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Abstract

In this paper, we define and compare three new measures of graph irregularity. We use these
measures to tighten upper bounds for the chromatic number and the Colin de Verdière parameter.
We also strengthen the concise Turán theorem for irregular graphs and investigate to what extent
Turán’s theorem can be similarly strengthened for generalized r-partite graphs. We conclude by
relating these new measures to the Randić index and using the measures to devise new normalised
indices of network heterogeneity.
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1. Introduction

Many results in extremal graph theory are exact only for some regular graphs. In this paper we
strengthen various bounds, using two degree based measures of irregularity and a spectral measure
of irregularity, so that they also become exact for some irregular graphs.

Let G be a simple and undirected graph with vertex set V with |V | = n, edge set E with
|E| = m, t triangles, clique number ω, chromatic number χ and vertex degrees ∆ = d1 ≥ d2 ≥
... ≥ dn = δ. Let µ denote the largest eigenvalue of the adjacency matrix of G and let d denote the
average degree.

Existing measures of irregularity include the following. Collatz and Sinogowitz [7] proposed a
spectral measure, namely µ− d. Bell [2] proposed a variance measure, namely var(G) =

∑
(di −

d)2/n =
∑

(d2i /n)−d2 and identified the most irregular graphs for both measures. He also showed
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that the measures are incomparable for some pairs of graphs. Albertson [1] used the measure∑
ij∈E |di − dj|, which has found applications in chemical graph theory. Nikiforov [27] used the

measure s(G) =
∑

i |di − d|. These measures are all greater than or equal to zero, with equality
for regular graphs, and can be described as additive measures of irregularity. It is worth noting
that var(G) = var(G) and s(G) = s(G), where G denotes the complement of G. The measures
defined in this paper are all greater than or equal to one, with equality for regular graphs, and can
be described as multiplicative measures of irregularity.

In Section 2 we define and compare the new measures; in Section 3 we use the measures to
strengthen upper bounds for the chromatic number; in Section 4 we strengthen Turán’s Theorem
for irregular graphs; in Section 5 we apply the new measures to generalised r−partite graphs; in
Section 6 we bound a graph’s radius, Harmonic index and Randić index; and we conclude with
bounds for the new measures and new indices of network heterogeneity.

2. Measures of irregularity

Our first measure of irregularity, ν, was introduced by Edwards [13]. He defined a parameter
cv, which he termed the “vertex degree coefficient of variation” as follows:

ν = 1 + c2v =
n
∑

i∈V d
2
i

4m2
.

Edwards [13] showed that cv = 0 if and only if a graph is regular, so ν ≥ 1, with equality only
for regular graphs. cv is the ratio of the standard deviation to the mean of the vertex degrees, which
follows the usual definition of a coefficient of variation.

Our second measure of irregularity, ε, is defined similarly using an ”edge degree coefficient of
variation” as follows:

ε = 1 + c2e =
n
∑

ij∈E
√
didj

2m2
.

It follows from Proposition 2.8 in Favaron, Mahéo and Saclé [15] that ε ≥ 1, with equality
only for regular graphs.

Finally we define a spectral measure of irregularity as follows:

β =
µ

d
=
µn

2m
.

It is well known that µ ≥ d, with equality only for regular graphs. Therefore β ≥ 1, with
equality only for regular graphs.

We can compare these bounds as follows. Hofmeister [19] proved that µ2 ≥
∑

i∈V d
2
i /n and

Favaron et al [15] have proved that µ ≥
∑

ij∈E
√
didj/m. It is therefore straightforward that:

β2 ≥ ν and β ≥ ε.

We can also show that ν ≥ ε, as follows:
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ν =
n
∑

i∈V d
2
i

4m2
=
n
∑

ij∈E(di + dj)

4m2
≥
n
∑

ij∈E
√
didj

2m2
= ε.

Finally, for most but not all irregular graphs, ε2 > ν.

3. Upper bounds for the Chromatic Number

Theorem 3.1. Let G be a graph with irregularity ν. Then

χ(G) ≤ n

ν
.

Proof. Our proof follows that in Deng et al [10], which uses contradictions for χ(G) = 2, χ(G) =
3 and χ(G) ≥ 4.

