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Abstract

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect matchings
M and N of G, there is an automorphism f : V (G) 7→ V (G) such that fe(M) = N , where
fe(uv) = f(u)f(v). In this paper, the author proposed the definition of PM-transitive, verified
PM-transitivity of some symmetric graphs, constructed several families of PM-transitive graphs
which are neither vertex-transitive nor edge-transitive, and discussed PM-transitivity of generalized
Petersen graphs.
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1. Introduction

An automorphism of a graph is a form of symmetry in which the graph is mapped onto it-
self while preserving the edge-vertex connectivity. Formally, an automorphism of a graph G =
(V (G), E(G)) is a permutation f of the vertex set V (G), such that the pair of vertices uv is an edge
of G if and only if f(u)f(v) is also an edge of G. That is, it is a graph isomorphism from G to itself.
Every graph automorphism f induces a map fe : E(G) 7→ E(G) such that fe(uv) = f(u)f(v).
For any vertex set X ⊆ V (G) and edge set M ⊆ E(G), denote f(X) = {f(v) : v ∈ X} and
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fe(M) = {fe(uv) = f(u)f(v) : uv ∈M}. In this paper, we also use f to denote the map induced
by the automorphism f .

A graph G is vertex-transitive [11] if for any two given vertices v1 and v2 of G, there is an
automorphism f : V (G) 7→ V (G) such that f(v1) = v2. In other words, a graph is vertex-
transitive if its automorphism group acts transitively upon its vertices. A graph is vertex-transitive
if and only if its graph complement is vertex-transitive (since the group actions are identical). For
example, the finite Cayley graphs, Petersen graph, and Cn ×K2 with n ≥ 3, are vertex-transitive.

A graph G is edge-transitive if for any two given edges e1 and e2 of G, there is an automorphism
of G that maps e1 to e2. In other words, a graph is edge-transitive if its automorphism group acts
transitively upon its edges. The complete bipartite graph Km,n, Petersen graph, and the cubical
graph Cn ×K2 with n = 4, are edge-transitive.

A graph G is symmetric or arc-transitive if for any two pairs of adjacent vertices u1|v1 and
u2|v2 of G, there is an automorphism f : V (G) 7→ V (G) such that f(u1) = u2 and f(v1) = v2. In
other words, a graph is symmetric if its automorphism group acts transitively upon ordered pairs of
adjacent vertices, that is, upon edges considered as having a direction. The cubical graph Cn×K2

with n = 4, and Petersen graph are symmetric graphs.
Every connected symmetric graph must be both vertex-transitive and edge-transitive, and the

converse is true for graphs of odd degree [2]. However, for even degree, there exist connected
graphs which are vertex-transitive and edge-transitive, but not symmetric [3]. Every symmetric
graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular.
However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated
tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and
Tietze’s graph).

A lot of work has been done about the relationship between vertex-transitive graphs and edge-
transitive graphs. Some of the related results can be found in [3]-[17]. In general, edge-transitive
graphs need not be vertex-transitive. The Gray graph is an example of a graph which is edge-
transitive but not vertex-transitive. Conversely, vertex-transitive graphs need not be edge-transitive.
The graph Cn ×K2, where n ≥ 5 is vertex-transitive but not edge-transitive.

A graph G is perfect matching transitive, shortly PM-transitive, if for any two perfect match-
ings M and N of G, there is an automorphism f : V (G) 7→ V (G) such that fe(M) = N , where
fe is the map induced by f .

Are there any PM-transitive graphs? What kind of properties do PM-transitive graphs have?
What is the relationship between PM-transitive and edge-transitive? What is the relationship be-
tween PM-transitive and vertex-transitive? What is the relationship between PM-transitive and
symmetric?

In section 2, the author verified that some well known symmetric graphs such as C2n, K2n, Kn,n

and Petersen graph are PM-transitive, and constructed several families of PM-transitive graphs
which are neither vertex-transitive nor edge-transitive. In section 3, the author discussed some
methods to generate new PM-transitive graphs. In section 4, the author proved that all the generated
Petersen graphs except the Petersen graph are non-perfect matching transitive. In section 5, the
author provided some examples which have one or more properties of vertex-transitive, edge-
transitive, or PM-transitive.
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2. PM-Transitive Graphs

In this section, we characterize some PM-transitive graphs.

Theorem 2.1. Every even cycle G = C2n with n ≥ 2 is PM-transitive.

