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Abstract

Let D = (V,A) be a digraph of order n = |V |. A Roman dominating function of a digraph
D is a function f : V −→ {0, 1, 2} such that every vertex u for which f(u) = 0 has an in-
neighbor v for which f(v) = 2. The weight of a Roman dominating function is the value f(V ) =∑

u∈V f(u). The minimum weight of a Roman dominating function of a digraph D is called the
Roman domination number of D, denoted by γR (D). In this paper, we characterize oriented trees
T satisfying γR(T ) + ∆+(T ) = n+ 1.
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1. Introduction

The digraph D = (V,A) of order n = |V | considered here has no loops and no multiple arcs
(but pairs of opposite arcs are allowed). If (u, v) ∈ A, then we write u→ v and we say that v is an
out-neighbor (successor) of u, (or u dominates v) and u is an in-neighbor (predecessor) of v, and
if (u, v) /∈ A, we write u 9 v. If u → v and v → u, we say that (u, v) is a symmetrical arc and
we write v ←→ u. If u → v and v 9 u, we say that (u, v) is an asymmetrical arc and we write
u 7−→ v. Also, if u and v are non adjacent (u 9 v and v 9 u), then we write u = v. Let S ⊆ V
be a non-empty set and u a vertex in V − S. If u is in-neighbor of each vertex of S, then we use
the notation u =⇒ S.

A digraph H = (U,B) is the subdigraph of D whenever U ⊆ V (D) and B ⊆ A (D), the
subdigraph induced by U is denoted by 〈U〉. If U = V (D), the subdigraph is said to be spanning.
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An oriented graph is a digraph D = (V,A) containing no symmetric pair of arcs. That can be
obtained from a graph G by assigning a direction to each edge of G. The resulting digraph D is
called an orientation of G. Thus, if D is an oriented graph, then for every pair u and v of distinct
vertices of D, either (u, v) or (v, u) is an arc of D, but not both.

A tree is a connected graph without cycles. Also, an oriented tree is a connected oriented graph
without oriented cycle. Note that an oriented tree with n vertices has n− 1 arcs.

Define the out-neighborhood of a vertex v ∈ V as N+
D (v) = {u ∈ V : v → u}, the in-

neighborhood of v as N−D (v) = {w ∈ V : w → v}. We define N+
D [v] = N+

D (v) ∪ {v} and
N−D [v] = N−D (v)∪{v}. Also, for a subset S ⊆ V ,N+

D (S) = ∪v∈SN+
D (v) andN+

D [S] = N+
D (S)∪S.

The definition of N−D (S), N−D [S] are similar. The out-degree of a vertex v in D is defined as
d+D(v) = |N+

D (v)|. The maximum (respectively, minimum) out-degree of D is given by ∆+(D) =
max

{
d+D(v) : v ∈ V

}
(respectively, δ+ (D) = min

{
d+D(v) : v ∈ V

}
). Similarly, the in-degree

of v is d−D(v) = |N−D (v)| and maximum (respectively, minimum) in-degree of D, ∆−(D) =
max

{
d−D(v) : v ∈ V

}
(respectively, δ− (D) = min

{
d−D(v) : v ∈ V

}
). For a vertex v in the set

S, the out-private neighbors of v with respect to S is the set opn[v, S] = N+
D [v] − N+

D [S − {v}].
For the terminology and notations not defined here, we refer the reader to the book by Haynes et
al. [6].

A Roman dominating function (RDF) on a digraph D = (V,A) is a function f : V −→
{0, 1, 2} such that every vertex u for which f(u) = 0 is a successor of some vertex v for which
f(v) = 2. The weight of a Roman dominating function is the value f(V ) =

∑
u∈V f(u). The

minimum weight of a Roman dominating function on a digraph D is called the Roman domination
number ofD, denoted by γR(D). Let (V0, V1, V2) be the ordered partition of V induced by f , where
Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. Note that there exists a 1-1 correspondence between
the RDF f and the ordered partition (V0, V1, V2) of V . Thus, we will write f = (V0, V1, V2).
So, a function f = (V0, V1, V2) is a Roman dominating function (RDF) if V0 ⊆ N+[V2]. The
weight of f is f(V ) =

∑
v∈V f(v) = |V1| + 2 |V2|, and we say that a RDF f is a γR-function if

f(V ) = γR(D). The Roman dominating function for graphs has been introduced by Cockayne et
al. [1] and was motivated by an article in Scientific American by Ian Stewart entitled “Defend the
Roman Empire” [11]. For more details on Roman domination and its variants, the reader can be
referred to [2, 3, 8, 9, 12, 13].

