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Abstract

Let G = (V,E) be a simple connected graph. An injective function f : V → Rn is called an n-
dimensional (or n-D) orthogonal labeling of G if uv, uw ∈ E implies that (f(v)− f(u)) · (f(w)−
f(u)) = 0, where · is the usual dot product in Euclidean space. If such an orthogonal labeling
f of G exists, then G is said to be embedded in Rn orthogonally. Let the orthogonal rank or(G)
of G be the minimum value of n, where G admits an n-D orthogonal labeling (otherwise, we
define or(G) = ∞). In this paper, we establish some general results for orthogonal embeddings
of graphs. We also determine the orthogonal ranks for cycles, complete bipartite graphs, one-point
union of two graphs, Cartesian product of orthogonal graphs, bicyclic graphs without pendant, and
tessellation graphs.
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1. Introduction

Graph labelings form an important part of graph theory. First formally introduced in the 1960s
by Alex Rosa, this area of research has been the subject matter for many papers in the mathemati-
cal literature. Certain types of graph labelings have applications to graph decomposition problems,
radar pulse code designs, X-ray crystallography and communication network models. The inter-
ested reader is directed to J.A. Gallian’s comprehensive dynamic survey on graph labelings [2].
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For concepts and notation not explicitly defined in this paper, the reader is directed to [1]. In
this paper, G = (V,E) is a simple connected graph. Let ∆(G) denote the maximum degree of G.
In [3], the following type of graph labeling was introduced:

• An injective function f : V → R∆(G) is an orthogonal labeling of G if uv, uw ∈ E implies
that (f(v)− f(u)) · (f(w)− f(u)) = 0, where · is the usual dot product in Euclidean space.
If G has such a labeling, then G is called an orthogonal graph.

In their paper [3], Immanuel and Sugeng showed that the hypercubes Qn (n ≥ 1), C2k (k ≥ 2)
and trees are orthogonal. They also showed that odd cycles, as well as any G containing K3 as a
subgraph, are not orthogonal.

An orthogonal labeling of G can be explicitly constructed from a rectilinear drawing of G in
R∆(G), where incident edges of G are perpendicular to each other. This particular type of labeling
is quite interesting as it imposes a geometric structure to a graph. In fact, othogonal drawings
of G (where ∆(G) = 2) have been studied extensively in computational geometry and computer
science. As of this writing, a key phrase search for “orthogonal drawing” yields 111 entries in the
MathSciNet database.

In this paper, we give further analysis of orthogonal graphs in a more general context. We
start with a few definitions. For a graph G = (V,E), an injective function f : V → Rn is an
n-dimensional (or n-D) orthogonal labeling of G if uv, uw ∈ E implies that (f(v) − f(u)) ·
(f(w) − f(u)) = 0, where · is the usual dot product in Euclidean space. Let the orthogonal rank
of G (denoted by or(G)) be the minimum value of n such that G admits an n-D orthogonal label-
ing (if any), otherwise define or(G) = ∞. If or(G) = ∆(G), then G is called an orthogonal graph.

Observations.

1. If G has an n-D orthogonal labeling, then n ≥ ∆(G).
2. Suppose H is a subgraph of a graph G. Then, or(H) ≤ or(G).

2. Some results

For convenience, we will use v to denote the vertex label f(v) and uv to denote the vector
f(v)− f(u), for u, v ∈ V (G), when there is no danger for confusion.

Lemma 2.1. or(K2,3) = ∞.