Proof. Let C2n = u1u2 · · ·u2nu1 with n ≥ 2. Note that C2n has exactly two perfect matchings,
denoted by M = {u1u2, u3u4, · · · , u2n−1u2n} and N = {u2u3, u4u5, · · · , u2nu1}, respectively.
Define f : V (G) 7→ V (G) such that f(ui) = ui+1. Since for any edge uiui+1 ∈ E(C2n),
f(uiui+1) = f(ui)f(ui+1) = ui+1ui+2 ∈ E(C2n), f is an automorphism of C2n. By the definition
of M , N and f , fe(M) = N follows and G is PM-transitive.

Theorem 2.2. Every even complete graph G = K2n with n ≥ 2 is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Let M4N denote the symmetric difference
of M and N , and also the graph induced by M4N . Since every vertex of G is incident with
exactly one edge in M and exactly one edge in N , M4N is a disjoint union of even cycles.
Define f : V (G) 7→ V (G) such that f(u) = u if u ∈ V (M ∩N) and f(ui) = ui+1 if ui ∈ V (C2s),
where C2s = u1u2 · · ·u2su1 is an even cycle in M4N . Since G is a complete graph, f is an
automorphism of G. Let uv ∈ M . If uv ∈ M ∩ N , then fe(uv) = f(u)f(v) = uv ∈ N .
If uv ∈ M \ N , then uv is an edge of some even cycle of M4N . Let uv = uiui+1. Then
fe(uv) = fe(uiui+1) = f(ui)f(ui+1) = ui+1ui+2 ∈ N . Therefore, fe(M) = N follows and G is
PM-transitive.

Theorem 2.3. Every complete bipartite graph G = Kn,n is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then M4N is a disjoint union of even
cycles. Define f such that f(u) = u if u ∈ V (M ∩ N), and f(u1) = u1 and f(ui) = u2s+2−i for
2 ≤ i ≤ 2s, where C2s = u1u2 · · ·u2su1 is an even cycle in M4N . Let (X, Y ) be the bipartition
of G. By the definition of f , f(X) = X and f(Y ) = Y . Since G is a complete bipartite graph,
f is an automorphism of G. Let uv ∈ M . If uv ∈ M ∩ N , then fe(uv) = f(u)f(v) = uv ∈ N .
If uv ∈ M \ N , then uv is an edge of some even cycle of M4N . Without loss of generality,
suppose that uv = uiui+1. Then fe(uv) = fe(uiui+1) = f(ui)f(ui+1) = u2s+2−iu2s+2−(i+1) ∈ N .
Therefore, fe(M) = N follows and G is PM-transitive.

Theorem 2.4. The Petersen graph is PM-transitive.

Proof. Let G be the graph obtained from the union of two cycles u1u2u3u4u5u1 and v1v3v5v2v4v1
by connecting uivi, where i = 1, 2, · · · , 5. Then G is a Petersen graph. Let M be a perfect
matching of G and let N = {u1v1, u2v2, u3v3, u4v4, u5v5}.

Claim: If M 6= N , then |M ∩ N | = 1. Suppose that M 6= N . Then G − V (M ∩ N) is an
even cycle or unions of even cycles. Since the Petersen graph does not have 2-cycles, 4-cycles, or
6-cycles, |M ∩N | 6= 4, 3, 2.

Without loss of generality, we assume that N = {u1v1, u2u3, u4u5, v2v4, v3v5}. Define f :
V (G) 7→ V (G) such that f(v) = v if v ∈ {u1, u2, u5, v1}, f(u3) = v2, f(u4) = v5, f(v2) = u3,
f(v3) = v4, f(v4) = v3 and f(v5) = v4. Then f is an automorphism of G such that fe(M) =
N .
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Theorem 2.5. Let G be the graph obtained from C2n+2 = u0u1u2 · · ·unv0vnvn−1 · · · v1u0 with
n ≥ 2 by connecting uivi+1 and viui+1, where i = 1, 2, · · · , n− 1. Then G is PM-transitive.

Proof. We prove this result by induction. When n=2, G has four different perfect matchings.
Denote them by M1 = {u0v1, u1v2, u2v0}, M2 = {u0u1, v1v2, u2v0}, M3 = {u0v1, u1u2, v0v2},
and M4 = {u0u1, u2v1, v0v2}, respectively. To prove that G is perfect matching transitive, it
suffices to prove that for M ∈ {M2,M3,M4}, there is an automorphism f of G such that fe(M) =
M1. Furthermore, we can restrict that v0 and u0 are fixed under f .

If M = M2, then define f2 : V (G) 7→ V (G) such that f2(u1) = v1, f2(v1) = u1, and f2(v) = v
for v ∈ V (G)\{u1, v1}. Then f2 is an automorphism such that f2(M2) = M1, and v0 and u0 are
fixed under f2.

