
www.ejgta.org

Electronic Journal of Graph Theory and Applications 2 (1) (2014), 42–51

Antimagicness for a family of generalized an-
tiprism graphs
Dominique Buseta, Mirka Millerb,c, Oudone Phanalasyb,d, Joe Ryane

aService de Mathematiques
Ecole Polytechnique de Bruxelles
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Abstract

An antimagic labeling of a graph G = (V,E) is a bijection from the set of edges E to the set
of integers {1, 2, . . . , |E|} such that all vertex weights are pairwise distinct, where the weight of
a vertex is the sum of all edge labels incident with that vertex. A graph is antimagic if it has an
antimagic labeling. In this paper we provide constructions of antimagic labelings for a family of
generalized antiprism graphs and generalized toroidal antiprism graphs.
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1. Introduction

All graphs considered in this paper are finite, simple, undirected and connected. A labeling
of a graph G = (V,E) is a bijection from some set of graph elements to a set of numbers. In
particular, in this paper we are interested in labeling of the edges of a graph. A labeling l :
E −→ {1, 2, . . . , |E|} is called an edge labeling. The weight of a vertex v is defined by wt(v) =∑

u∈N(v) l(uv), where N(v) is the set of the neighbors of v. An edge labeling l of G is antimagic if
all vertex weights in G are pairwise distinct. A graph G is antimagic if it has an antimagic labeling.

Hartsfield and Ringel [6] showed that path Pm, star Sm, cycle Cm, complete graph Km, wheel
Wm and bipartite graph K2,m, m ≥ 3, are antimagic. They conjectured that every connected
graph other than K2 is antimagic. Over the period of more than two decades, many families of
graphs have been proved to be antimagic, for example, see [1, 3, 5, 6, 9, 10, 11]. However, the
general conjecture is not yet settled. Even the weaker conjecture “Every tree different from K2 is
antimagic” still remains open. The results concerning antimagic labeling of graphs are summarized
in [5], see also [4].

In 1969, Dickson [2] introduced completely separating system. A completely separating system
(CSS) on a finite set [n] = {1, 2, . . . , n} (or (n)CSS) is a collection of subsets of [n] in which for
each pair of elements a 6= b ∈ [n], there exist two subsets A and B of [n] in
mathcalC such that A contains a but not b and B contains b but not a. A d-element in a collection
of sets is an element which occurs in exactly d sets in the collection. If |A| = k, for all A ∈ C,
then C is said to be an (n, k)CSS. For example, the collection {{1, 2}, {1, 3}} is not a (3, 2)CSS,
while the collection {{1, 2}, {1, 3}, {2, 3}} is a (3, 2)CSS. For any n, k fixed positive integers,
R(n, k) = min{|C| : C is an (n, k)CSS}. An (n, k)CSS for which |C| = R(n, k) is a minimal
(n, k)CSS.

Roberts [8], among others, has explored minimal (n, k)CSS and gave a method for the con-
struction of minimal (n, k)CSSs. In the next section we review a relationship between CSSs and
antimagic labeling of graphs.

2. Preliminaries

In this section we recall a result from [9], that is, a construction of antimagic labeling of regular
graphs that uses a relationship between CSSs and edge labelings of graphs, coupled with Roberts’
construction [8].

We next describe the construction.

Roberts’ construction [8]

Assume that k ≥ 2, n ≥
(
k+1
2

)
and k|2n, and let R = R(n, k) = 2n/k. An (R × k)-array L

is constructed, where each row of L forms a subset of [n] and the R rows of L form an (n, k)CSS.
Let eij denote the element of L in row i and column j. Initialize all elements of L to zero. For e
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from 1 to n, in order, include e in the two positions of L defined by

min
j

min
i
{eij : eij = 0},

min
i

min
j
{eij : eij = 0}.

That is, e is placed in the first row of L containing a 0, in the first 0-valued place in that row,
e is then also placed in the first column of L containing a 0, in the first 0-valued place in that
column. Each of the integers 1 to n appears in L in two positions, and the array L is the array of
an (n, k)CSS. This concludes Roberts’ construction.

The following theorems will be useful when creating antimagic labelings of graphs in the fam-
ily of generalized antiprism graphs.