Proof. Let (X, Y ) be the vertex set bipartition of K2,3, where X = {x1, x2} and Y = {y1, y2, y3}.
Suppose there is an n-D orthogonal labeling f of K2,3, where 3 ≤ n < ∞. Without loss of
generality, assume that x1 = (0, . . . , 0), y1 = (a1, 0, . . . , 0), y2 = (0, a2, 0, . . . , 0) and y3 =
(0, 0, a3, 0, . . . , 0), for some ai ∈ R \ {0}, 1 ≤ i ≤ 3. Now, suppose that x2 = (p1, p2, p3, . . . , pn).
Then, y1x2 = (p1 − a1, p2, p3, . . . , pn), y2x2 = (p1, p2 − a2, p3, . . . , pn) and y3x2 = (p1, p2, p3 −
a3, . . . , pn). Since y1x1 and y1x2 are orthogonal, we have a1(p1 − a1) = 0. Since a1 ̸= 0, this
implies that p1 = a1. Similarly, we have p2 = a2 and p3 = a3. Since y1x2 and y2x2 are orthogonal,

we have
n∑

i=3
p2i = 0. This implies a3 = p3 = 0, which is a contradiction. Hence, the claim is

established.
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Corollary 2.2. Suppose G contains K2,3. Then, or(G) = ∞.

Proof. This follows immediately from Lemma 2.1 and Observation 2.

Corollary 2.3. or(Km,n) = ∞, for 2 ≤ m ≤ n, where m,n are not simultaneously equal to 2.
Furthermore, or(K2,2) = 2.

Proof. In [3], it was shown that all even cycles are orthogonal. Thus, or(K2,2) = 2. The remainder
of the claim follows immediately from Corollary 2.2.

Let Gi, 1 ≤ i ≤ n, be n disjoint graphs. Suppose ui ∈ V (Gi). Let H be the graph obtained
from the Gi by identifying all the ui to a single vertex. We say that H is a one-point union of the
Gi, where 1 ≤ i ≤ n.

Lemma 2.4. Let G′ be a one-point union of arbitrary graphs G and H , with identified vertex w.
Then, or(G′) = max{or(G), or(H), deg(w)}.

Proof. If or(G) = ∞ or or(H) = ∞, then the result is obvious. So, we assume that or(G) = g
and or(H) = h. Let w be the vertex in G′ after merging u ∈ V (G) and v ∈ V (H). Clearly,
or(G′) ≥ max{or(G), or(H), deg(w)}.

We need to show that or(G′) ≤ max{or(G), or(H), deg(w)}. Let α : V (G) → Rg and
β : V (H) → Rh be g-D and h-D orthogonal labelings of G and H , respectively. Without loss of
generality, let 1 ≤ h ≤ g. Let the neighborhood of u in G be {u1, . . . , um} and the neighborhood
of v in H be {v1, . . . , vn}. Clearly, m ≤ g and n ≤ h.

Case 1: Suppose m + n ≤ g. By using rotation and translation, we can assume that α(u) is
the origin in Rg and each edge α(u)α(ui) lies on the positive i-th axis, 1 ≤ i ≤ m. Moreover, we
can also assume that α(V (G)) lies in the region Ω+ = {(x1, . . . , xg) | xi ≥ 0}. Similarly, we can
assume that each edge β(v)β(vj) lies on the negative (m + j)-th axis, 1 ≤ j ≤ n. Moreover, we
can also assume that β(V (H)) lies in the region Ω− = {(x1, . . . , xg) | xi ≤ 0}. Combining these
two labelings, we have the required labeling of G′ and or(G′) = g = or(G).

Case 2: Suppose m + n > g. Now, we want to orthogonally embed G′ in Rm+n. By using
rotation and translation, we can assume that α(u) is the origin in Rm+n and each edge α(u)α(ui)
lies on the positive i-th axis, 1 ≤ i ≤ m. Moreover, we can also assume that α(V (G)) lies in the
region Ω+ = {(x1, . . . , xg, 0, . . . , 0) ∈ Rm+n | xi ≥ 0, 1 ≤ i ≤ g}. Similarly, we can assume
that each edge β(v)β(vj) lies on the negative (m + j)-th axis, 1 ≤ j ≤ n. Moreover, we can also
assume that β(V (H)) lies in the region Ω− = {(x1, . . . , xg, . . . , xm+n) | xi ≤ 0, 1 ≤ i ≤ m+ n}.
Combining these two labelings, we have the required labeling of G′ and or(G′) = m + n =
deg(w).

