## Electronic Journal of Graph Theory and Applications

# The Ramsey numbers of fans versus a complete graph of order five 

Yanbo Zhang, Yaojun Chen<br>Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China<br>ybzhang@163.com, yaojunc@nju.edu.cn


#### Abstract

For two given graphs $F$ and $H$, the Ramsey number $R(F, H)$ is the smallest integer $N$ such that for any graph $G$ of order $N$, either $G$ contains $F$ or the complement of $G$ contains $H$. Let $F_{l}$ denote a fan of order $2 l+1$, which is $l$ triangles sharing exactly one vertex, and $K_{n}$ a complete graph of order $n$. Surahmat et al. conjectured that $R\left(F_{l}, K_{n}\right)=2 l(n-1)+1$ for $l \geq n \geq 5$. In this paper, we show that the conjecture is true for $n=5$.


Keywords: Ramsey number, fan, complete graph
Mathematics Subject Classification : 05C55

## 1. Introduction

All graphs considered in this paper are finite simple graphs. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The complement of $G$ is denoted by $\bar{G}$. For $S \subseteq V(G)$, $G[S]$ denotes the subgraph induced by $S$ in $G$ and $G-S=G[V(G)-S], N_{S}(v)$ denotes the set of the neighbors of a vertex $v$ contained in $S$ and $d_{S}(v)=\left|N_{S}(v)\right|$. If $S=V(G)$, we write $N(v)=N_{G}(v), N[v]=N(v) \cup\{v\}$ and $d(v)=d_{G}(v)$. Let $K_{n}$ be a complete graph of order $n$ and $m K_{n}$ the union of $m$ vertex-disjoint copies of $K_{n}$. A fan of order $2 l+1$, denoted by $F_{l}$, is the join of $K_{1}$ and $l K_{2}$, that is $l$ triangles sharing exactly one vertex, where the $K_{1}$ is called the center of $F_{l}$. For notations not defined here, we follow [1]. Let $F$ and $H$ be two given graphs. The Ramsey number $R(F, H)$ is the smallest integer $N$ such that for any graph $G$ of order $N$, either $G$ contains $F$ or $\bar{G}$ contains $H$. For a connected graph $F$ of order $p$, Burr [2] established a general

Received: 14 October 2013, Revised: 10 March 2014, Accepted: 9 April 2014.
lower bound for $R(F, H)$, that is, $R(F, H) \geq(p-1)(\chi(H)-1)+s(H)$, if $p \geq s(H)$, where $\chi(H)$ is the chromatic number of $H$ and $s(H)$ the minimum number of vertices in some color class under all vertex colorings by $\chi(H)$ colors. For the pair $F_{l}$ and $K_{n}$, noting that $\chi\left(K_{n}\right)=n$ and $s\left(K_{n}\right)=1$, we have $R\left(F_{l}, K_{n}\right) \geq 2 l(n-1)+1$ by Burr's lower bound. Gupta et al. showed the equality holds for $n=3$ and established the following.

Theorem 1.1 (Gupta et al. [3]). $R\left(F_{l}, K_{3}\right)=4 l+1$ for $l \geq 2$.
Surahmat et al. proved the equality also holds for $n=4$ and obtained the following.
Theorem 1.2 (Surahmat et al. [5]). $R\left(F_{l}, K_{4}\right)=6 l+1$ for $l \geq 3$.
Maybe motivated by Theorems 1.1 and 1.2, Surahmat et al. conjectured that the equality holds in a more general case in the same paper, and posed the following.

Conjecture 1 (Surahmat et al. [5]). $R\left(F_{l}, K_{n}\right)=2 l(n-1)+1$ for $l \geq n \geq 5$.
Other results on Ramsey numbers of fans versus complete graphs can be found in the dynamic survey [4]. In this paper, we will confirm Conjecture 1 for $n=5$. The main result of this paper is as below.

Theorem 1.3. $R\left(F_{l}, K_{5}\right)=8 l+1$ for $l \geq 5$.

## 2. Proof of Theorem 1.3

Since $4 K_{2 l}$ contains no $F_{l}$ and its complement contains no $K_{5}, R\left(F_{l}, K_{5}\right) \geq 8 l+1$. In the following, we need only to show that $R\left(F_{l}, K_{5}\right) \leq 8 l+1$.