Theorem 2.1. [9] Let V = {v1, . . . , vp} be a collection of subsets of [q]. If V is a (q)CSS in which
each element of [q] is a 2-element and E is the set of all unordered pairs {vi, vj}, where vi∩vj 6= ∅,
then G = (V,E) is a simple graph, |V | = p and |E| = q. Also, G has an edge labeling l given by
l(vi, vj) = vi ∩ vj .

Theorem 2.2. [9] Let G = (V,E) be a simple graph with |V | = p, |E| = q with an edge labeling
given by bijection l : E → [q]. For v ∈ V , let Sv be the set of labels of edges incident with v. Then
the collection {Sv | v ∈ V } is a (q)CSS consisting of 2-elements.

Note that if V = {v1, . . . , vp} is a (q, k)CSS then G is a k-regular graph together with an edge
labeling and vice versa.

An edge labeling of a graph will be represented by an array, not necessary rectangular, in which
each vertex is represented by a row and each row consists of the labels of all edges incident with
the vertex represented by that row.

Theorem 2.3. [9] Let L be the array of a (q, k)CSS obtained using Roberts’ construction. Then
the k-regular graph G(V,E), where |V | = p = 2q/k and |E| = q, has an antimagic edge labeling
L.

We next illustrate Roberts’ construction by using it to create a (6, 3)CSS and its corresponding
antimagic labeling of the 3-regular graph with 4 vertices in Figure 1.

1 2 3
1 4 5
2 4 6
3 5 6

1

6

5 2

34

Figure 1. The (6, 3)CSS obtained using Roberts’ construction and the corresponding graph K4 with antimagic edge
labeling.
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We conclude this section with definitions of some families of graphs that will be used in this
paper.

To start with, based on the definition of generalized antiprism graph from [4], we extend the
concept to a more general one. Let G be any regular graph with m vertices. A generalized an-
tiprism graph An

G is a graph obtained by completing the generalized prism graph G× Pn, m ≥ 3
and n ≥ 2, by edges {vi,j+1vi+1,j : 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1}∪{vm,j+1v1,j : 1 ≤ j ≤ n−1}.
That is, the vertex set of An

G is V (An
G) = V (G × Pn) = {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the

edge set of An
G is E(An

G) = E(G × Pn) ∪ {vi,j+1vi+1,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1}, where i is
taken modulo m.

The generalized antiprism graph An
m in [4] is a special case of An

G when G = Cm. Throughout
this section we use An

Cm
instead of An

m. A copy of G in An
G is called a layer of An

G. An outer layer
is a layer that contains all vertices with degree d − 2 while each vertex in each inner layer has
degree d, for example, see Figure 2.

A generalized antiprism balloon Bn
G obtained from the generalized antiprism An

G by connecting
each vertex of one outer layer of An

G to an external vertex and each vertex of the other outer layer
to an another external vertex. In particular, Bn

Cm
is called a generalized antiprism 2mn-hedron

balloon.
A generalized antiprism tower TW n

G is obtained from Bn
G by deleting an external vertex con-

nected to each vertex of the outer layer of An
G.

A generalized toroidal antiprism graph T n
G is a graph obtained from the generalized antiprism

graph An
G by joining the two outer layers of the generalized antiprism graph with the edges in the

same way as joining between two consecutive layers of the generalized antiprism graph, see Figure
3 as an example.

3. Results

Theorem 3.1. Let G be any antimagic Cm or Km, m ≥ 3, obtained by Roberts’ construction.
Then the generalized antiprism graph An

G, n ≥ 2, is antimagic.

Proof. Assume that G has m vertices and q edges. Let Lj , 1 ≤ j ≤ n, be the array of the edge
labels of Gj , where Gj is the j-th copy of G in An

G, n ≥ 2. Let Tl, 1 ≤ l ≤ 2(n − 1), be the
(m× 1)-array of edges eli, 1 ≤ i ≤ m, where eli are the edges of An

G that do not belong to any copy
Gj . We construct the array A of edge labels of An

G, n ≥ 2, as follows.

(1) Replace the edge labels in the array Lj , 1 ≤ j ≤ n, with new labels by adding 2(j − 1)m +
(j − 1)q to each of the original edge labels;

(2) Label the edge eli, 1 ≤ i ≤ m, in row i of the array Tl, 1 ≤ l ≤ 2(n − 1), with
⌈
l
2

⌉
q + (l −

1)m + 2i− 1, for l ≡ 1 mod 2, and l
2
q + (l − 2)m + 2i, for l ≡ 0 mod 2;

(3) Form the array A as shown below.
For n = 2,

L1 T1 T2

T ∗1 T ∗2 L2
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for n = 3,
L1 T1 T2

L2 T3 T4

T ∗1 T ∗2 T ∗3 T ∗4 L3

and for n ≥ 4,
L1 T1 T2

L2 T3 T4

T ∗1 T ∗2 L3 T5 T6

T ∗3 T ∗4 L4 T7 T8
...