Figure 1 illustrates Lemma 2.4. In the first graph, G1 is a one-point union of C5 and K1,3, with the
identified vertex being a leaf of K1,3. In the second graph, G2 is another one-point union of C5 and
K1,3, where the identified vertex is the vertex of degree three in K1,3.

Corollary 2.5. The one-point union of orthogonal graphs is orthogonal.
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Figure 1. or(G1) = 3 and or(G2) = 5.

Proof. This follows immediately from Lemma 2.4.

Corollary 2.6. The one-point union of an orthogonal graph G and a tree T is orthogonal.

Proof. In [3], it was shown that every tree is orthogonal. Hence by Corollary 2.5, the claim is
established.

We note that Corollary 2.6 was also shown in [3].

Lemma 2.7. Let or(G), or(H) < ∞ for graphs G and H , respectively. Then, ∆(G) + ∆(H) ≤
or(G×H) ≤ or(G) + or(H).

Proof. Note that the maximum degree of G × H is ∆(G) + ∆(H). So, the first inequality is
obvious. Let fG : V (G) → Rm and fH : V (H) → Rn, where or(G) ≤ m and or(H) ≤ n. Define
f : V (G) × V (H) → Rm+n by f((u, v)) = (fG(u), fH(v)), for u ∈ V (G) and v ∈ V (H). It is
straightforward to check that f is an (m + n)-D orthogonal labeling of G×H , which establishes
the second inequality.

Corollary 2.8. If G and H are orthogonal, then G×H is orthogonal.

Proof. Let G and H be orthogonal graphs. Then, or(G) = ∆(G) and or(H) = ∆(H). Thus, by
Lemma 2.7, the claim follows.

Lemma 2.9. Let K be a connected graph with cut-edge uv. Suppose K−uv = G+H (where u ∈
G, v ∈ H) and or(G), or(H) < ∞. Then, or(K) = max{or(G), or(H), degK(u), degK(v)}.

Proof. Clearly, or(K) ≥ max{or(G), or(H), degK(u), degK(v)}. Let g = or(G) and h =
or(H). Without loss of generality, assume 1 ≤ h ≤ g. Clearly, degG(u) = m ≤ g and
degH(v) = n ≤ h. Note that degK(u) = m+ 1 ≤ g + 1 and degK(v) = n+ 1 ≤ h+ 1 ≤ g + 1.

Let α : V (G) → Rg and β : V (H) → Rh be g-D and h-D orthogonal labelings, respectively.
Let the neighborhood of u in G be {u1, . . . , um} and the neighborhood of v in H be {v1, . . . , vn}.

We first consider h < g.

Case 1: Suppose m < g. Then, max{or(G), or(H), degK(u), degK(v)} = g. It suffices to find
a g-D orthogonal labeling for K. By using rotation and translation, we can assume that α(u) is the
origin in Rg and each edge α(u)α(ui) lies on the positive i-th axis, 1 ≤ i ≤ m. Moreover, we can
also assume that α(V (G)) lies in the region Ω+ = {(x1, . . . , xg) | xi ≥ 0, 1 ≤ i ≤ g}. Similarly,
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we can embed the graph H in Rg such that β(v) is the origin of Rg and each edge β(v)β(vj) lies on
the negative j-th axis, 1 ≤ j ≤ n. Moreover, we can also assume that β(V (H)) lies in the region
Ω− = {(x1, . . . , xg) | xj ≤ 0, 1 ≤ j ≤ g}. Finally, we translate β(V (H)) one unit downward
along the g-th axis. This gives us the required labeling.

Case 2: Suppose m = g. Then, max{or(G), or(H), degK(u), degK(v)} = g + 1. It suffices
to find a (g + 1)-D orthogonal labeling for K. The proof is the same as in Case 1, by replacing g
with g + 1.

Now, suppose h = g. Without loss of generality, we can assume that n ≤ m. The proof for
this case is the same as above.

Thus, or(K) ≤ max{or(G), or(H), degK(u), degK(v)}. This completes the proof.