Let $G$ be a graph of order $8 l+1$ with $l \geq 5$, we need to show that either $G$ contains an $F_{l}$ or $\bar{G}$ contains a $K_{5}$. Suppose to the contrary that neither $G$ contains an $F_{l}$ nor $\bar{G}$ contains a $K_{5}$.

Let $v \in V(G)$. If $d(v) \leq 2 l-1$, then $G-N[v]$ is a graph of order at least $6 l+1$. By Theorem 1.2, $\bar{G}-N[v]$ contains a $K_{4}$, which implies that $\bar{G}$ contains a $K_{5}$, a contradiction. If $d(v) \geq 2 l+3$, then a maximum matching $M$ of $G[N(v)]$ contains at least $l$ edges for otherwise $\bar{G}[N(v)-V(M)]$ is a complete graph of order at least 5 , which implies that $G$ has an $F_{l}$, a contradiction. Therefore, $2 l \leq d(v) \leq 2 l+2$ for any $v \in V(G)$.

Suppose that $G$ contains a subgraph $H=K_{2 l-1}$. Choose $v_{0} \in V(G)-V(H)$ such that $d_{H}\left(v_{0}\right)=\max \left\{d_{H}(v) \mid v \in V(G)-V(H)\right\}$. Obviously, $G-\left(V(H) \cup\left\{v_{0}\right\}\right)$ is a graph of order $6 l+1$. By Theorem 1.2, $G-\left(V(H) \cup\left\{v_{0}\right\}\right)$ contains an independent set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Since $\bar{G}$ has no $K_{5}$, we have $V(H) \cup\left\{v_{0}\right\} \subseteq \cup_{i=1}^{4} N\left(u_{i}\right)$. This implies that $\max \left\{d_{H}\left(u_{i}\right) \mid 1 \leq i \leq 4\right\} \geq$ $\lceil(2 l-1) / 4\rceil \geq 3$. By the choice of $v_{0}$, we have $d_{H}\left(v_{0}\right) \geq 3$. If $d_{H}\left(v_{0}\right) \geq 4$, then there is some $u_{i}$ having at least two neighbors in $N_{H}\left(v_{0}\right) \cup\left\{v_{0}\right\}$; if $d_{H}\left(v_{0}\right)=3$, then $d_{H}\left(u_{i}\right) \leq d_{H}\left(v_{0}\right)=3$ for $1 \leq i \leq 4$, which implies that there exists some $u_{i}$ such that $d_{H}\left(u_{i}\right) \geq 2$ and $N_{H}\left(u_{i}\right) \cap N_{H}\left(v_{0}\right) \neq \emptyset$. In both cases, $G\left[V(H) \cup\left\{v_{0}, u_{i}\right\}\right]$ contains an $F_{l}$, a contradiction. Hence, $G$ contains no $K_{2 l-1}$.

By Theorem 1.2, $G$ has an independent set $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. For $1 \leq i \leq 4$, set $X_{i}=$ $\left\{v \mid d_{U}(v)=i, v \in V(G)\right\}$. Obviously,

$$
\begin{equation*}
\sum_{i=1}^{4}\left|X_{i}\right|=8 l-3 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{4} i\left|X_{i}\right|=\sum_{i=1}^{4} d\left(u_{i}\right) \tag{2}
\end{equation*}
$$

Since $\sum_{i=1}^{4} d\left(u_{i}\right) \leq 8 l+8$, by (1) and (2), we have

$$
\begin{equation*}
\left|X_{1}\right| \geq 8 l-14+\left|X_{3}\right|+2\left|X_{4}\right| \geq 8 l-14 \tag{3}
\end{equation*}
$$

