Electronic Journal of Graph Theory and Applications

On imbalances in multipartite multidigraphs

Uma Tul Samee ${ }^{\text {a }}$, Shariefuddin Pirzada ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Islamia College for Science and Commerce, Srinagar, Kashmir, India
${ }^{b}$ Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
pzsamee@yahoo.co.in, pirzadasd@kashmiruniversity.ac.in

Abstract

A k-partite r-digraph (multipartite multidigraph) (or briefly MMD) $k \geq 3, r \geq 1$) is the result of assigning a direction to each edge of a k-partite multigraph that is without loops and contains at most r edges between any pair of vertices from distinct parts. Let $D\left(X_{1}, X_{2}, \cdots, X_{k}\right)$ be a k partite r-digraph with parts $X_{i}=\left\{x_{i 1}, x_{i 2}, \cdots, x_{i n_{i}}\right\}, 1 \leq i \leq k$. Let $d_{x_{i j}}^{+}$and $d_{x_{i j}}^{-}$be respectively the outdegree and indegree of a vertex $x_{i j}$ in X_{i}. Define $a_{x_{i j}}$ (or simply $a_{i j}$) as $a_{i j}=d_{x_{i j}}^{+}-d_{x_{i j}}^{-}$ as the imbalance of the vertex $x_{i j}, 1 \leq j \leq n_{i}$. In this paper, we characterize the imbalances of k-partite r-digraphs and give a constructive and existence criteria for sequences of integers to be the imbalances of some k-partite r-digraph. Also, we show the existence of a k-partite r-digraph with the given imbalance set.

Keywords: digraph, outdegree, imbalance, maximum degree, oriented graph, multipartite multidigraph Mathematics Subject Classification : 05C20
DOI: 10.5614/ejgta.2018.6.1.6

1. Introduction

A digraph without loops and without multi-arcs is called a simple digraph. The imbalance of a vertex v_{i} in a digraph as $a_{v_{i}}$ (or simply $\left.a_{i}\right)=d_{v_{i}}^{+}-d_{v_{i}}^{-}$, where $d_{v_{i}}^{+}$and $d_{v_{i}}^{-}$are respectively the outdegree and indegree of v_{i}. The imbalance sequence of a simple digraph is formed by listing the vertex imbalances in non-increasing order. For undefined terms, we refer to [12].

Received: 7 October 2017, Revised: 13 January 2018, Accepted: 30 January 2018.

The following result [5] provides a necessary and sufficient condition for a sequence of integers to be the imbalance sequence of a simple digraph.

Theorem 1. A sequence of integers $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ is an imbalance sequence if and only if it has sum zero and satisfies

$$
\sum_{i=1}^{k} a_{i} \leq k(n-k)
$$

for $1 \leq k<n$, with equality when $k=n$.
On arranging the imbalance sequence in non-decreasing order, we have the following observation.

Corollary 2. A sequence of integers $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ with $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ is an imbalance sequence of a simple digraph if and only if for $1 \leq k<n$

$$
\sum_{i=1}^{k} a_{i} \geq k(k-n)
$$

with equality when $k=n$.
Various results for imbalances in simple digraphs, bipartite and multipartite digraphs can be seen in [$6,8,9,27]$ while as characterization of imbalances in multidigraphs, bipartite multitournaments and tripartite multidigraphs can be found in [7, 10, 11].

An r-digraph $(r \geq 1)$ is an orientation of a multigraph that is without loops and contains at most r edges between any pair of distinct vertices. Clearly 1-digraph is an oriented graph and complete 1 -digraph is a tournament. Various results on scores and marks on tournaments and digraphs can be seen in $[2,13,14,15,16,17,18,24,25]$ and on scores and degrees in hypertournaments can be found in $[1,3,4,19,20,21,22,23,26]$. The definition of an imbalance of a vertex in r-digraph is same as in a simple digraph. The following characterization for imbalances in multidigraphs can be found in Pirzada et al. [7].

Theorem 3. A sequence $A=\left[a_{1}, a_{2}, \cdots, a_{p}\right]$ of integers in non-decreasing order is the imbalance sequence of an r-digraph if and only if

$$
\sum_{i=1}^{k} a_{i} \geq r k(k-n)
$$

for $1 \leq k \leq n$ with equality when $k=n$.