The concept of Roman dominating function for digraphs was introduced by Kamaraj and
Jakkammal in [4], in their paper the authors gave the following upper bound for the parameter
γR(D) and some others results.

γR(D) ≤ n−∆+(D) + 1. (1)

Later, in [4, 10] the authors gave some bounds and characterization of digraphs for small values
of γR(D). In [7], the authors gave extremal oriented k-out-regular graphs with 1 ≤ k ≤ n − 1,
and tournaments attaining the upper bound in (1), also they showed that the problem of deciding
whether an oriented graph D has γR(D) = n−∆+(D) + 1 is CO −NP-complete. In this paper,
we characterize all oriented trees T satisfying γR(T ) = n−∆+(T ) + 1.
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2. Characterization of Oriented Trees T with γR(T ) = n− ∆+(T ) + 1

In this section, we give a characterization of oriented trees T with γR(T ) = n − ∆+(T ) + 1.
Recall that the known upper bound in (1) is given by Kamaraj and Jakkammal in [5].

Proposition 2.1. [5] If D is a digraph of order n, with maximum out-degree ∆+ (D). Then

γR(D) ≤ n−∆+(D) + 1.

Proposition 2.2. [10] If D is any digraph of order n, then γR(D) < n if and only if ∆+ (D) ≥ 2.

Proposition 2.3. If T is any oriented tree of order n ≥ 2, then γR(T ) = n if and only if ∆+(T ) =
1.

For the next result, let X be the set of vertices of an oriented tree T with out-degree 2, i.e.,
X = {x ∈ V : d+ (x) = 2} .

Proposition 2.4. Let T be an oriented tree of order n ≥ 2 with maximum out-degree ∆+(T ) and
X be a set of vertices of out-degree 2. Then γR(T ) = n− 1 if and only if ∆+(T ) = 2, in addition
if |X| ≥ 2 then X has an unique vertex, say z satisfies N+

T [x] ∩ N+
T [y] = {z}, for every pair of

vertices x, y in X and x or y may be z (see Figure 1).

Proof. Let T be an oriented tree of order n ≥ 2 . Assume that γR(T ) = n − 1, and suppose to
the contrary that ∆+ (T ) 6= 2. By Observation 2.3, ∆+ (T ) ≥ 3 and by Proposition 2.1, γR(T ) ≤
n−∆+(T ) + 1, a contradiction. Thus ∆+ (T ) = 2 and |X| ≥ 1. Now, assume to the contrary that
|X| ≥ 2 and there exists at least two vertices, say x and y in X2 such that

∣∣N+
T [x] ∩N+

T [y]
∣∣ 6= 1.

Since T is an oriented tree, N+
T [x] ∩ N+

T [y] = ∅. The function f = (V0, V1, V2), where V1 =
V −

(
N+

T [x] ∪N+
T [y]

)
and V2 = {x, y} , is an RDF of T , so γR(T ) ≤ |V1| + 2 |V2| = n − 2, a

contradiction.
Conversely. Let x ∈ X (in case z ∈ X, x may be z). Clearly by construction of T that the

function f = (N+
T (x) , V − N+

T [x] , {x}) is a γR (T )-function with γR (T ) = |V1| + 2 |V2| =
(n− 3) + 2 = n− 1.
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Figure 1. (a) T with z /∈ X . (b) T with z ∈ X .
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In [7], Ouldrabah et al. gave necessary conditions for digraphs D such that γR(D) = n −
∆+ (D) + 1. Since we are interested in oriented trees, we state their results only for the class of
oriented trees. From now, T will be an oriented tree of order n with γR(T ) = n −∆+(T ) + 1, x

will be a vertex of maximum out-degree ∆+(T ) ≥ 3 and N
+

[x] = V (T )−N+ [x].

