
Indeed for θ = 2tπ

m+3
we have sin θ 6= 0 and sin((i + 1)θ) = − sin((m + 1 − i + 1)θ) and thus

Ui + Um+1−i takes the value 0 for all i from 0 to (m+ 3− 1)/2 and if m is odd U(m+3)/2 takes the
value 0 also. The symmetry i 7→ j − i gives then Pm+1,i(2 cos(

2tπ
m+3

)) = 0 for (m+ 3)/2 < i ≤ j.
Hence the function f that associates to the point [m− u− v, u, v] the value f([m− u− v, u, v]) =
Pu+v,u(2 cos(

2tπ
m+3

)) constitutes an eigenvector for T 2
m, associated to the eigenvalue

2 + 4 cos

(
2tπ

m+ 3

)
.

Moreover, for t = 1, the values of the polynomials Pj,i(2 cos( 2π
m+3

)) for 0 ≤ i ≤ j ≤ m are
positive, because sin( 2π

m+3
) > 0, sin( (i+1)2π

m+3
)+sin( (j−i+1)2π

m+3
) > 0 and if j is even sin( (j/2+1)π

m+3
) > 0

and thus each sum (Ui+Uj−1), as well as Uj/2 if j is even, takes a positive value. Thus the highest
eigenvalue of T 2

m is 2 + 4 cos( 2π
m+3

).
We observe also that the new functions f1 and f2 defined by

f1([m− u− v]) =


0, if u = 0 (mod 3)
f([m− u− v, u, v]), if u = 1 (mod 3)
−f([m− u− v, u, v]), if u = 2 (mod 3)

and

f2([m− u− v]) =


0, if u = 1 (mod 3)
f([m− u− v, u, v]), if u = 2 (mod 3)
−f([m− u− v, u, v]), if u = 0 (mod 3)

are independent eigenvectors for T 2
m, associated to the eigenvalue

−λ/2 = −1− 2 cos

(
2tπ

m+ 3

)
unless the eigenvalue is 0.
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At this point we may wonder whether −λ/2 = −1− 2 cos( 2π
m+3

) is the smallest eigenvalue of
T 2
m. We know already

• µ ≤ −1− 2 cos( 2π
m+3

) = −λ/2,

• −1−2 cos( 2π
m+3

) is the smallest eigenvalue of the three bipartite graphs obtained by removing
the vertices in a color class,

• the equality µ = −λ/2 holds for small values of m, indeed Maple checked that from m = 1
to m = 20.

But the example of the antiprisms on 3p-gons, p ≥ 3 shows that one cannot already conclude
µ = −λ/2.

Proposition 3.2. The smallest adjacency eigenvalue of T 2
m is −λ/2 = −1− 2 cos( 2π

m+3
).

Proof. We introduce another family of graphs. The graph G(a, b) has order ab with vertices in
Z/aZ×[1..b] and edges defined by {(x, y), (x+1, y)} for x ∈ Z/aZ and 1 ≤ y ≤ b, {(x, y), (x, y+
1)} and {(x, y), (x+ 1, y + 1)} for x ∈ Z/kZ and 1 ≤ y < b.

The eigenvalue of G(a, b) are the reals

φ(t, s) = 2 cos

(
2tπ

a

)
+ 4 cos

(
tπ

a

)
cos

(
sπ

b+ 1

)
for 0 ≤ t ≤ a− 1 and 1 ≤ s ≤ b. Corresponding eigenvectors are given by the real and imaginary
parts of (x, y) 7→ sin( syπ

b+1
) exp( itπ(2x−y)

a
).

Note that
φ(t, s) = φ(a− t, b+ 1− s). (1)

It appears that the spectrum ofG(3(m+3),m+2) contains 3 times the spectrum of T 2
m. Indeed

each eigenvector v of T 2
m can be extended into an eigenvector f(v) of G(3(m+3),m+2) with the

indicated symmetries and null values on the vertices out of the copies of T 2
m (Figure 5): shifting one

step ψ : (x, y) 7→ (x+1, y) allows to find 3 linearly independent vectors f(v), f(ψ(v)), f(ψ2(v)).
However, other eigenvalues of G(3(m + 3),m + 2), less than the ones of T 2

m may have high
multiplicity, in particular, for m = 1 the eigenvalue −2 of G(12, 3) has multiplicity 5 and is not
in the spectrum {2, (−1)[2]} of T 2