2. Imbalance sequences in multipartite multidigraphs

A k-partite r-digraph $(k \geq 3, r \geq 1$) (or briefly MMD) is the result of assigning a direction to each edge of a k-partite multidigraph which is without loops and having at most r edges between every pair of vertices, one vertex from each part. We note that k-partite 1 -digraph is an oriented k-partite graph and complete k-partite 1 -digraph is a k-partite tournament. The case when $k=1$ gives multidigraph and when $k=2$ gives bipartite multidigraph, and these have been studied in [9]. Thus throughout this paper the MMD under discussion will have three or more than three parts. Let $D\left(X_{1}, X_{2}, \cdots, X_{k}\right)$ (or briefly D) be an MMD with parts $X_{i}=\left\{x_{i 1}, x_{i 2}, \cdots, x_{i n_{i}}\right\}$, $1 \leq i \leq k$. For any vertex $x_{i j}$ in D, let $d_{x_{i j}}^{+}$and $d_{x_{i j}}^{-}$denote the outdegree and indegree. Define $a_{x_{i j}}$ (or simply $a_{i j}$) $=d_{x_{i j}}^{+}-d_{x_{i j}}^{-}$as the imbalance of the vertiex $x_{i j}$, where $1 \leq j \leq n_{i}$. Note that we have $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$, unless otherwise stated.

Let D be an MMD and $x_{i j} \in X_{i}, x_{m n} \in X_{m}$ and $x_{s t} \in X_{s}$, where $i \neq m, m \neq s$ and $s \neq i$. If there are f arcs directed from vertex $x_{i j}$ to $x_{m n}$ and g arcs directed from $x_{m n}$ to $x_{i j}$, with $0 \leq f \leq r, 0 \leq g \leq r$ and $0 \leq f+g \leq r$, it is denoted by $x_{i j}(f--g) x_{m n}$. An r-triple is an induced r-subdigraph of three vertices with one vertex from distinct part and is of the form $x_{i j}\left(f_{1}--f_{2}\right) x_{m n}\left(g_{1}--g_{2}\right) x_{s t}\left(h_{1}--h_{2}\right) x_{m n}$, where $0 \leq f_{1}, f_{2}, g_{1}, g_{2}, h_{1}, h_{2}, f_{1}+f_{2}, g_{1}+$ $g_{2}, h_{1}+h_{2} \leq r$. Also an oriented triple (or 1-triple) in D is an induced 1-subdigraph of three vertices, with one vertex each from distinct part. An oriented triple is said to be transitive if it is of the form $x_{i j}(1--0) x_{m n}(1--0) x_{s t}(0--1) x_{i j}$, or $x_{i j}(1--0) x_{m n}(0--1) x_{s t}(0--0) x_{i j}$, or $x_{i j}(1--0) x_{m n}(0--0) x_{s t}(0--1) x_{i j}$, or $x_{i j}(1--0) x_{m n}(0--0) x_{s t}(0--0) x_{i j}$, or $x_{i j}(0-0) x_{m n}(0--0) x_{s t}(0--0) x_{i j}$, otherwise it is intransitive. An MMD D is said to be transitive if each of its oriented triple is transitive. In particular, an r-triple C in an MMD D is transitive if every oriented triple of C is transitive.

We have the following observation.
Theorem 4. Let D and D^{\prime} be two $M M D$ with the same imbalance sequences. Then D can be transformed to D^{\prime} by successively transforming
(i) appropriate triples in one of the following ways.

Either (a) by changing an intransitive oriented triple(cyclic triple) $x_{i j}(1--0) x_{m n}(1--0) x_{s t}(1-$ $-0) x_{i j}$ to a transitive oriented triple $x_{i j}(0--0) x_{m n}(0--0) x_{s t}(0--0) x_{i j}$ which has the same imbalance sequences, or vice versa,
or (b) by changing an intransitive oriented triple $x_{i j}(1--0) x_{m n}(1--0) x_{s t}(0--0) x_{i j}$ to a transitive oriented triple $x_{i j}(0--0) x_{m n}(0--0) x_{s t}(0--1) x_{i j}$ which has the same imbalance sequences, or vice versa.
or (ii) by changing the symmetric arcs $x_{i j}(1--1) x_{m n}$ to $x_{i j}(0--0) x_{m n}$, which has the same imbalance sequences, or vice versa.

Proof. This can be easily established.

As a consequence of Theorem 3, we observe that among all MMD's having same imbalance sequences those with least number of arcs are transitive in nature.

Corollary 5. Among all MMD's with given imbalance sequences, those with the fewest arcs are transitive.