If M = M3, then define f3 : V (G) 7→ V (G) such that f3(u2) = v2, f3(v2) = u2 and f3(v) = v
for v ∈ V (G)\{u2, v2}. Then f3 is an automorphism such that f3(M3) = M , and v0 and u0 are
fixed under f3.

If M = M4, then define f4 : V (G) 7→ V (G) such that f4(u1) = v1, f4(v1) = u1, f4(u2) = v2,
f4(v2) = u2 and f4(v) = v for v ∈ V (G)\{u1, v1, u2, v2}. Then f4 is an automorphism such that
f4(M4) = M1, and v0 and u0 are fixed under f4.

Now assume the result is true for n = m ≥ 2. That is, for any two different perfect matchings
M and N of G, there is an automorphism f of G such that fe(M) = N , and v0 and u0 are fixed
under f .

We want to prove the result is true for n = m + 1. Let M and N be two perfect matchings of
G. Without loss of generality, assume that u0u1 ∈M .

Case 1. u0u1 ∈ N . In this case, M1 = M − {u0u1} and N1 = N − {u0u1} are two perfect
matchings of G1 = G− {u0, u1}. By the induction hypothesis, there is an automorphism f1 of G1

such that f1(M1) = N1, and v0 and v1 are fixed under f1. Define f : V (G) 7→ V (G) such that
f(u0) = u0, f(u1) = u1 and f(v) = f1(v) if v ∈ V (G1). Then f is an automorphism of G such
that fe(M) = N .

Case 2. u0u1 6∈ N . In this case, u0v1 ∈ N . Define f1 : V (G) 7→ V (G) such that f1(u1) = v1,
f1(v1) = u1 and f1(v) = v for v ∈ V (G) \ {u1, v1}. Let N1 = f1(N). Then u0u1 ∈ N1. By Case
1, there is an automorphism f2 of G such that f2(M) = N1, and v0 and u0 are fixed under f2. Then
f = f−11 f2 is an automorphism of G such that fe(M) = N .

Theorem 2.6. Let G be the graph obtained from C2n+2 = u0u1u2 · · ·unv0vnvn−1 · · · v1u0 with
n ≥ 2 by connecting uivi+1 and viui+1 for i = 1, 2, · · · , n− 1, and uivi for i = 1, 2, · · · , n. Then
G is PM-transitive.

Proof. Since uivi is not contained in any perfect matching of G, where i = 1, 2, · · · , n, following
exactly the same argument to the proof of Theorem 4, we can prove that G is PM-transitive.

Theorem 2.7. Let G be the graph obtained from Kn+1,n+1 by removing one edge u0v0. Then G is
PM-transitive.
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Proof. We prove this result by induction. Let (X, Y ) be the bipartition of Kn+1,n+1 and let X =
{u0, u1, u2, · · · , un} and Y = {v0, v1, v2, · · · , vn}. When n=2, by Theorem 2.5, G is PM-transitive
and furthermore, for any two different perfect matchings M and N of G, there is an automorphism
f of G such that fe(M) = N , and v0 and u0 are fixed under f . Now assume the result is true
for n = m ≥ 2. That is, for any two different perfect matchings M and N of G, there is an
automorphism f of G such that fe(M) = N , and v0 and u0 are fixed under f .

We want to prove the result is true for n = m + 1. Let M and N be two perfect matchings of
G. Without loss of generality, assume that u0u1, v0v1 ∈M .

Case 1: u0v1, v0u1 ∈ N . Then, M1 = M − {u0v1, v0u1} and N1 = N − {u0v1, v0u1} are
two perfect matchings of G1 = G − {u0, u1, v0, v1} ∼= Kn−1,n−1. By Theorem 2.3, there is
an automorphism f1 of G1 such that f1(M1) = N1, f1(X \ {u0, u1}) = X \ {u0, u1} and
f1(Y \ {v0, v1}) = Y \ {v0, v1}. Define f : V (G) 7→ V (G) such that f(v) = f1(v) if v ∈ V (G1)
and f(v) = v if v ∈ {u0, u1, v0, v1}. Then f is an automorphism of G such that f(M) = N and,
v0 and u0 are fixed under f .

Case 2: u0v1 6∈ N or v0u1 6∈ N . Without loss of generality, we can assume that v0ui ∈ N
and u0vj ∈ N . Define f1 : V (G) 7→ V (G) such that f1(u1) = ui, f1(ui) = u1, f1(v1) = vj ,
f1(vj) = v1 and f1(v) = v if v 6∈ {u1, ui, v1, vj}. Let N1 = f1(N). Then u0v1, v0u1 ∈ N1. By
Case 1, there is an automorphism f2 of G such that f2(M) = N1, and v0 and u0 are fixed under f2.
Then f = f−11 f2 is an automorphism of G such that fe(M) = N .