1 . For m = 2, the multiplicities of 2 and (−3−
√
5)/2 are 4 and

these numbers are not in the spectrum {1 +
√
5, ((−1 +

√
5)/2)[2], 1 −

√
5, ((−1 −

√
5)/2)[2]}

of T 2
2 . But this phenomenon does not occur for m > 2. For m ≥ 3 only the values j = 1,

j = 2 –and of course m + 2, m + 1 owing to symmetry (Eq.1)– could provide values smaller
than −1 − 2 cos( 2π

m+3
), since the minimum of 2 cos 2θ + 4 cos θ cosα with θ real is obtained with

2 cos θ = cosα and its value is −3 + sin2 α, and −1− 2 cos( 2π
m+3

) = −3 + 4 sin2 α. We note also
that −1− 2 cos( 2π

m+3
) = φ(2m+ 3, 1) = φ(2m+ 9, 1) = φ(2m+ 6, 2).

Indeed, for m ≥ 7 the value j = 2 provides only one value smaller than −1 − 2 cos( 2π
m+3

),
namely φ(2m + 5, 2), and for m ≥ 19, j = 2 provides no value smaller than −1 − 2 cos( 2π

m+3
).

For m ≥ 7 the value j = 1 provides only 5 values smaller than −1 − 2 cos( 2π
m+3

), namely φ(t, 2)
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Figure 5. Six copies of T 2
2 in G(15, 4) induce 3 copies of the spectrum of T 2

2 in the spectrum of G(15, 4)

with 2m + 4 ≤ t ≤ 2m + 8. For m ≥ 19, we will see that the five values of φ are different, and
thus are present in the spectrum of G(3m + 9,m + 2) with multiplicity 2 only and therefore are
not eigenvalues of T 2

m.
Computing the five functions

3 + φ(2m+ 6 + s, 1) = 2 cos

(
4π

3
+

2sπ

3m+ 9

)
+ 4 cos

(
2π

3
+

sπ

3m+ 9

)
cos

(
3π

3m+ 9

)
,

with −2 ≤ s ≤ 2 as polynomials of degree at most 5 allows the completion of the proof. For m
large, we have in decreasing order

φ(2m+ 8, 1), φ(2m+ 4, 1), φ(2m+ 7, 1), φ(2m+ 5, 1), φ(2m+ 6, 1).

Indeed these polynomials are given in Table 1 (with x = sin( π
3m+9

) and y = cos( π
3m+9

)).

Figure 6. T 3
2 is not uniquely 4-colorable

Needless to say, for these graphs, since the coarse inequality λ ≤ (1−χ)µ becomes an equality,
the refined inequalities as well as the intermediary inequalities also become equalities.
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Table 1. Function 3 + φ as polynomials in x, y and r =
√
3

function expression
3 + (−1− 2 cos( 2π

m+3
)) 36x2 − 96x4 + 64x6

3 + φ(2m+ 4, 1) (−2− 4xr + 12x2 + 8x3r − 16x4)y
+2 + 4xr + 8x2 − 20x3r − 8x4 + 16x5r

3 + φ(2m+ 5, 1) 12x2 − 8x4 − 8yx3r
3 + φ(2m+ 6, 1) 2+(−2 + 8x2)y
3 + φ(2m+ 7, 1) 12x2 − 8x4 − 8yx3r
3 + φ(2m+ 8, 1) (−2 + 4xr + 12x2 − 8x3r − 16x4)y

+2− 4xr + 8x2 + 20x3r − 8x4 − 16x5r3

3.2. Remark about integer simplexes of higher dimension
The equality λ1 + (χ − 1)λn = 0 does not hold for m = 2 and d > 2. Indeed, the highest

eigenvalue of T d2 is d− 1 +
√
d2 + 1, and (d− 1 +

√
d2 + 1/d) is not an algebraic integer.

The coloration of T dm is not unique in general: Figure 6 shows two colorations of T 3
2 that are

not equivalent under color permutation and not even equivalent under color permutation and graph
isomorphism. The same possibility of different colorations for T dm occurs at least when there are
several non-isomorphic abelian groups of cardinality d+ 1.

4. Problem

The underlying graphs of examples of Figure 2 are all uniquely 3-colorable graphs on 4 or 5
vertices and even a graph (of size 6) that is not uniquely 3-colorable. Thus the following question
is suggested.

Does every uniquely 3-colorable graph admit positive weights such that λ = −(χ− 1)µ?

Note that the graph obtained by adding a pendant edge to a triangle (this graph is not uniquely
3-colorable) does not admit such a choice of weights. Indeed, the characteristic polynomial has
constant term xy where x and y are the weights of the pendant edge and the one not adjacent to it,
but the eigenvalues of the graph should be λ,−λ/2,−λ/2, and 0, that implies a null constant term.
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