Case 1: χ(G) = 2.
Note that:

n

ν
=

4m2∑
i∈V d

2
i

=
4m2∑

ij∈E(di + dj)
< χ(G) = 2 =

4m2∑
ij∈E(m+m)

which implies some degrees are greater than m, a contradiction.
Case 2 : χ(G) = 3.
Let pq be an edge which has the largest weight of (di + dj) for ij ∈ E. Then:

χ(G) = 3 >
n

ν
=

4m2∑
ij∈E(di + dj)

≥ 4m

(dp + dq)
≥ 4(dp + dq − 1)

dp + dq
= 4− 4

dp + dq
.

Deng et al [10] demonstrate that this inequality leads to a contradiction.
Case 3 : χ(G) ≥ 4.
Let pq be an edge which has the largest weight of (di + dj) for ij ∈ E and consequently the

smallest weight of 1
di+dj

. Deng et al [10] have proved that:

2

dp + dq
>

1

χ(G)− 1
.

Therefore:

χ(G) >
n

ν
=

4m2∑
ij∈E(di + dj)

≥ 4m

(dp + dq)
>

2m

χ(G)− 1
.

This implies 2m < χ(G)(χ(G) − 1). However for all graphs 2m ≥ χ(G)(χ(G) − 1), since
there must be at least one edge between each pair of color classes.
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This bound strengthens a bound due to Deng et al [10], who recently proved that χ(G) ≤
2H(G), where H(G) is the Harmonic index. We discuss this index and the Randić index, R(G), in
Section 6.

This bound is sometimes better than Wilf’s well known bound (χ(G) ≤ 1 + µ). For example
for the Star graph on n vertices, the Wilf bound equals 1 +

√
n− 1 and this new bound equals

4− 4/n.
Hansen and Vukicević [18] proved that χ(G) ≤ 2R(G). We can demonstrate that this bound is

never better than Wilf’s bound because:

χ(G) ≤ µ+ 1 ≤ n

β
≤ n

ε
≤ 2R(G).

We show that n/ε ≤ 2R(G) in Section 6. The only new inequality is therefore that:

µ+ 1 ≤ n

β
=

2m

µ
.

We can prove this inequality using the following lemma.

Lemma 3.1. Let G be a graph with chromatic number χ. Then:

χ(χ− 1) ≤ µ(µ+ 1) ≤ 2m.

Proof. We have noted above that χ(χ− 1) ≤ 2m and χ ≤ 1 +µ. In Section 3.1 below we use that
µ2 ≤ 2m(ω − 1)/ω. Therefore:

µ2 ≤ 2m(ω − 1)

ω
=

2mω(ω − 1)

ω2
≤ 2mχ(χ− 1)

ω2
≤ 4m2

ω2
.

Therefore:

µ(µ+ 1) ≤ 2m(ω − 1)

ω
+

2m

ω
= 2m.

3.1. Colin de Verdière parameter
The Colin de Verdière parameter, λ(G), is the basis for the profound conjecture that χ(G) ≤

1 + λ(G). There is extensive literature on this conjecture, for example by Holst et al [20] and
Goldberg [16]. Several upper bounds for χ(G) are not upper bounds for 1 + λ(G). For example,
the Petersen graph demonstrates that λ 6≤ µ and K4,5 demonstrates that λ 6≤ n − α, where α
denotes the independence number, which is the size of the maximum set of vertices, no two of
which are adjacent.

We can, however, use β to create a new upper bound for λ as follows.

Theorem 3.2. Let G be a connected graph with irregularity β. Then:

λ(G) ≤ n

β
− 1 =

2m

µ
− 1.
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Proof. One of the deep properties of λ is that it is minor-monotone, from which it follows imme-
diately that ω ≤ 1 + λ. (A graph parameter φ(G) is called minor-monotone if φ(H) ≤ φ(G) for
any minor H of G.)

Pendavingh [30] has proved that if G 6= K3,3 is a connected graph, then

λ(λ+ 1) ≤ 2m.

We therefore need to consider two options. If G = K3,3 then (eg see Goldberg) λ = 4 <
(2m/µ)− 1 = 18/3− 1 = 5.

If G 6= K3,3 then we use a result due to Nikiforov [26], and conjectured by Edwards and
Elphick [14], that:

µ2 ≤ 2m(ω − 1)

ω
.

Therefore:

µ2 ≤ 2m(ω − 1)

ω
≤ 2mλ

λ+ 1
≤ 4m2

(λ+ 1)2
,

and consequently:

λ ≤ 2m

µ
− 1 =

n

β
− 1.

4. Turán’s Theorem for irregular graphs

Turán’s Theorem, proved in 1941, is a fundamental result in extremal graph theory. In its
concise form it states that:

2m ≤ (ω − 1)n2

ω
.