Theorem 2.8. Let G be the graph obtained from K2n+2 by removing one edge u0v0. Then G is
PM-transitive.

Proof. Let M and N be two perfect matchings of G. Without loss of generality, assume that
u0u1, v0v1 ∈M .

Case 1: u0u1, v0v1 ∈ N . Then, M1 = M − {u0u1, v0v1} and N1 = N − {u0u1} are two perfect
matchings of G1 = G − {u0, u1, v0, v1} ∼= K2n−2. By Theorem 2.2, there is an automorphism f1
of G1 such that f1(M1) = N1. Define f : V (G) 7→ V (G) such that f(v) = f1(v) if v ∈ V (G1)
and f(v) = v if v ∈ {u0, u1, v0, v1}. Then f is an automorphism of G such that f(M) = N .

Case 2: u0u1 6∈ N or v0v1 6∈ N . Without loss of generality, we can assume that u0ui ∈ N
and v0vj ∈ N . Define f1 : V (G) 7→ V (G) such that f1(u1) = ui, f1(ui) = u1, f1(v1) = vj ,
f1(vj) = v1 and f1(v) = v if v 6∈ {u1, ui, v1, vj}. Let N1 = f1(N). Then u0u1, v0v1 ∈ N1.
By Case 1, there is an automorphism f2 of G such that f2(M) = N1. Then f = f−11 f2 is an
automorphism of G such that fe(M) = N .

A wheel Wn is the graph obtained from a n-cycle by adding a new vertex and joining the new
vertex to every vertex of the cycle.

Theorem 2.9. Let G = W2n+1. Then G is PM-transitive.
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Proof. Without loss of generality, let G be the graph obtained from C2n+1 = v1v2 · · · v2n+1v1 by
adding a new vertex v and joining v to every vertex of the cycle. Suppose that M and N are two
perfect matchings of G. Without loss of generality, suppose that vvi ∈ M and vvj ∈ N . Define
f : V (G) 7→ V (G) such that f(v) = v, f(vi) = vj , and f(vi+k) = vj+k, where the subscripts are
taken modular 2n+ 1. Then f is an automorphism of G such that fe(M) = N .

Theorem 2.10. Let k be a positive even integer, W2n1 ,W2n2 , · · ·W2nk
be k wheels and v1, v2, · · · , vk

be the centers of the wheels, respectively. If G = W2n1∪W2n2∪· · ·∪W2nk
+{v1v2, v2v3, · · · , vk−1vk},

then G is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then v1v2, v3v4, · · · , vk−1vk ∈ M ∩ N .
Furthermore, M1 = M\{v1v2, v3v4, · · · , vk−1vk} and N1 = N\{v1v2, v3v4, · · · , vk−1vk} are two
perfect matchings of disjoint union of even cycles generated by G − {v1, v2, · · · , vk}. Then there
is an automorphism f of G such that fe(M) = N .

3. Properties of PM-Transitive Graphs

In this section, we generate new PM-transitive graphs from existing PM-transitive graphs.

Theorem 3.1. If G1 and G2 are two perfect matching transitive graphs and V (G1) ∩ V (G2) = ∅,
then G = G1 ∪G2 is PM-transitive.

Proof. Let M and N be two perfect matchings of G. For i = 1, 2, let Mi = M ∩ E(Gi) and
Ni = N ∩ E(Gi). Then Mi and Ni are two perfect matchings of Gi. Since Gi is PM-transitive,
there is an automorphism fi of Gi such that fi(Mi) = Ni. Define f : V (G) 7→ V (G) such that
f(v) = f1(v) if v ∈ V (G1), and f(v) = f2(v) if v ∈ V (G2). Then f is an automorphism of G
such that fe(M) = N .

Theorem 3.2. Let G1 and G2 be two PM-transitive graphs and H be a path of odd length. Suppose
that G is the graph obtained from G1, G2 and H by connecting one end vertex of H with every
vertex of G1 and the other end vertex of H with every vertex of G2. Then G is PM-transitive.

Proof. Let M and N be two perfect matchings of G. Then M ∩ E(H) = N ∩ E(H) and M1 =
M \ M ∩ E(H) and N1 = M \ N ∩ E(H) are two perfect matchings of G′ = G1 ∪ G2. By
Theorem 4.2, there is an graph automorphism f ′ of G′ such that f ′(M1) = N1. We can easily
extend the graph automorphism f ′ of G′ to a graph automorphism f of G such that f(M) = N .