The next three Lemmas contain main structure properties on oriented tree T with γR(T ) =
n−∆+(T ) + 1, which we will need in order to prove the main results.

Lemma 2.1. [7] Let T be an oriented tree of order n and let x be a vertex with maximum out-
degree ∆+(T ) ≥ 3. If γR(T ) = n−∆+(T ) + 1 then

1. every vertex in N
+

[x] has at most one out-neighbor in
〈
N

+
[x]
〉

, and

2. every vertex in N+
T (x) has at most two out-neighbors in T .

Lemma 2.2. Let T be an oriented tree of order n and maximum out-degree ∆+(T ) ≥ 3. If
γR(T ) = n−∆+(T ) + 1 then T has a unique vertex with out-degree at least three.

Proof. Let T be an oriented tree of order n and maximum out-degree ∆+(T ) ≥ 3. Suppose there
are two vertices x and y in T with out-degree at least 3. Without loss of generality, we can assume
that d+ (x) = ∆+ (T ). If y ∈ N

+
[x] since T is an oriented tree, then y has at least two out-

neighbors that are in N
+

[x], that is
∣∣∣N+ (y) ∩N+

[x]
∣∣∣ ≥ 2 a contradiction with Lemma 2.1. Thus

y must be is in N+ (x). But in this case, since T is an oriented tree, y has at least three out-
neighbors vertices in N

+
[x], that is

∣∣∣N+ (y) ∩N+
[x]
∣∣∣ ≥ 3, again a contradiction with Lemma

2.1.

Define the following subsets:

Y = {y ∈ N+ (x) : d+ (y) = 2} ,
Z = {z ∈ N− (x) : d+ (z) = 2} ,

U =
{
u ∈ N+

[x]− Z : d+ (u) = 2
}

.
(6)

It is clear that U, Y and Z form a partition of the set X . Also we define the two following subsets:

W = (N+ (x)− Y ) ∩N+ (U) ,
R = N+ (x)− (Y ∪W ) . (7)

For illustration, see the oriented tree T in Figure 2.

Lemma 2.3. Let T be an oriented tree of order n and maximum out-degree ∆+(T ) ≥ 3. If
γR (T ) = n−∆+ (T ) + 1 then |R| ≥ 1, and in addition if |R| = 1 then Z = ∅.
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Proof. Let T be an oriented tree of order n ≥ 2 with γR (T ) = n−∆+ (T )+1, and x a vertex of T
satisfying d+ (x) = ∆+ (T ). From Lemma 2.1, we have d+ (v) ≤ 2 for every vertex v in T − x. If
X = ∅, then ∆+(〈T − x〉) ≤ 1, and the condition is done. Assume now that X = Z∪Y ∪U 6= ∅.
Since Y ∪W ⊆ N+ (x) and T is an oriented tree we have

∆+(T ) =
∣∣N+ (x)

∣∣ = |Y |+ |W |+ |R| ,

and so ∣∣N+ [U ∪ Y ]
∣∣ =

∣∣N+ [U ]
∣∣+
∣∣N+ [Y ]

∣∣− ∣∣N+ (U) ∩ Y
∣∣

= 2 |U |+ |W |+ 3 |Y |
= 2 |Y |+ 2 |U |+ ∆+(T )− |R| .

First, we show that |R| ≥ 1. Assume to the contrary that R = ∅, then

∆+(T ) =
∣∣N+ (x)

∣∣ = |Y |+ |W | .

The function f = (V0, V1, V2), where

V1 = V (T )−
(
N+ [U ∪ Y ]

)
and V2 = U ∪ Y

is an RDF of T . Hence,

γR(T ) ≤ |V1|+ 2 |V2|
= |V (T )| −

(
2 |Y |+ 2 |U |+ ∆+(T )

)
+ 2 (|U |+ |Y |)

= n−∆+ (T ) ,

a contradiction.
Now we must show that if |R| = 1 then Z = ∅. Suppose to the contrary that |R| = 1 and

Z 6= ∅. Thus ∆+(T ) = |Y |+ |W |+ 1. The function f = (V0, V1, V2), where

V1 = V (T )−
(
N+ [U ∪ Y ∪ {z}]