Observe that the result, due to Nikiforov above, that µ2 ≤ 2m(ω − 1)/ω, is equivalent to the
following strengthening of the concise Turán theorem:

Theorem 4.1.
2m ≤ (ω − 1)n2

ωβ2
.

Due to the bounds β2 ≥ ν and β ≥ ε we obtain:

(i) 2m ≤ (ω − 1)n2

ων
and (ii) 2m ≤ (ω − 1)n2

ωε2
.
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We provide a non-spectral proof of the bound (i) because it leads to a corollary. Before pre-
senting this proof we explain briefly the intuition underlying the above inequalities. Theorem 4.1
is unusual because it involves m on both sides. A useful way to interpret the theorem is that β, ν
and ε are measures of graph irregularity. Therefore all graphs with a given clique number and, for
example, irregularity as measured by ν ≥ 2 have a maximum number of edges that is at most half
of the number implied by Turán’s Theorem.

Proof. This non-spectral proof is based on a 1962 proof of the concise Turán Theorem due to
Moon and Moser [24], as written up in an award winning paper by Martin Aigner entitled “Turán’s
Graph Theorem”.

Let Ch denote the set of h-cliques in G with |Ch| = ch. So for example, c1 = n, c2 = m, c3 = t
etc. For A ∈ Ch let d(A) equal the number of (h+ 1) cliques containing A. Moon and Moser [24]
proved that:

ch+1

ch
≥ h2ch/ch−1 − n

h2 − 1
, for h ≥ 2. (1)

They also proved that:

nch + (h2 − 1)ch+1 ≥
∑

B∈Ch−1

d(B)2

so with h = 2 this becomes:

nm+ 3c3 ≥
n∑
i=1

d2i , or equivalently

c3
c2

=
c3
m
≥ (
∑
d2i /m)− n

3
. (2)

Now define θ as follows:
(θ − 2)n

θ
=

∑
d2i
m
− n (3)

which is equivalent to:

2m =
(θ − 1)n2

θν
.

This definition of θ differs from that in [24] and enables the strengthening of Moon and Moser’s
proof. Combining (2) and (3) we have:

c3
c2
≥
∑
d2i /m− n

3
=

(θ − 2)n

3θ
. (4)

To prove Theorem 4.1 (i) we need to show that θ ≤ k−1 for graphs without k-cliques. Consider
the claim:

ch+1

ch
≥ (θ − h)n

θ(h+ 1)
, for h ≥ 2. (5)
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For h = 2, this is inequality (4). We therefore use induction on h and (1) as follows:

ch+1

ch
≥ h2ch/ch−1 − n

h2 − 1
≥ h2(θ − h+ 1)n/(θh)− n

h2 − 1

=
(θ − h)(h− 1)n

θ(h2 − 1)
=

(θ − h)n

θ(h+ 1)

as claimed in (5). Now if G contains no k-clique then ck = 0 and we infer θ ≤ h = k−1 from (5).
We have not attempted a non-spectral proof of the ε bound.

4.1. Number of k-cliques
Moon and Moser [24] proved that if t is the number of triangles in a graph, then:

t ≥ m(4m− n2)

3n
.

In the following corollary we strengthen this bound for irregular graphs. This corollary is exact
for some irregular complete tripartite and Turán graphs.

Corollary 4.1. Let G be a graph with irregularity ν. Then:

t ≥ m(4mν − n2)

3n
.

Proof. From inequality (4), we know that:

t ≥ nm(θ − 2)

3θ
=

∑
d2i − nm

3
=

4νm2 − n2m

3n
.

This approach can be continued for larger cliques. For example, we know from (5) that:

c4 ≥
tn(θ − 3)n

4θ
≥ m(4mν − n2)

12
(1− 3

θ
) =

m(4mν − n2)(3mν − n2)

6n2
.

4.2. Remarks
Theorem 4.1 is exact for all complete bipartite graphs. The full form of Turán’s theorem states

thatm(G) ≤ m(Tr(n)), where Tr(n) is the complete r-partite graph of order nwhose classes differ
by at most one, with equality holding only if G = Tr(n). It is not the case that for all irregular
graphs m(G) ≤ m(Tr(n))/ν or that m(G) ≤ m(Tr(n))/ε2 or that m(G) ≤ m(Tr(n))/β2.