...
...

...
...

T ∗2(n−3)−1 T ∗2(n−3) Ln−1 T2(n−1)−1 T2(n−1)

T ∗2(n−2)−1 T ∗2(n−2) T ∗2(n−1)−1 T ∗2(n−1) Ln

where T ∗l = (el1 el+1
1 el+1

2 . . . el+1
m−2 el+1

m−1)
t and T ∗l+1 = (el2 el3 el4 . . . e

l
m el+1

m )t, for l ≡
1 mod 2 (see, for example, the array of edge labels in Figure 2).

By the construction of the array A, it is clear that the weight of each vertex (row) in the array
is less than the weight of the vertex (row) below.

We illustrate the generalized antiprism graph A3
C4

with antimagic labeling in Figure 2.

1 2 5 6
1 3 7 8
2 4 9 10
3 4 11 12
13 14 17 18
13 15 19 20
14 16 21 22
15 16 23 24

5 7 17 19 25 26
6 9 18 21 25 27
8 11 20 23 26 28
10 12 22 24 27 28

21

3 4

1413

15 16

25

28

26 27

5 6

11 12

7

8

9

10

17 18

23 24

21

22

19

20

Figure 2. The generalized antiprism graph A3
C4

with antimagic labeling.

Corollary 3.1. (i) The generalized antiprism 4m-hedron balloon graph B2
Cm

, m ≥ 3, is an-
timagic.

(ii) The generalized antiprism 2mn-hedron balloon graph Bn
Cm

, 3 ≤ m ≤ 6 and n ≥ 3, is
antimagic.

Proof. (i) Let Sf , 1 ≤ f ≤ 2, be the array (m× 1)-array of edges ei, 1 ≤ i ≤ m, where ei are the
edges of B2

Cm
that do not belong to A2

Cm
. We consider two cases.

Case 1: 3 ≤ m ≤ 4
We construct the array B of edge labels of B2

G as follows.
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(1) Label the edges ei, 1 ≤ i ≤ m, in the row i of the array Sf , 1 ≤ f ≤ 2, with i + (f − 1)m;
(2) Replace the edge labels in the array A of the construction as given in the proof of Theorem 3.1

with new labels by adding 2m to each of the original edge labels of A;
(3) Form the array B as shown below.

St
1

St
2

S1 L1 T1 T2

S2 T ∗1 T ∗2 L2

Case 2: m ≥ 5

(1) Keep the array A of the construction as given in the proof of Theorem 3.1;
(2) Label the edges ei, 1 ≤ i ≤ m, in the row i of the array Sf , 1 ≤ f ≤ 2, with i + (f + 3)m;
(3) Form the array B as shown below.

L1 T1 T2 S1

T ∗1 T ∗2 L2 S2

St
1

St
2

By the construction of the array B, in both cases it is clear that the weight of each vertex
(row) in the array is less than the weight of the vertex (row) below with two exceptions. These are
the weights of the last row of the subarray T ∗1 T

∗
2L2S2 and the array St

1 in Case 2 that need to be
verified.

Let eg,h be the label at the row g and column h in the array B. Let r2m be the last row of
T ∗1 T

∗
2L2S2 and r2m+1 = St

1. We have the labels in the rows r2m and r2m+1 as shown.

r2m : . . . e2m,m−2 e2m,m−1 e2m,m

r2m+1 : . . . e2m+1,m−2 e2m+1,m−1 e2m+1,m

Since Σm
h=m−2e2m,h = 14m − 1 < 15m − 3 = Σm

h=m−2e2m+1,h and e2m,h < e2m+1,h, for
m− 4 ≤ h ≤ m− 3, hence wt(r2m) < wt(r2m+1).

(ii) Let Sf , 1 ≤ f ≤ 2, be the array (m × 1)-array of edges ei, 1 ≤ i ≤ m, where ei are the
edges of Bn

Cm
that do not belong to An

Cm
, n ≥ 3 and 3 ≤ m ≤ 6. We construct the array B of edge

labels of Bn
Cm

, n ≥ 3 and 3 ≤ m ≤ 6, as follows.