Let $X_{1 i}=N_{X_{1}}\left(u_{i}\right)$ for $1 \leq i \leq 4$. Because $\bar{G}$ has no $K_{5}, G\left[X_{1 i} \cup\left\{u_{i}\right\}\right]$ is a complete graph. Since $G$ contains no $K_{2 l-1}$, we have $\left|X_{1 i} \cup\left\{u_{i}\right\}\right| \leq 2 l-2$, which implies that $\left|X_{1 i}\right| \leq 2 l-3$ for $1 \leq i \leq 4$. Thus, $\left|X_{1}\right|=\sum_{i=1}^{4}\left|X_{1 i}\right| \leq 8 l-12$. By (3), we have $\left|X_{3}\right|+2\left|X_{4}\right| \leq 2$. By (1),

$$
\begin{equation*}
\left|X_{2}\right| \geq 7 \tag{4}
\end{equation*}
$$

Assume without loss of generality that $\left|X_{11}\right| \geq\left|X_{12}\right| \geq\left|X_{13}\right| \geq\left|X_{14}\right|$. Then $\left|X_{11}\right|=\left|X_{12}\right|=$ $2 l-3,\left|X_{13}\right|+\left|X_{14}\right| \geq 4 l-8$ and $\left|X_{14}\right| \geq 2 l-5$. Denote by $U_{i}$ both the vertex set $X_{1 i} \cup\left\{u_{i}\right\}$ and the graph $G\left[X_{1 i} \cup\left\{u_{i}\right\}\right]$ for $1 \leq i \leq 4$, then $U_{1}, U_{2}, U_{3}, U_{4}$ are pairwise vertex-disjoint complete graphs with $\left|U_{1}\right|=\left|U_{2}\right|=2 l-2,\left|U_{3}\right|+\left|U_{4}\right| \geq 4 l-6$ and $\left|U_{4}\right| \geq 2 l-4$.

Let $Y_{i j}=N_{X_{2}}\left(u_{i}\right) \cap N_{X_{2}}\left(u_{j}\right)$ for $1 \leq i<j \leq 4$.
Claim 1. If $\left|U_{i}\right|=2 l-2$ for some $i$ with $1 \leq i \leq 4$, then for any $y \in Y_{i j}, d_{U_{j}}(y) \geq 3$ and if $\left|U_{i}\right|=\left|U_{j}\right|=2 l-2$, then $Y_{i j}=\emptyset$.

Proof. Since $G$ contains no $K_{2 l-1}, U_{i}-N(y) \neq \emptyset$. In this case, $G\left[U_{i} \cup U_{j}-N(y)\right]$ is a complete graph for otherwise any two nonadjacent vertices in $G\left[U_{i} \cup U_{j}-N(y)\right]$ together with $U \cup\{y\}-$ $\left\{u_{i}, u_{j}\right\}$ form a $K_{5}$ in $\bar{G}$, a contradiction. Since $G$ has no $F_{l}$ and both $U_{i}$ and $U_{j}$ are complete graphs, we have $d_{U_{j}}(u) \leq 3$ for any $u \in U_{i}$, which implies that $\left|U_{j}-N(y)\right| \leq 3$. Noting that $\left|U_{j}\right| \geq 2 l-4$ and $l \geq 5$, we have $d_{U_{j}}(y) \geq\left|U_{j}\right|-\left|U_{j}-N(y)\right| \geq(2 l-4)-3 \geq 3$.

If $\left|U_{i}\right|=\left|U_{j}\right|=2 l-2$ and $Y_{i j} \neq \emptyset$, then for any $y \in Y_{i j}, d_{U_{i}}(y)+d_{U_{j}}(y) \leq 2 l$ since otherwise $G[N[y]]$ contains an $F_{l}$ with $y$ as center, a contradiction. Thus we have $\left|U_{i} \cup U_{j}-N(y)\right| \geq\left|U_{i}\right|+$ $\left|U_{j}\right|-2 l \geq 6$ since $l \geq 5$. By the arguments in the first part, we have $\left|U_{i}-N(y)\right|=\left|U_{j}-N(y)\right|=3$. Thus, $G\left[U_{i} \cup\left(U_{j}-N(y)\right)\right]$ contains an $F_{l}$ with $u$ as center for any $u \in U_{i}-N(y)$, a contradiction. Hence $Y_{i j}=\emptyset$.

If $\left|U_{4}\right|=2 l-2$, then by Claim 1, $X_{2}=\cup_{1 \leq i<j \leq 4} Y_{i j}=\emptyset$ which contradicts (4). Hence we have $2 l-4 \leq\left|U_{4}\right| \leq 2 l-3$.