Turán’s theorem can be further strengthened by using more complex lower bounds for µ. For
example, if ti denotes the sum of the degrees of the vertices adjacent to vi, then Yu, Lu and Tian
[32] have proved that:

µ2 ≥
∑
t2i∑
d2i
≥
∑
d2i
n
≥ 4m2

n2
.
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Thus if we define:

α =
n2
∑
t2i

4m2
∑
d2i
≥ ν

it follows, as above, that:

2m ≤ (ω − 1)n2

ωα
≤ (ω − 1)n2

ων
.

5. Generalized r-partite graphs

In a series of papers, Bojilov and others have generalized the concept of an r-partite graph.
They define the parameter φ to be the smallest integer r for which V (G) has an r-partition:

V (G) = V1 ∪ V2 ∪ . . . ∪ Vr, such that d(v) ≤ n− |Vi|,
for all v ∈ Vi and for i = 1, 2, . . . , r.

It is notable that φ depends only on the degrees of G, and not on the adjacency matrix of G.
Indeed, φ is defined for any set of n integers ai, where 0 ≤ ai ≤ n − 1, which may or may not
correspond to the degrees of a graph.

Theorem 2.1 in [3] proves that φ is a lower bound for the clique number and the greedy Algo-
rithm 1 and Theorem 3.1 in [3] demonstrate that φ can be computed in linear time. For d-regular
graphs, Theorem 4.4 in [3] proves that:

φ =

⌈
n

n− d

⌉
.

Khadzhiivanov and Nenov [12] have proved that φ satisfies Turán’s Theorem:

2m ≤ (φ− 1)n2

φ
≤ (ω − 1)n2

ω
. (6)

Theorem 4.1 in [3] provides a simpler proof of (6). The study of φ has therefore led to a novel
proof of the concise version of Turán’s Theorem, which also demonstrates that this famous result
is in fact a function only of the degrees of a graph rather than its adjacency matrix.

It is of interest to see to what extent (6) can be strengthened in a similar way to Theorem 4.1
For example, Bojilov and Nenov [4] have strengthened (6) as follows:

2m ≤ (φ− 1)n2

φ
√
ν

. (7)

Inequality (7) is further strengthened in Theorem 5.4 in [3] where it is shown that:

φ ≥ n

n− d∗φ
≥ n

n− d∗φ−1
≥ . . . ≥ n

n− d∗1
where

d∗r = r

√∑
dri/n.
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Observe that inequality (7) is equivalent to r = 2 in this chain of inequalities.
It is therefore natural to ask whether 2m ≤ (φ − 1)n2/φν? The answer is no, because, for

example, the graph in Figure 1 provides a counter-example.

3

6 1 2 7

4 5

Figure 1. Graph751 on 7 vertices with degree sequence (5, 5, 2, 2, 2, 1, 1), φ = 2 and ω = 3

There are also various spectral lower bounds for ω of which the simplest, due to Cvetkovic [8],
is:

ω ≥ n

n− µ
. (8)

The graph in Figure 2 is an example of a graph which does not satisfy (8), with ω replaced by
φ. It also demonstrates that a variety of other spectral lower bounds for ω are not lower bounds for
φ. Furthermore, φ does not satisfy the Motzkin-Straus inequality.

1

4 2 3 5

6 7

Figure 2. Graph on 7 vertices with degree sequence (4, 4, 4, 3, 3, 3, 3), φ = 2, µ = 3.503

Conjecture 1. We have, however, been unable to find a counter-example to the following conjec-
ture:

2m ≤ (φ− 1)n2

φε
.
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6. Bounds on graph radius, Harmonic and Randić indices

The Randić index is used in organic chemistry, with bonds between atoms represented by edges
in a graph. The Randić index is defined as:

R(G) =
∑
ij∈E

1√
didj

.

An alternative to the Randić index is the Harmonic index, which is defined as:

H(G) =
∑
ij∈E

2

di + dj
.

Using results due to Xu [31] it is straightforward to show that:

n

2ν
≤ H(G) ≤ R(G) ≤ n

2
.

Liu [23] has recently proved that triangle-free graphs have H(G) ≥ 2m/n. We can generalise
this bound using part (i) of Theorem 4.1 as follows:

H(G) ≥ n

2ν
≥ ωm

(ω − 1)n
=

2m

n
when ω = 2.