(1) Label the edge ei, 1 ≤ i ≤ m, in the row i of the array Sf , 1 ≤ f ≤ 2, with i + (f − 1)m;
(2) Replace the edge labels in the array A of the construction as given in the proof of Theorem 3.1

with new labels by adding 2m to each of the original edge labels of A;
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(3) Form the array B as shown below.

St
1

St
2

S1 L1 T1 T2

S2 L2 T3 T4

T ∗1 T ∗2 L3 T5 T6

T ∗3 T ∗4 L4 T7 T8
...

...
...

...
...

T ∗2(n−3)−1 T ∗2(n−3) Ln−1 T2(n−1)−1 T2(n−1)

T ∗2(n−2)−1 T ∗2(n−2) T ∗2(n−1)−1 T ∗2(n−1) Ln

By the construction of the array B, it is clear that the weight of each vertex (row) in the array
is less than the weight of the vertex (row) below with two exceptions. These are the weights of the
row St

2 and the first row (r3) of the subarray S1L1T1T2 that need to be verified.
We have wt(St

2) = 3m2+m
2

< 10m + 7 = wt(r3), for 3 ≤ m ≤ 6.

Corollary 3.2. The generalized 2mn-hedron balloon graph Bn
Km

, m ≥ 3 and n ≥ 2, is antimagic.

Proof. The proof follows immediately when Cm is replaced by Km in the construction of the proof
of Corollary 3.1 (ii), so it is omitted.

Corollary 3.3. (i) The generalized antiprism tower graph TW 2
Cm

, m ≥ 3, is antimagic.
(ii) The generalized antiprism tower graph TW n

Cm
, 3 ≤ m ≤ 11 and n ≥ 3, is antimagic.

Proof. The proof follows immediately by deleting the arrays S1 and St
1 from the proof of Corollary

3.1 and reducing each entry of the resulting array by m. Moreover, for (ii) the first row of the
subarray L1T1T2 is the second row (r2) of the entire array of the edge labels. We have wt(St

2) =
m(m+1)

2
< 6m + 6 = wt(r2), for 3 ≤ m ≤ 11.

Corollary 3.4. The generalized antiprism tower graph TW n
Km

, m ≥ 3 and n ≥ 2, is antimagic.

Proof. The proof follows immediately when Cm is replaced by Km in the construction of the proof
of Corollary 3.1 (ii), and deleting the array S1 and St

1 from the construction. Finally, we reduce
each entry of the resulting array by m.

Recall that Theorem 3.1 gives antimagicness for every generalized antiprism graph An
G, for

G = Cm, Km, for m ≥ 3 and n ≥ 2. We can extend this to a further result of antimagicness for
generalized toroidal antiprism graphs.

Theorem 3.2. Let G be either an antimagic graph Cm or Km, m ≥ 3, obtained by Roberts’
construction. Then, for n ≥ 3, the generalized toroidal antiprism graph T n

G is antimagic.

Proof. Assume that G has m ≥ 3 vertices and q edges. Let Lj , 1 ≤ j ≤ n, be the array of edge
labels of the j-th copy of G in T n

G, for n ≥ 3 . Let Tl, 1 ≤ l ≤ 2n, be the (m × 1)-array of edges
eli, 1 ≤ i ≤ m, where eli are the edges of T n

G that do not belong to any copy of G. We construct the
array A of the edge labels of T n

G, for n ≥ 3. We consider two cases.

Case 1: n even
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(1) Label the edge eli, 1 ≤ i ≤ m, in row i of the array Tl, 1 ≤ l ≤ 2n, with (
⌈
l
2

⌉
− 1)q + (l −

1)m + 2i− 1, for l ≡ 1 mod 2, and ( l
2
− 1)q + (l − 2)m + 2i, for l ≡ 0 mod 2;

(2) Replace the edge labels in the array Lj , 1 ≤ j ≤ n, with new labels by adding 2jm+ (j− 1)q
to each of the original edge labels;

(3) Form the array A as shown below.

T1 T2 L1 T3 T4

T ∗1 T ∗2 L2 T5 T6

T ∗3 T ∗4 L3 T7 T8
...

...
...

...
...