)
and V2 = U ∪ Y ∪ {z}

is an RDF of T where z ∈ Z. Hence,

γR(T ) ≤ |V1|+ 2 |V2|
=
∣∣V (T )−

(
N+ [U ∪ Y ∪ {z}]

)∣∣+ 2 |U ∪ Y ∪ {z}|
= |V (T )| −

(
2 |Y |+ 2 |U |+ ∆+(T )− |R|+

∣∣N+ [z]
∣∣)+ 2 (|U |+ |Y |+ |{z}|)

= n−∆+(T ),

a contradiction.

In the sequel, we provide a characterization of trees T of order n ≥ 2 for which γR (T ) =
n − ∆+ (T ) + 1. For this purpose, we define the following families of trees. Recall that X =
{x ∈ V : d+ (x) = 2}.
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• F1 the family of all oriented trees T with ∆+(T ) = 1.

• F2 be the family of all oriented trees T with ∆+(T ) = 2, and T has an unique vertex, say z
satisfies X ⊆ N− [z].

• F3 be the family of all oriented trees T with ∆+(T ) ≥ 3 satisfying the following conditions:

(a) T has a unique vertex x with out-degree at least three.

(b) ∆+(
〈
N

+
[x]
〉

) ≤ 1, and every vertex in N+
T (x) has at most two out-neighbors in T .

(c) |R| ≥ 1 and in addition if |R| = 1 then Z = ∅.

We begin by giving a known result on digraph that will be useful to prove the main result.

Proposition 2.5. [5] Let f = (V0, V1, V2) be any γR(D)-function of a digraph D. Then

(a) If v ∈ V1, then N− (v) ∩ V2 = ∅;

(b) Let H = D [V0 ∪ V2]. Then each vertex v ∈ V2 with N− (v) ∩ V2 6= ∅, has at least two
private neighbors with respect to V2 in the subdigraph H .
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Figure 2. An example of oriented tree T which belongs to F3. Note that R is not empty, and the set Z must be empty
whenever |R| = 1.

We now are ready to give our main result.

Theorem 2.1. Let T be an oriented tree of order n ≥ 2 with maximum out-degree ∆+(T ). Then

γR (T ) = n−∆+ (T ) + 1 if and only if T ∈ F1∪F2 ∪ F3.
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Proof. Let T be an oriented tree of order n ≥ 2 with maximum out-degree ∆+(T ). If ∆+(T ) = 1
or 2, then by Observation 2.3 and Proposition 2.4 γR (T ) = n−∆+ (T ) + 1 if and only if T ∈ F1

or T ∈ F2, respectively. Hence let ∆+(T ) ≥ 3. Then from Lemmas 2.1, 2.2, and 2.3, T ∈ F3.
Conversely. Suppose T ∈ F3, by Condition (a) of the family F3, T has a unique vertex, say x

with d+T (x) = ∆+(T ) and ∆+(
[
N

+
[x] ∪R

]
) ≤ 1.

First we will show that there exists a γR (T )-function f with f(x) = 2. Suppose to the contrary
that every γR (D)-function π, π(x) 6= 2. Let f = (V0, V1, V2) be a γR(T )-function, if there exists
a vertex v in R such that f (v) = 0, then there exists a vertex w ∈ N+

[x] such that w → v with
f (w) = 2, and the function

g = (V0 − {v} , V1 ∪ {w, v} , V2 − {w})

is a γR (T )-function with g (v) = 1. And if there exists a vertex v in R such that f (v) = 2, then
there exists a vertex w ∈ N+

[x] such that v → w with f (w) = 0 and the function

h = (V0 − {w} , V1 ∪ {w, v} , V2 − {v})

is a γR (T )-function with h (v) = 1. So, we can suppose without loss of generality that f (v) = 1
for every vertex v in R. Since T ∈ F , we deduce from the Condition (c) that |R| ≥ 1. Since
f (x) 6= 2, we distinguish tow cases:

Case 1. f (x) = 1. If |R| = 1, then the function

f ′ = (V0 ∪R, V1 − (R ∪ {x}) , V2 ∪ {x})

is γR-function with f ′ (x) = 2, a contradiction with the fact that every γR (D)-function π, π(x) 6=
2. If |R| ≥ 2, then f ′ is an RDF with f ′ (V ) < f (V ), a contradiction.