3. Applications

There is a 2-D orthogonal labeling of C2k in [3]. Its restriction is a 2-D orthogonal labeling of
P2k = v0v1 · · · v2k−1 for k ≥ 2. For the sake of completeness, we list that labeling φ here:
φ(v0) = (0, 0); φ(v2r) = (r, k−r) for 1 ≤ r ≤ k−1; and φ(v2r−1) = (r−1, k−r) for 1 ≤ r ≤ k.
See Figure 2.

(  −1,0,0)k

v0

v2  −1k

v1

k(0,  −1,0)

v2 k(1,  −1,0)

(0,0,0)

Figure 2. A 2-D orthogonal labeling of P2k (drawn in R3).

For further use, we now introduce a 3-D orthogonal labeling of P2k+1 = v0v1u0v2 · · · v2k−1

such that the end vertices v0 and v2k−1 are embedded in x-axis, where k ≥ 2. Starting from the
2-D orthogonal labeling φ for P2k = v0v1 · · · v2k−1 shown above, we embed P2k in the xy-path.
Then, we embed the inserted vertex u0 at (1/2, k − 1, 1/2). Clearly v0v1⊥v1u0, v1u0⊥u0v2 and
u0v2⊥v2v3.

Furthermore, we see that, v2k−1v0⊥v0u0. Hence, we have the following theorem.

Theorem 3.1. For k ≥ 2, or(C2k) = 2 and or(C2k+1) = 3.

For an illustration of the above remarks and Theorem 3.1, see Figure 3.

Lemma 3.2. or(C3) = ∞.
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(  −1,0,0)k

v0

v
2  −1k

k(0,  −1,0)

v1

k−1(1/2,       ,1/2)
u0

v2 k(1,  −1,0)

(0,0,0)

(  −1,0,0)k

v0

v
2  −1k

k(0,  −1,0)

v1

k−1(1/2,       ,1/2)
u0

v2 k(1,  −1,0)

(0,0,0)

Figure 3. 3-D orthogonal labelings of P2k+1 and C2k+1, respectively.

Proof. Assume that or(C3) = t, for some finite t. Without loss of generality, let v0 be labeled with
(0, 0, 0, . . . , 0), v1 labeled with (1, 0, 0, . . . , 0) and v2 labeled with (0, c, 0, . . . , 0). Then, v2v1⊥v0v1
implies 12 + 02 + 02 + · · ·+ 02 = 0, which gives the desired contradiction.

We note that Lemma 3.2 is also mentioned in [3].

Corollary 3.3. If G is orthogonal, then G× C2n is orthogonal, for n ≥ 2.

Corollary 3.4. One-point union of n cycles is orthogonal, for n ≥ 2.

Proof. Let G be a one-point union of n cycles Hi’s. Note that or(Hi) = 2 or 3, for each i. Consider
n = 2 first. By Lemma 2.4, we have or(G) = max{or(H1), or(H2), 4} = 4. Now, we consider
n ≥ 3. By applying Lemma 2.4 repeatedly, we see that the orthogonal rank of a one-point union
of cycles is 2n, for n ≥ 2.

4. Bicyclic graphs without pendant

It is known that a bicyclic graph without pendant is a one-point union of two cycles, a theta
graph or a long dumbbell graph [6]. In this section, we show that all bicyclic graphs without
pendant are orthogonal.

Let U(m,n) be the one-point union of two cycles Cm = u0u1 · · · um−1u0 and Cn = u0umum+1

· · · un+m−2u0, where m,n ≥ 3. Corollary 3.4 shows that U(m,n) is orthogonal.

Definition 4.1. A theta graph is the union of three internally disjoint paths that have the same two
distinct end vertices. Without loss of generality, we may assume that s ≥ t ≥ r ≥ 1 such that
Qs = u0u1 · · · us, Qt = u0us+1us+2 · · · us+t−1us and Qr = u0us+tus+t+1 · · · us+t+r−2us. Here,
Qi denotes a path of length i. We denote this graph by Θ(s, t, r). Since we only consider simple
graphs, at least two of s ≥ t ≥ 2.