In an MMD, a vertex with indegree zero is called a transmitter. Evidently in a transitive oriented MMD with imbalance sequences $A_{i}=\left[a_{i 1}, a_{i 2}, \cdots, a_{i n_{i}}\right]$, any of the vertices with imbalances $a_{i n_{i}}$, can act as a transmitter.

The next result provides a useful recursive test of checking whether the sequences of integers are the imbalance sequences of an MMD.

The following result is a combinatorial criterion for determining whether k sequences of integers are realizable as imbalances.

Theorem 6. The k sequences of integers $A_{i}=\left[a_{i 1}, a_{i 2}, \cdots, a_{i n_{i}}\right], 1 \leq i \leq k$, in non-decreasing order are imbalance sequences of an MMD if and only if

$$
\begin{align*}
& \sum_{j=1}^{m_{1}} a_{1 j}+\sum_{j=1}^{m_{2}} a_{2 j}+\cdots+\sum_{j=1}^{m_{k}} a_{k j} \\
& \leq r\left[m_{1} \prod_{j=1, j \neq 1}^{k}\left(n_{j}-m_{j}\right)+m_{2} \prod_{j=1, j \neq 2}^{k}\left(n_{j}-m_{j}\right)+\cdots+m_{k} \prod_{j=1, j \neq k}^{k}\left(n_{j}-m_{j}\right)\right] \tag{1}
\end{align*}
$$

or briefly

$$
\sum_{i=1}^{k} \sum_{j=1}^{m_{i}} a_{i j} \leq r\left[\sum_{i=1}^{k} m_{i}\left(\prod_{j=1, j \neq i}^{k}\left(n_{j}-m_{j}\right)\right)\right]
$$

for all sets of k integers $m_{i}, 1 \leq m_{i} \leq n_{i}$, with equality when $m_{i}=n_{i}$, for all i.

Proof. The necessity of the condition follows from the fact that a directed multipartite multi subgraph of an MMD induced by m_{i} vertices for all $i, 1 \leq i \leq k, 1 \leq m_{i} \leq n_{i}$ has a sum of imbalances zero and these vertices can gather at most

$$
r\left[m_{1} \prod_{j=1, j \neq 1}^{k}\left(n_{j}-m_{j}\right)+m_{2} \prod_{j=1, j \neq 2}^{k}\left(n_{j}-m_{j}\right)+\cdots+m_{k} \prod_{j=1, j \neq k}^{k}\left(n_{j}-m_{j}\right)\right]
$$

imbalances from the remaining $n_{i}-m_{i}$ vertices.
For sufficiency, assume that $A_{i}=\left[a_{i 1}, a_{i 2}, \cdots, a_{i n_{i}}\right]$ be k sequences of integers in non-decreasing order satisfying conditions (1) but are not imbalance sequences of any MMD. Let these sequences be chosen in such a way that n_{i}, are the smallest possible and a_{11} is the least for the choice of n_{i}.

We consider the following two cases.
Case (i). Suppose equality in (1) holds for $m_{j} \leq n_{j}$, for $1 \leq j \leq k$ so that

$$
\begin{aligned}
& \sum_{j=1}^{m_{1}} a_{1 j}+\sum_{j=1}^{m_{2}} a_{2 j}+\cdots+\sum_{j=1}^{m_{k}} a_{k j} \\
& =r\left[m_{1} \prod_{j=1, j \neq 1}^{k}\left(n_{j}-m_{j}\right)+m_{2} \prod_{j=1, j \neq 2}^{k}\left(n_{j}-m_{j}\right)+\cdots+m_{k} \prod_{j=1, j \neq k}^{k}\left(n_{j}-m_{j}\right)\right] .
\end{aligned}
$$

Consider the following k sequences.

$$
\begin{gathered}
A_{1}^{\prime}=\left[a_{1 j}^{\prime}\right]_{j=1}^{m_{1}}=\left[a_{1 j}-r \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)\right]_{j=1}^{m_{1}}, \\
A_{2}^{\prime}=\left[a_{2 j}^{\prime}\right]_{j=1}^{m_{2}}=\left[a_{2 j}-r \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)\right]_{j=1}^{m_{2}} \\
\vdots \\
A_{k}^{\prime}=\left[a_{k j}^{\prime}\right]_{j=1}^{m_{k}}=\left[a_{k j}-r \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right]_{j=1}^{m_{k}}
\end{gathered}
$$