Assume $\left|U_{3}\right|=2 l-2$. By Claim 1, we have $X_{2}=\cup_{1 \leq i<j \leq 4} Y_{i j}=Y_{14} \cup Y_{24} \cup Y_{34}$, that is, $X_{2} \subseteq N\left(u_{4}\right)$. If $\left|U_{4}\right|=2 l-3$, then since $\sum_{i=1}^{4} d\left(u_{i}\right) \leq 8 l+8$, by (1), (2) and (3), either $\left|X_{2}\right|=10,\left|X_{3}\right|=\left|X_{4}\right|=0$ and $\sum_{i=1}^{4} d\left(u_{i}\right)=8 l+7$ or $\left|X_{2}\right|=9,\left|X_{3}\right|=1,\left|X_{4}\right|=0$ and $\sum_{i=1}^{4} d\left(u_{i}\right)=8 l+8$. If $\left|U_{4}\right|=2 l-4$, then for the same reason, we have $\left|X_{2}\right|=11$, $\left|X_{3}\right|=\left|X_{4}\right|=0$ and $\sum_{i=1}^{4} d\left(u_{i}\right)=8 l+8$. Thus we have $\left|X_{2}\right| \geq 9$ in both cases, which implies that $d\left(u_{4}\right) \geq\left|X_{14}\right|+\left|X_{2}\right| \geq 2 l-5+9=2 l+4$, a contradiction. Therefore, $\left|U_{3}\right| \leq 2 l-3$.

Since $\left|U_{3}\right|+\left|U_{4}\right| \geq 4 l-6$ and $\left|U_{4}\right| \leq 2 l-3$, we are now left to consider the case when $\left|U_{3}\right|=$ $\left|U_{4}\right|=2 l-3$. Since $\sum_{i=1}^{4} d\left(u_{i}\right) \leq 8 l+8$, by (1), (2) and (3), we have $\left|X_{2}\right|=11,\left|X_{3}\right|=\left|X_{4}\right|=0$ and $\sum_{i=1}^{4} d\left(u_{i}\right)=8 l+8$, which implies $d_{X_{2}}\left(u_{4}\right)=6$. Let $N_{X_{2}}\left(u_{4}\right)=\left\{y_{i} \mid 1 \leq i \leq 6\right\}$. Since $\bar{G}$ contains no $K_{5}, G\left[N_{X_{2}}\left(u_{4}\right)\right]$ contains at least one edge, say $y_{1} y_{2} \in E(G)$. Since $G$ has no $F_{l}$,
$G\left[\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}\right]$ contains no edge. Because $\bar{G}$ has no $K_{5}$, we have $\mid\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\} \cap\left(N\left(u_{1}\right) \cup\right.$ $\left.N\left(u_{2}\right)\right) \mid \geq 2$. Assume that $\left\{y_{3}, y_{4}\right\} \subseteq N\left(u_{1}\right) \cup N\left(u_{2}\right)$. By Claim 1, $d_{U_{4}}\left(y_{3}\right) \geq 3$ and $d_{U_{4}}\left(y_{4}\right) \geq 3$, which implies that $d_{X_{14}}\left(y_{3}\right) \geq 2$ and $d_{X_{14}}\left(y_{4}\right) \geq 2$. In this case, there exist $u^{\prime}, u^{\prime \prime} \in X_{14}$ such that $u^{\prime} y_{3}, u^{\prime \prime} y_{4} \in E(G)$, which implies that $G\left[U_{4} \cup\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}\right]$ contains an $F_{l}$ with $u_{4}$ as center, a contradiction.

The proof of Theorem 1.3 is completed.

## Acknowledgement

This research was supported by NSFC under grant numbers 11071115, 11371193 and 11101207, and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

## References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.
[2] S.A. Burr, Ramsey numbers involving graphs with long suspended paths, Journal of London Mathematical Society 24 (1981), 405-413.
[3] S.K. Gupta, L. Gupta and A. Sudan, On Ramsey numbers for fan-fan graphs, Journal of Combinatorics, Information \& System Sciences 22 (1997), 85-93.
[4] S.P. Radziszowski, Small Ramsey numbers, The Electronic Journal of Combinatorics, (2011), DS1.13.
[5] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey numbers of fans versus $K_{4}$, Bulletin of the Institute of Combinatorics and its Applications 43 (2005), 96-102.