Definition 4.2. A long dumbbell graph is a graph obtained from two cycles Cm and Cn, by joining
a path Ql of length l for m,n ≥ 3 and l ≥ 1. Without loss of generality, we can assume

Cm = u0u1 · · · um−1u0, Ql = um−1um · · · um+l−1
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and Cn = um+l−1um+l · · · um+n+l−2um+l−1.

We denote this graph by D(m,n; l).

Theorem 4.1. The long dumbbell graph D(m,n; l) is orthogonal and or(D(m,n; l)) = 3, for
m,n ≥ 3 and l ≥ 1.

Proof. Let uv be an edge in Ql. Let D(m,n; l) − uv = G1 + G2. By Lemma 2.4, we have
2 ≤ or(G1) ≤ 3 and 2 ≤ or(G2) ≤ 3. Now deg(u) = 1 or 3 and deg(v) = 1 or 3. Applying
Lemma 2.9, we have or(D(m,n; l)) = 3. Hence, D(m,n; l) is orthogonal.

Since Θ(s, 2, 1) contains K3 and Θ(2, 2, 2) ∼= K2,3, their orthogonal ranks are infinity. Thus,
we now only consider Θ(s, t, 1) when s ≥ t ≥ 3, and Θ(s, t, r) when s ≥ t ≥ r ≥ 2 but
(s, t, r) ̸= (2, 2, 2).

Theorem 4.2. The theta graph Θ(s, t, 1) is orthogonal and or(Θ(s, t, 1)) = 3, for s ≥ t ≥ 3.

Proof. We keep the notation defined above. We embed Qt (as well as Qt ∪Q1
∼= Ct+1) in the first

octant such that u0 is the origin and us is the point (⌈t/2⌉ − 1, 0, 0).
Individually, we may put Qs in the fourth octant (i.e., the region {(x, y, z) | x, z ≥ 0, y ≤ 0})

such that u0 is the origin and us = (⌈s/2⌉−1, 0, 0). Scale down the image of Qs by the rate ⌈t/2⌉−1
⌈s/2⌉−1

so that us becomes (⌈t/2⌉ − 1, 0, 0). Hence, this labeling is the required orthogonal labeling.

Theorem 4.3. The theta graph Θ(s, t, r) is orthogonal [except Θ(2, 2, 2)] and or(Θ(s, t, r)) = 3,
for s ≥ t ≥ r ≥ 2.

Proof. The labeling is similar to the proof of Theorem 4.2. We embed Qt ∪Qr
∼= Ct+r in the first

octant such that u0 is the origin and us+1 is the point (⌊(t+ r)/2⌋− 1, 0, 0). Suppose the vertex us

is put at the point w.
We view the ray from the origin to w as the positive x-axis on defining φ or ψ above. By ap-

plying enlargement if necessary, we embed Qs in the fifth octant (i.e., the region {(x, y, z) | x, y ≥
0, z ≤ 0}) such that u0 is the origin and us is w. Hence, this labeling is the required orthogonal
labeling.

Hence, all bicyclic graphs without pendant (except Θ(s, 2, 1) and Θ(2, 2, 2)) are orthogonal.

5. Tessellation graphs

A tessellation is a tiling of the plane, using polygons. If a tessellation consists of congruent
polygons, it is a regular tessellation. Thus, there are only three regular tessellations, utilizing
equilateral triangles, squares, or regular hexagons. A tessellation graph is a finite subgraph of a
regular tessellation, consisting of a grid of congruent polygons where each polygon shares at least
one common edge with another.

Definition 5.1. A region Ω in the plane is n-connected if the complement of Ω has exactly n
components.
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Definition 5.2. For n ≥ 2, an n-tessellation graph is a graph which tessellates an n-connected
region in the plane.

For example, a 1-tessellation graph tessellates a simply-connected, bounded region in the plane.