For $1 \leq r_{i}<m_{i}$ for all $1 \leq i \leq k$, we have

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{r_{i}} a_{i j}^{\prime}=\sum_{j=1}^{r_{1}} a_{1 j}^{\prime}+\sum_{j=1}^{r_{2}} a_{2 j}^{\prime}+\cdots+\sum_{j=1}^{r_{k}} a_{k j}^{\prime} \\
& =\sum_{j=1}^{r_{1}}\left(a_{1 j}-r \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)\right)+\sum_{j=1}^{r_{2}}\left(a_{2 j}-r \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)\right) \\
& +\cdots+\sum_{j=1}^{r_{k}}\left(a_{k j}-r \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& =\left(\sum_{j=1}^{r_{1}} a_{1 j}+\sum_{j=1}^{r_{2}} a_{2 j}+\cdots+\sum_{j=1}^{r_{k}} a_{k j}\right) \\
& -r\left(r_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)+r_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)+\cdots+r_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq r\left(r_{1} \prod_{j=1, j \neq 1}^{k}\left(n_{j}-r_{j}\right)+r_{2} \prod_{j=1, j \neq 2}^{k}\left(n_{j}-r_{j}\right)+\cdots+r_{k} \prod_{j=1, j \neq k}^{k}\left(n_{j}-r_{j}\right)\right) \\
& -r\left(r_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)+r_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)+\cdots+r_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& \leq r\left(r_{1} \prod_{t=1, t \neq 1}^{k}\left(m_{t}-r_{t}\right)+r_{2} \prod_{t=1, t \neq 2}^{k}\left(m_{t}-r_{t}\right)+\cdots+r_{k} \prod_{t=1, t \neq k}^{k}\left(m_{t}-r_{t}\right)\right) \\
& =r \sum_{i=1}^{k} r_{i}\left(\prod_{t=1, t \neq i}^{k}\left(m_{t}-r_{t}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{m_{i}} a_{i j}^{\prime}=\sum_{j=1}^{m_{1}} a_{1 j}^{\prime}+\sum_{j=1}^{m_{2}} a_{2 j}^{\prime}+\cdots+\sum_{j=1}^{m_{k}} a_{k j}^{\prime} \\
& =\sum_{j=1}^{m_{1}}\left(a_{1 j}-r \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)\right)+\sum_{j=1}^{m_{2}}\left(a_{2 j}-r \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)\right) \\
& +\cdots+\sum_{j=1}^{m_{k}}\left(a_{k j}-r \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& =\left(\sum_{j=1}^{m_{1}} a_{1 j}+\sum_{j=1}^{m_{2}} a_{2 j}+\cdots+\sum_{j=1}^{m_{k}} a_{k j}\right) \\
& -r\left(m_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)+m_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)+\cdots+m_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& =r\left(m_{1} \prod_{j=1, j \neq 1}^{k}\left(n_{j}-m_{j}\right)+m_{2} \prod_{j=1, j \neq 2}^{k}\left(n_{j}-m_{j}\right)+\cdots+m_{k} \prod_{j=1, j \neq k}^{k}\left(n_{j}-m_{j}\right)\right) \\
& -r\left(m_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)+m_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)+\cdots+m_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& =r \sum_{i=1}^{k} m_{i}\left(\prod_{j=1, j \neq i}^{k}\left(n_{j}-m_{j}\right)\right)-r \sum_{i=1}^{k} m_{i}\left(\prod_{t=1, t \neq i}^{k}\left(n_{t}-m_{t}\right)\right) \\
& =0 .
\end{aligned}
$$

Thus the k sequences $A_{i}^{\prime}=\left[a_{i j}^{\prime}\right]_{j=1}^{m_{i}}$, for all $1 \leq i \leq k$ satisfy (1) and by the minimality of n_{i} the sequences A_{i}^{\prime} are the imbalance sequences of some $\operatorname{MMD} D^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{k}^{\prime}, E^{\prime}\right)$.