T ∗2n−5 T ∗2n−4 Ln−1 T2n−1 T2n

T ∗2(n−1)−1 T ∗2(n−1) T ∗2n−1 T ∗2n Ln

By the construction of the array A, it is clear that the weight of each vertex (row) is less than the
weight of the vertex (row) below with some exceptions. These are the weights of the last row (rm)
and the first row (rm+1) of the subarrays T1T2L1T3T4 and T ∗1 T

∗
2L2T5T6, respectively, that need to

be verified.
Let eg,h be the edge label at row g and column h in the array A.
We first consider G = Cm. In this case, we have the edge labels in rows rm and rm+1 as shown

below.
rm : 2m− 1 2m . . . q + 2m q + 4m− 1 q + 4m
rm+1 : 1 3 . . . q + 4m + 2 2q + 4m + 1 2q + 4m + 2

Since em,1 + em,2 + em,4 + em,5 + em,6 = 3q + 14m− 2 < 5q + 13m+ 6 = em+1,1 + em+1,2 +
em+1,4 + em+1,5 + em+1,6 and em,3 < em+1,3, hence wt(rm) < wt(rm+1). It follows immediately
when G = Km.

Cases 2: n odd
The construction of Case 1 cannot provide the antiprism property when n is odd. However,

we can modify the second subarray T ∗1 T
∗
2L2T5T6 of the construction to meet that property. Let

Eh, 1 ≤ h ≤ m, be row h of T ∗1 T
∗
2 in the subarray T ∗1 T

∗
2L2T5T6, that is, E1 = (1 3), Eh =

(2 + 2(h− 2) 5 + 2(h− 2)), for 2 ≤ h ≤ m− 1, and Eh = (2 + 2(h− 2) 5 + 2(h− 2)− 1), for
h = m. When m ≡ 0 mod 2, we swap E2 and E3, E4 and E5, . . . , Em−2 and Em−1, (resp., when
m ≡ 1 mod 2, we swap E2 and E3, E4 and E5, . . . , Em−1 and Em). Then we have the resulting
subarray E∗L2T5T6, where E∗ = (E1 E3 E2 . . . Em−1Em−2Em)t when m ≡ 0 mod 2, (resp.,
E∗ = (E1 E3 E2 . . . EmEm−1)

t when m ≡ 1 mod 2). Since, for 2 ≤ f ≤ m − 1, the difference
between wt(Ef ) and wt(Ef+1) is at most 4 and the difference between wt(rf ) and wt(rf+1) of
the subarray L2T5T6 is at least 5, the weights of the vertices (rows) in the subarray E∗L2T5T6 are
pairwise distinct.

Note that when n is odd, the construction of Case 1 (as given in the proof of Theorem 3.2)
provides another graph that is antimagic, but slightly different to the one obtained in Case 2 above
(it is not an antimagic generalized toroidal antiprism graph).

The generalized toroidal antiprism graph T 4
C4

with antimagic labeling is illustrated in Figure 3.
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1 2 9 10 13 14
3 4 9 11 15 16
5 6 10 12 17 18
7 8 11 12 19 20
1 3 21 22 25 26
2 5 21 23 27 28
4 7 22 24 29 30
6 8 23 24 31 32
13 15 33 34 37 38
14 17 33 35 39 40
16 19 34 36 41 42
18 20 35 36 43 44
25 27 37 39 45 46
26 29 38 41 45 47
28 31 40 43 46 48
30 32 42 44 47 48

13

68

4 2

7 5

9

12

1011

1315

1416

1719

1820

3334

36 35

2122

24 23

45

48

47 46

38 37

44 43

41

42

39

40

26 25

32 31

27

28

29

30

Figure 3. The generalized toroidal antiprism graph T 4
C4

with antimagic labeling.

We conclude with a corollary that follows immediately from the corresponding theorems and
corollaries when G = Km is replaced by K2. Note that the constructions of Case 1 in the proof of
Theorem 3.2 works for T n

K2
, for any n ≥ 3. The details are omitted here.

Corollary 3.5. (i) The graph An
K2

, n ≥ 2, is antimagic.
(ii) The graph Bn

K2
, n ≥ 2, is antimagic.

(iii) The graph TW n
K2

, n ≥ 2, is antimagic.
(iv) The graph T n

K2
, n ≥ 3, is antimagic.

4. Conclusion

We conclude with a challenge to prove or disprove the following open problem.

Open Problem 1. Is it possible to construct antimagic labelings for all An
G, n ≥ 2, and T n

G, n ≥ 3,
where G is any regular graph?
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