Consider a tessellation of the plane, using congruent equilateral triangles. Two triangles are
connected if they share a common edge. Let T be a connected collection of triangles. Then, T is a
connected planar graph, consisting of a grid of C3’s with each C3 sharing at least one common edge
with another. A connected collection of triangles is called a triomino. T is called an n-triomino if
it is an n-tessellation graph.

Theorem 5.1. Let T be a 1-triomino. Then, or(T ) = ∞.

Proof. Every 1-triomino contains K3. Thus, the result follows immediately from or(K3) = ∞
and Observation 2.

A cell is the boundary of a unit square (∼= C4) in the xy-plane, where the vertices of the square
are at lattice points. Two cells are connected if they share a common edge. Let S be a connected
collection of connected cells. Thus, S can be viewed as a connected planar graph, consisting of a
grid of C4’s with each C4 sharing at least one common edge with another. A connected collection
of connected cells is called a polyomino.

Theorem 5.2. Every 1-polyomino is orthogonal.

Proof. Let P be a 1-polyomino. If P ∼= Pn × P2, then P is orthogonal by Corollary 2.8. Now,
suppose that P is not isomorphic to Pn × P2. Then, P is a subgraph of Pn × Pm, where m ≥ 3.
Also, ∆(P ) = 4. Thus, or(P ) ≥ 4. Since or(Pn × Pm) = 4, we have that or(P ) ≤ 4 by
Observation 2. Hence, or(P ) = 4.

Consider a tessellation of the plane, using congruent hexagons. Two hexagons are connected if
they share a common edge. Let H be a connected collection of hexagons. Then, H is a connected
planar graph, consisting of a grid of C6’s with each C6 sharing at least one common edge with
another. A connected collection of hexagons is called a honeycomb graph.

Here, we view such a graph (or benzenoid system) as a (finite) connected plane graph, where
each inner face is a regular hexagon of side length one. The wall, which was defined in [4], is an
infinite graph W = (V,E), where V = Z × Z and {(y1, z1), (y2, z2)} ∈ E if: (1). z1 = z2 and
|y1 − y2| = 1; or (2). y1 = y2, |z1 − z2| = 1 and y1 + z1 + y2 + z2 ≡ 1 (mod 4). See Figure 4.

Remark. Suppose (y, z) is a vertex of W . The neighborhood N(y, z) of (y, z) is as follows:

• For even y and even z, N(y, z) = {(y − 1, z), (y + 1, z), (y, z + 1)}.

• For even y and odd z, N(y, z) = {(y − 1, z), (y + 1, z), (y, z − 1)}.

• For odd y and even z, N(y, z) = {(y − 1, z), (y + 1, z), (y, z − 1)}.

• For odd y and odd z, N(y, z) = {(y − 1, z), (y + 1, z), (y, z + 1)}.
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(3,1)
(4,0)(−2,0)

(0,1) (2,1) (4,1)
(3,2)(1,2)

(−1,1) (1,1)
(0,0) (2,0)

Figure 4. The wall W .

Note that a honeycomb graph is isomorphic to a subgraph of W .

Theorem 5.3. The wall W is orthogonal and or(W ) = 3.

Proof. We embed the wall into the yz-plane first. That is, each vertex (yi, zj) of the wall is located
at (0, yi, zj). Secondly, we move the point (0, yi, zj) to (1, yi, zj) when yi is odd.

Now, for the point (0, yi, zj) (i.e., yi is even), its neighbors are (1, yi − 1, zj), (1, yi + 1, zj),
(0, yi, zj + α), where α is either 1 or −1. The vector raised from (0, yi, zj) to these neighbors are
(1,−1, 0), (1, 1, 0) and (0, 0,α). Clearly, they are mutually orthogonal. For the point (1, yi, zj)
(i.e., yi is odd), its neighbors are (0, yi − 1, zj), (0, yi + 1, zj), (1, yi, zj + α). The vector raised
from (1, yi, zj) to these neighbors are (−1,−1, 0), (−1, 1, 0) and (0, 0,α). Clearly, they are also
mutually orthogonal and or(W ) = 3.

Corollary 5.4. Every 1-tessellation honeycomb graph is orthogonal.
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