Now consider the following k sequences.

$$
\begin{aligned}
& A_{1}^{\prime \prime}==\left[a_{1\left(m_{1}+j\right)}+r \prod_{t=1, t \neq 1}^{k} m_{t}\right]_{j=1}^{n_{1}} \\
& A_{2}^{\prime \prime}= {\left[a_{2\left(m_{2}+j\right)+r \prod_{t=1, t \neq 2}} m_{t}\right]_{j=1}^{m_{2}} } \\
& \vdots \\
& A_{k}^{\prime \prime}= {\left[a_{k\left(m_{k}+j\right)}+r \prod_{t=1, t \neq k}^{k} m_{t}\right]_{j=1}^{m_{k}} }
\end{aligned}
$$

For all $1 \leq i \leq k$ and $1 \leq r_{i} \leq n_{i}-m_{i}$, we have

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{r_{i}} a_{i j}^{\prime \prime}=\sum_{j=1}^{r_{1}} a_{1 j}^{\prime \prime}+\sum_{j=1}^{r_{2}} a_{2 j}^{\prime \prime}+\cdots+\sum_{j=1}^{r_{k}} a_{k j}^{\prime \prime} \\
& =\sum_{j=1}^{r_{1}}\left(a_{1\left(m_{1}+j\right)}+r \prod_{t=1, t \neq 1}^{k} m_{t}\right)+\sum_{j=1}^{r_{2}}\left(a_{2\left(m_{2}+j\right)}+r \prod_{t=1, t \neq 2}^{k} m_{t}\right) \\
& +\cdots+\sum_{j=1}^{r_{k}}\left(a_{k\left(m_{k}+j\right)}+r \prod_{t=1, t \neq k}^{k} m_{t}\right)
\end{aligned}
$$

$$
=\sum_{j=1}^{r_{1}}\left(a_{1\left(m_{1}+j\right)}+r \prod_{t=1, t \neq 1}^{k} m_{t}\right)+\sum_{j=1}^{r_{2}}\left(a_{2\left(m_{2}+j\right)}+r \prod_{t=1, t \neq 2}^{k} m_{t}\right)
$$

$$
+\cdots+\sum_{j=1}^{r_{k}}\left(a_{k\left(m_{k}+j\right)}+r \prod_{t=1, t \neq k}^{k} m_{t}\right)
$$

$$
=\left(\sum_{j=1}^{m_{1}+r_{1}} a_{1 j}+\sum_{j=1}^{m_{2}+r_{2}} a_{2 j}+\cdots+\sum_{j=1}^{m_{k}+r_{k}} a_{k j}\right)
$$

$$
-\left(\sum_{j=1}^{m_{1}} a_{1 j}+\sum_{j=1}^{m_{2}} a_{2 j}+\cdots+\sum_{j=1}^{m_{k}} a_{k j}\right)
$$

$$
+r\left(r_{1} \prod_{t=1, t \neq 1}^{k} m_{t}+r_{2} \prod_{t=1, t \neq 2}^{k} m_{t}+\cdots+r_{k} \prod_{t=1, t \neq k}^{k} m_{t}\right)
$$

Therefore

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{r_{i}} a_{i j}^{\prime \prime} \\
& \leq r\left(m_{1}+r_{1}\right) \prod_{j=1, j \neq 1}^{k}\left(n_{t}-\left(m_{t}+r_{t}\right)\right)+r\left(m_{2}+r_{2}\right) \prod_{j=1, j \neq 2}^{k}\left(n_{t}-\left(m_{t}+r_{t}\right)\right) \\
& +\cdots+r\left(m_{k}+r_{k}\right) \prod_{j=1, j \neq k}^{k}\left(n_{t}-\left(m_{t}+r_{t}\right)\right) \\
& -r\left(m_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}\right)+m_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}\right)+\cdots+m_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}\right)\right) \\
& +r\left(r_{1} \prod_{t=1, t \neq 1}^{k} m_{t}+r_{2} \prod_{t=1, t \neq 2}^{k} m_{t}+\cdots+r_{k} \prod_{t=1, t \neq k}^{k} m_{t}\right) \\
& \leq r\left(r_{1} \prod_{t=1, t \neq 1}^{k}\left(n_{t}-m_{t}-r_{t}\right)+r_{2} \prod_{t=1, t \neq 2}^{k}\left(n_{t}-m_{t}-r_{t}\right)+\cdots+r_{k} \prod_{t=1, t \neq k}^{k}\left(n_{t}-m_{t}-r_{t}\right)\right) \\
& =r \sum_{i=1}^{k} r_{i}\left(\prod_{t=1, t \neq i}^{k}\left(n_{t}-m_{t}-r_{t}\right)\right)^{t}
\end{aligned}
$$

with equality when $r_{i}=n_{i}-m_{i}$ for all $i, 1 \leq i \leq k$. Therefore by the minimality of n_{i}, the k sequences $A_{i}^{\prime \prime}$ form the imbalance sequences of some MMD $D^{\prime \prime}\left(V_{1}^{\prime \prime}, V_{2}^{\prime \prime}, \cdots, V_{k}^{\prime \prime}, E^{\prime \prime}\right)$.