Case 2. f (x) = 0, then there exists a vertex u ∈ N−T (x), such that u→ x with f (u) = 2, and
since x→ v with f (v) = 1, for every vertex v in E. We have three possibility:

Subcase 2.1. |R| = 1. Then

f ′ = (V0 ∪R− {x} , (V1 −R) ∪ {u} , (V2 − {u}) ∪ {x})

is a γR(T )-function with f ′ (x) = 2, a contradiction.
Subcase 2.2. |R| ≥ 2 and Z = ∅. Then

f ′ = (V0 ∪R− {x} , (V1 −R) ∪ {u} , (V2 − {u}) ∪ {x})

is a RDF with f ′ (V ) < f (V ), a contradiction.
Subcase 2.3. |R| ≥ 2 and Z 6= ∅. For the case u /∈ Z, like Subcase 2.2, we obtain a

contradiction. Suppose now that u ∈ Z. If |R| = 2, then

f ′ = ((V0 − {x}) ∪R, V1 −R, V2 ∪ {x})

is a γR(T )-function with f ′ (x) = 2, a contradiction. And if |R| > 2, then f ′ is a RDF with
f ′ (V ) < f (V ), a contradiction. Hence, there exists a γR(T )-function f (V ) = (V0, V1, V2) such
V2 contains x.
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Now, we show that γR (T ) = n−∆+ (T ) + 1. Suppose to the contrary

γR (T ) < n−∆+ (T ) + 1.

We have,
|V1|+ 2 |V2| < n−∆+ (T ) + 1 = |V0|+ |V1|+ |V2| −∆+ (T ) + 1.

This implies that,
|V0| ≥ |V2|+ ∆+ (T ) . (2)

It follows from Proposition 2.5 item (a), N+
D (x) ∩ V1 = ∅. We define the two following subsets:

P = N+
D (x) ∩ V2 and Q = N+

D (x) ∩ V0.

Let |P | = p and |Q| = q, so p+ q = ∆+ (T ). Since V0 ⊆ N+[V2], clearly that |V2| ≥ 2. Moreover,
every vertex in V2, has at least an out-private neighbor in V0 with respect to V .

First, assume that P = ∅. Since |V2| ≥ 2 we can deduce from (2) that there exists at least
two vertices, say u,v in V0 dominated by another vertex say x′ in V2 other than x. i.e., x 9 u,

x 9 v and x′ =⇒ {u, v} which give ∆+(
〈
N

+
[x]
〉

) > 1, a contradiction with the Condition (b)

of the family F3, so P 6= ∅. On the one hand, by Proposition 2.5 item (b), each vertex in P has
at least two out-private neighbors in V0 with respect to V2, and on the other hand, by Condition
(b) of the family F each vertex in N+

T (x) has at most two out-neighbors in U , which implies that
|N+ (P ) ∩ V0| = 2p, since T is an oriented tree.

Now, we define the following subsets:

F = V2 − (P ∪ {x}) and E = V0 −
(
Q ∪

(
N+ (P ) ∩ V0

))
. (3)

So,
|E| = |V0| − |Q| −

∣∣N+ (P ) ∩ V0
∣∣ = |V0| − q − 2p, (4)

It follows from (2), (3) and (4) that

|F | = |V2| − (p+ 1) ≤ |V0| −∆+ (T )− (p+ 1)

≤ |E|+ q + 2p−∆+ (T )− (p+ 1)

= |E| − 1 < |E| .

We have thus shown that |F | < |E|. But, since V0 ⊆ N+[V2], thus F 6= ∅ and E ⊆ N+[F ],
which implies that there exists at least a vertex w in F such that

∣∣N+
D (w) ∩ E

∣∣ ≥ 2, implying

∆+(
〈
N

+
[x]
〉

) ≥ 2, a contradiction with the Condition (b) of the family F3. Hence, γR (D) =

n−∆+ + 1.
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