Corollary 3.1. Let G1 be a perfect matching transitive graph and H be a path of odd length.
Suppose that G is the graph obtained from G1 and H by connecting an end vertex of H with every
vertex of G. Then G is PM-transitive.

Corollary 3.2. Let W2n1+1,W2n2+2, · · ·W2nk+1 be k wheels and v1, v2, · · · , vk be the centers of
the wheels, respectively. Let G be the graph obtained from W2n1+1 ∪W2n2+1 ∪ · · · ∪W2nk+1 +
{v1v2, v2v3, · · · , vk−1vk, vkv1} by replacing vivi+1 with an odd path, where i = 1, 2, · · · , k and the
addition is modular k. Then G is PM-transitive.
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4. Non PM-Transitive Graphs

In this section, we characterize some non-perfect matching transitive graphs. The generalized
Petersen graph GP (n, k) for n ≥ 3 and 1 ≤ k ≤ (n − 1)/2 is a graph consisting of an inner
star polygon {n, k} (or circular graph) and an outer regular polygon {n} (or cycle graph Cn) with
corresponding vertices in the inner and outer polygons connected with edges.

Theorem 4.1. ([4] and [10]) The generalized Petersen graph GP (n, k) is vertex-transitive if
and only if k2 ≡ ±1 (mod n) or (n, k) = (10, 2), and symmetric only for the cases (n, k) =
(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), and (24, 5).

Theorem 4.2. ([1] and [14]) The generalized Petersen graph GP (n, k) is non-hamiltonian if and
only if k = 2 and n ≡ 5 (mod 6).

Theorem 4.3. The generalized Petersen graph GP (n, k) is PM-transitive if and only if it is the
Petersen graph.

Proof. Let G be a generalized graph GP (n, k), where k 6= 2 or n 6≡ 5 (mod 6). By Theorem 4.2,
G is Hamiltonian. Let C be a hamiltonian cycle of G and M = G − C. Since G is a 3-regular
graph, M is a perfect matching of G. Let N denote the perfect matching consisting of all the
edges between the inner star polygon and the outer regular graph of GP (n, k). Note that G −M
is a Hamiltonian cycle and G − N is the disjoint union of cycles. Therefore, there is no graph
automorphism f of G such that f(M) = N .

Let G be a generalized graph GP (n, k), where k = 2 and n ≡ 5 (mod 6) and n 6= 5. In this
case, the inner star polygon is an n-cycle. Denote the inner cycle by v1v3v5 · · · vnv2v4 · · · vn−1v1
and the outer cycle by u1u2u3 · · ·unu1. Let M = {u1v1} ∪ {u2u3, u4u5, · · · , un−1un} ∪ {v3v5,
v7v9, · · · , vnv2, v4v6, · · · , vn−3vn−1} and N = {u1v1, u2v2, · · · , unvn}. Then M and N are two
perfect matchings of G. Note that G − N is the disjoint union of two n-cycles. If n ≡ 3(mod
4), then G−N has a 14-cycle u1u2v2v4u4u3v3v1vn−1un−1un−2vn−2vnunu1 and some 8-cycles. If
n ≡ 1(mod 4), then G−N has a 5-cycle u1u2v2vnuuu1 and a (2n− 5)-cycle. Therefore, there is
no graph automorphism of G such that f(M) = N .

Coming the above discussion and Theorem 2.4 , the result follows.

5. Further Discussion

In this section, we give some examples which are PM-transitive, vertex-transitive, or edge-
transitive.

Theorem 5.1. The generalized Petersen graph PG(n, 1) ∼= Cn × K2, where n = 3 or n ≥ 5, is
vertex-transitive, but not edge-transitive or PM-transitive.

Theorem 5.2. The cubical graph C4×K2
∼= PG(4, 1) is vertex-transitive and edge-transitive, but

not PM-transitive.

Theorem 5.3. The graphs discussed in Theorem 2.1, Theorem 2.2, Theorem 2.3, and Theorem 2.4
are vertex-transitive, edge-transitive, and also PM-transitive.

Theorem 5.4. The graphs constructed in Theorem 2.5, Theorem 2.6, Theorem 2.7, Theorem 2.8,
Theorem 2.9, and Theorem 2.10 are PM-transitive, but neither vertex-transitive nor edge-transitive.
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[16] P. Potočnik, P. Spiga, and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, J.
Symbolic Comput. 50 (2013), 465–477.

[17] Z. Ryjác̆ek, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (2) (1997),
217–224.

370