Construct an MMD $D\left(V_{1}, V_{2}, \cdots, V_{k}, E\right)$ as follows.
Let $V_{1}=V_{1}^{\prime} \cup V_{1}^{\prime \prime}, V_{2}=V_{2}^{\prime} \cup V_{2}^{\prime \prime}, \cdots, V_{k}=V_{k}^{\prime} \cup V_{k}^{\prime \prime}$ and $V_{i}^{\prime} \cap V_{j}^{\prime \prime}=\phi$ for all i, j. The arc set E contains (a) all the arcs between V_{i}^{\prime} and $V_{j}^{\prime}, i \neq j$, (b) all arcs between $V_{i}^{\prime \prime}$ and $V_{j}^{\prime \prime}, i \neq j$ and (c) r arcs from each vertex of V_{i}^{\prime} to every vertex of $V_{j}^{\prime \prime}$.

Then $D\left(V_{1}, V_{2}, \cdots, V_{k}\right)$ has imbalance sequences A_{i}, which is a contradiction. Clearly this contradicts the given assumption.

Case (ii). Assume that the strict inequality holds in (1) for $m_{i} \neq n_{i}$. Let $A_{1}=\left[a_{11}-\right.$ $\left.1, a_{12}, \cdots, a_{1\left(n_{1}-1\right)}, a_{1 n_{1}}+1\right]$ and Let $A_{j}=\left[a_{j 1}, a_{j 2}, \cdots, a_{j n_{j}}\right]$ for all $j, 2 \leq j \leq k$, so that A_{i} satisfy the conditions (1). Therefore by the minimality of a_{11}, the sequences A_{i} are the imbalance sequences of some MMD $D_{1}\left(Y_{1}, Y_{2}, \cdots, Y_{k}\right)$. Let $a_{x_{11}}=a_{11}-1$ and $a_{x_{1 n_{1}}}=a_{1 n_{1}}+1$. Since $a_{x_{1 n_{1}}}>a_{x_{11}}+1$, there exists a vertex $x_{j p}$ in $Y_{j}, 2 \leq j \leq k, 1 \leq p \leq n_{j}$, such that $x_{1 n_{1}}(0-$ $-0) x_{j p}(1--0) x_{11}$, or $x_{1 n_{1}}(1--0) x_{j p}(0--0) x_{11}$, or $x_{1 n_{1}}(1--0) x_{j p}(1--0) x_{11}$, or $x_{1 n_{1}}(0-$ $-0) x_{j p}(0--0) x_{11}$ in $D_{1}\left(Y_{1}, Y_{2}, \cdots, Y_{k}\right)$, and if these are changed to $x_{1 n_{1}}(0--1) x_{j p}(0--0) x_{11}$, or $x_{1 n_{1}}(0--0) x_{j p}(0--1) x_{11}$, or $x_{1 n_{1}}(0--0) x_{j p}(0--0) x_{11}$, or $x_{1 n_{1}}(0--1) x_{j p}(0--1) x_{11}$ respectively, the result is an MMD with imbalance sequences A_{i}, which is again a contradiction. This completes the proof.

3. Imbalance sets in multipartite multidigraphs

The set of distinct imbalances of the vertices in an MMD is called its imbalance set. Now we give the existence of an MMD with a given imbalance set.

Theorem 8. Let $P=\left\{p_{1}, p_{2}, \cdots, p_{m}\right\}$ and $Q=\left\{-q_{1},-q_{2}, \cdots,-q_{n}\right\}$, where $p_{1}, p_{2}, \cdots, p_{m}$, $q_{1}, q_{2}, \cdots, q_{n}$ are positive integers with $p_{1}<p_{2}<\cdots<p_{n}$ and $q_{1}<q_{2}<\cdots<q_{n}$ and the greatest common divisor $\left(p_{1}, p_{2}, \cdots, p_{m}, q_{1}, q_{2}, \cdots, q_{n}\right)=t$, where $1 \leq t \leq r$. Then there exists an MMD with imbalance set $P \cup Q$.