We can also show that:

m

µ
=

n

2β
≤ n

2ε
≤ R(G)

since using Cauchy-Schwartz, we have R(G).
∑

ij∈E
√
didj ≥ (

∑
ij∈E 1)2 = m2. Note that

for Star graphs, n/2ε =
√
n− 1, which is the lower bound for R(G) due to Bollobas and Erdos

[5]. It is not always the case that n/2ε ≤ H(G) or that n/2β ≤ H(G).
The eccentricity ecc(v) of a vertex v in a connected graph G is the maximum distance between

v and any other vertex u of G. The minimum graph eccentricity is the radius, r, of the graph. Xu
[31] has proved that if H(G) is the Harmonic index, then:

H(G) ≥ m

n− r
.

This bound on r can be strengthened as follows.

Theorem 6.1. Let G be a connected graph with irregularity ν. Then:

H(G) ≥ n

2ν
≥ m

n− r
.

Proof. Note that for each vertex i ∈ V (G), we have di ≤ n− ecc(i). Therefore:

n

2ν
=

2m2∑
ij∈E(di + dj)

≥ 2m2∑
ij∈E(2n− ecc(i)− ecc(j))

≥ 2m2

2m(n− r)
=

m

n− r
.
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7. Upper Bounds

Gutman, Furtula and Elphick [17] have proved that:

β2 ≤ n2

4(n− 1)
; ν ≤ n2

4(n− 1)
and ε2 ≤ n2

4(n− 1)

with equality for Star graphs.
We can obtain alternative bounds on ν(G) by using bounds on

∑
d2i , which is often referred to

as the first Zagreb index. For example, Das [9] proved that∑
d2i ≤ 2m(∆ + δ)− n∆δ.

Therefore

1 ≤ ν =
n
∑
d2i

4m2
≤ n(∆ + δ)

2m
− n2∆δ

4m2
=

∆ + δ

d
− ∆δ

d2
.

Alternatively, Izumino, Mori and Seo [21] have proved (their Corollary 3.2) that if 0 ≤ δ ≤
di ≤ ∆ then:

1

n

∑
d2i −

(∑
di
n

)2

≤ (∆− δ)2

4
.

Therefore

1 ≤ ν =
n
∑
d2i

4m2
≤ n2

4m2

(
4m2

n2
+

(∆− δ)2

4

)
= 1 +

(
∆− δ

2d

)2

.

We can obtain alternative bounds on ε(G) by using bounds on the generalised Randic index,
Rα(G), with α = 1/2. For example, Li and Yang [22] proved that for α ≥ 0:

Rα ≤
n(n− 1)1+2α

2
.

Therefore

1 ≤ ε =
nR1/2

2m2
≤ n2(n− 1)2

4m2
=

(
n− 1

d

)2

.

Favaron et al [15] demonstrate that ν and ε2 are incomparable. However, in practice, ε2 ≥ ν
for almost all graphs. Indeed we have been unable to find a graph amongst the named graphs in
Wolfram Mathematica for which ε2 < ν. Considering the irregular named graphs in Wolfram with
16 vertices, the average value of ν = 1.22, the average value of ε2 = 1.27 and the average value of
β2 = 1.32. As a specific example, DutchWindmill(5,4) has ν = 1.6, ε2 = 1.675 and β2 = 1.92.

The graphs representing some actual networks, such as the World Wide Web, power grids,
academic collaborators and neural networks, are highly irregular. For example, Newman [25]
calculated that the World Wide Web graph has cv = 3.685, implying ν = 14.6. These high values
of irregularity for some actual networks may increase the usefulness of the measures described in
this paper.
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8. Network heterogeneity indices

Estrada [11] and others have noted that many real-world networks have a power law degree
distribution. Estrada has proposed that normalised indices of the heterogeneity of such networks
should lie in the range (0, 1), with zero corresponding to regular graphs and unity to Star graphs.
Estrada devised the following index, using R(G), which meets these criteria:

ρn =
n− 2R

n− 2
√
n− 1

.

As discussed above, ν, ε and β are minimised for regular graphs and maximised for Star graphs.
We can therefore devise the following normalised heterogeneity indices:

νn =
n2 − (n2/ν)

(n− 2)2
; εn =

n− (n/ε)

n− 2
√
n− 1

and βn =
n− (n/β)

n− 2
√
n− 1

.

It follows from the inequalities in Section 6 above that:

0 ≤ ρn ≤ εn ≤ βn ≤ 1.

It may be that βn is the most useful of these indices, perhaps using results due to Chung, Lu
and Vu [6] who have investigated the spectrum of random power law graphs.
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