Proof. Since $\left(p_{1}, p_{2}, \cdots, p_{m}, q_{1}, q_{2}, \cdots, q_{n}\right)=t$ there exist positive integers $f_{1}, f_{2}, \cdots, f_{m}, g_{1}$, g_{2}, \cdots, g_{n} with $f_{1}<f_{2}<\cdots<f_{m}$ and $g_{1}<g_{2}<\cdots<g_{n}$ such that $p_{i}=t f_{i}$ for $1 \leq i \leq m$ and $q_{j}=t g_{j}$ for $1 \leq j \leq n$. First assume that k is even, say $k=2 s$ where $s \geq 1$. Construct an MMD $D\left(X_{1}, X_{2}, \cdots, X_{k}\right)$ as follows. Let

$$
\begin{gathered}
X_{1}=X_{11} \cup X_{12} \cup \cdots \cup X_{1 m} \cup X_{1}^{1} \cup X_{1}^{2} \cup \cdots \cup X_{1}^{n}, \\
X_{2}=X_{21} \cup X_{22} \cup \cdots \cup X_{2 m} \cup X_{2}^{1} \cup X_{2}^{2} \cup \cdots \cup X_{2}^{n}, \\
X_{3}=X_{31} \cup X_{32} \cup \cdots \cup X_{3 m} \cup X_{3}^{1} \cup X_{3}^{2} \cup \cdots \cup X_{3}^{n}, \\
\cdots \\
X_{2 s}=X_{2 s 1} \cup X_{2 s 2} \cup \cdots \cup X_{2 s m} \cup X_{2 s}^{1} \cup X_{2 s}^{2} \cup \cdots \cup X_{2 s}^{n},
\end{gathered}
$$

with $X_{i j} \cap X_{u v}=\emptyset, X_{i j} \cap X_{u}^{v}=\emptyset, X_{i}^{j} \cap X_{u}^{v}=\emptyset,\left|X_{1 i}\right|=g_{1}$ for all $i, 1 \leq i \leq m,\left|X_{1}^{i}\right|=g_{i}$ for all $i, 1 \leq i \leq n,\left|X_{2 i}\right|=f_{i}$ for all $i, 1 \leq i \leq m,\left|X_{2}^{i}\right|=f_{1}$ for all $i, 1 \leq i \leq n,\left|X_{i 1}\right|=g_{1}$ for all odd $i, 3 \leq i \leq 2 s-1$, and $\left|X_{i 1}\right|=f_{1}$ for all even $i, 4 \leq i \leq 2 s$. Let there be t arcs directed from each vertex of $X_{1 i}$ to every vertex of $X_{2 i}$ for all $1 \leq i \leq m$; t arcs directed from each vertex of X_{1}^{i} to every vertex of $X_{2}^{i} 1 \leq i \leq n$ and t arcs directed from each vertex of $X_{i 1}$ to every vertex of $X_{(i+1) 1}$ for all odd $i, 3 \leq i \leq 2 s-1$ so that we obtain $2 s$-partite r-digraph MMD with imbalance of vertices as follows.

For $1 \leq i \leq m$,

$$
a_{x_{1 i}}=t\left|X_{2 i}\right|-0=t f_{i}=p_{i}, \text { for all } x_{1 i} \in X_{1 i}
$$

for $1 \leq j \leq n$,

$$
a_{x_{1}^{i}}=t\left|X_{2}^{i}\right|-0=t f_{1}=p_{1}, \text { for all } x_{1}^{i} \in X_{1}^{i}
$$

for $1 \leq j \leq m$,

$$
a_{x_{2 i}}=0-t\left|X_{1 i}\right|=-t g_{1}=-q_{1}, \text { for all } x_{2 i} \in X_{2 i} ;
$$

for $1 \leq j \leq n$,

$$
a_{x_{2}^{i}}=0-t\left|X_{1}^{i}\right|=-t g_{i}=-q_{i}, \text { for all } x_{2}^{i} \in X_{2}^{i}
$$

for all odd $i, 3 \leq i \leq 2 s-1$

$$
a_{x_{i 1}}=t\left|X_{(i+1) 1}\right|-0=t f_{1}=p_{1}, \text { for all } x_{i 1} \in X_{i 1}
$$

and for even $i, 4 \leq i \leq 2 s$,

$$
a_{x_{i 1}}=0-t\left|X_{(i-1) 1}\right|=-t g_{1}=-q_{1}, \text { for all } x_{i 1} \in X_{i 1} .
$$

Therefore imbalance set of $D\left(X_{1}, X_{2}, \cdots, X_{k}\right)$ is $P \cup Q$.
By using the same argument as above, it can be shown that the result holds for odd k also. Hence the proof is complete.

Acknowledgements

The authors are grateful to the anonymous referee for useful comments. The research of second author (S. Pirzada) is supported by SERB-DST, New Delhi under the research project number EMR/2015/001047/MS.

References

[1] Zhou Guofei and S. Pirzada, Degree sequences in oriented k-hypergraphs, J. Applied Math. Comput. 27 (2008), 149-158.
[2] A. Ivanyi, S. Pirzada and F.A. Dar, Tripartite graphs with given degree set, Acta Univ. Sap. Informatica 7 (1) (2015), 72-106.
[3] K.K. Kayibi and M.A. Khan and S. Pirzada, Uniform sampling of k-hypertournaments, Linear and Multilinear Algebra 61 (1) (2013), 123-138.
[4] M.A. Khan, S. Pirzada and K.K. Kayibi, Scores, inequalities and regular hypertournaments, J. Math. Ineq. Appl. 15 (2) (2012), 343-351.
[5] D. Mubayi, T.G. Will and D.B. West, Realizing degree imbalances in directed graphs, Discrete Math. 239 (2001), 147-153.
[6] S. Pirzada, On imbalances in digraphs, Krujagevac J. Math. 31 (2008), 143-146.
[7] S. Pirzada, U. Samee, T.A. Naikoo and A. Ivanyi, Imbalances in multidigraphs, Acta Univ. Sapien. Mathematica 2 (2) (2010), 133-145.
[8] S. Pirzada, T.A. Naikoo and N.A. Shah, Imbalances in oriented tripartite graphs, Acta Mathematica Sinica 27 (5) (2011), 927-932.
[9] S. Pirzada, A.M. Al-Assaf and K.K. Kayibi, Imbalances in oriented multipartite graphs, Acta Univ. Sapientiae, Mathematica 3 (1) (2011), 34-42.
[10] S. Pirzada, A. Ivanyi and N.A. Shah, Imbalances of bipartite multitournaments, Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012), 2151-228.
[11] S. Pirzada, K. Kayibi and N.A. Shah, Tripartite multi digraphs and imbalances, Kragujevic J. Math. 36 (1) (2012), 85-94.
[12] S. Pirzada, An Introduction to Graph Theory, Universities Press, OrientBlackswan, Hyderabad (2012).
[13] S. Pirzada and T.A. Naikoo, Score sets in tournaments, Vietnam J. Math. 34 (2) (2006), 157161.
[14] S. Pirzada, T.A. Naikoo and N.A. Shah, Score sequences in oriented graphs, J. Appl. Math. Comp. 23 (1) (2007), 257-268.
[15] S. Pirzada and U. Samee, Mark sequences in digraphs, Sminaire Lotharingien de Combinatoire 55 (2013), B55c.
[16] S. Pirzada, A. Ivanyi and M.A. Khan, Score sets and kings, Algorithms of Informatics 3 (2013), 1410-1450.
[17] S. Pirzada and T.A. Naikoo, Inequalities for marks in digraphs, J. Math. Ineq. Appl. 9 (2) (2006), 189-198.
[18] S. Pirzada and T.A. Naikoo, Score sets in oriented graphs, Appl. Anal. Disc. Math. 2 (2008), 107-113.
[19] S. Pirzada, T.A. Chishti and T.A. Naikoo, Score lists in [h,k] bipartite hypertournaments, Discrete Math. Appl. 19 (3) (2009), 321- 328.
[20] S. Pirzada and Zhou Guofei, Score sequences in oriented k-hypergraphs, European J. Pure Appl. Math. 1 (3) (2008), 10-20.
[21] S. Pirzada, Degree sequences in multi hypertournaments, Appl. Math.: J. Chinese Universities 24 (3) (2009), 350-354.
[22] S. Pirzada and Zhou Guofei, Score lists in (h,k)-bipartite hypertournaments, Appl. Math., J. Chinese Universities, Series B 22 (4) (2007), 485-489.
[23] S. Pirzada, Score lists in bipartite multi hypertournaments, Math. Vesnik 64 (4) (2012), 286296.
[24] S. Pirzada and T.A. Naikoo, Tournaments, oriented graphs and football sequences, Acta. Univ. Sap. Math. 9 (1) (2017), 213-223.
[25] S. Pirzada and T.A. Naikoo, Mark sets in 2-digraphs, Appl. Comput. Math. 10 (2) (2011), 283-288.
[26] S. Pirzada, On scores in multipartite hypertournaments, Eurasian Math. J. 2 (1) (2011), 112119.
[27] U. Samee and T.A. Chishti, On imbalances in oriented bipartite graphs, Eurasian Math. J. 1 (2) (2010), 136-141.

